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Abstract

Give random capacities C to the edges of the complete n-vertex
graph. Consider the maximum flow Φn that can be simultaneously
routed between each source-destination pair. We prove that Φn → φ
in probability where the limit constant φ depends on the distribution
of C in a simple way, and that asymptotically one need use only one-
and two-step routes. The proof uses a reduction to a random graph
problem.
Keywords: multicommodity flow, graph colouring.

1 Introduction

This paper is part of a project studying optimal flows through random net-
works, where a network has both a graph structure and extra structure such
as capacities and costs on edges, and where we are in the “multicommod-
ity flow” setting with simultaneous flows between each source-destination
pair. Possible models span a broad spectrum from realistic to mathemat-
ically tractable, and at the latter end are models based on the complete
graph. Including study of such models within a project is natural both for
mathematical completeness and for comparison purposes.
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Consider first the setting of an arbitrary finite connected undirected graph
G. Let φ > 0. A flow of volume φ/2 between vertex v and vertex w has
net out-flow = φ/2 at v, net out-flow = −φ/2 at w, and zero net out-
flow at other vertices. For such a flow write fv,w(e) ≥ 0 for the absolute
value of the flow volume across an undirected edge e. Suppose we have
such a flow simultaneously for each ordered pair (v, w) with w 6= v; call this
collection a uniform flow of volume φ and write f(e) :=

∑
(v,w) fv,w(e) for the

combined volume of flow across the undirected edge e. Suppose now we are
given capacities C(e) for edges e. Then the maximum uniform flow volume
(MUFV) is defined to be the largest φ such that there exists a uniform flow
of volume φ which satisfies the capacity constraints

f(e) ≤ C(e) ∀e. (1)

One modeling paradigm, seeking to combine the spatial inhomogeneity of
real networks with mathematical tractability, is to consider some standard
family Gn of n-vertex graphs, and to assume the edge-capacities C(e) are
random (specifically, are i.i.d. copies of a reference r.v. C). Now the MUFV
is a r.v. Φn, and one can seek to study its n→∞ behaviour.

Apparently, and somewhat surprisingly, such questions have not been
studied before. There is literature [5, 8, 10, 11] on flows with a single source-
destination pair and on flows from the top to the bottom of a square, but
these fall into the one-commodity setting of the max-flow min-cut theorem,
rather than our multicommodity setting.

In this paper we consider the complete graph; a similar problem on the
m×m square grid was studied by very different methods in [3]. An interesting
observation is that in both these models the limit constants for Φn depend on
the distribution of C (not just on its expectation EC), but for rather different
reasons in the two models. An intermediate model is the cube {0, 1}d, and
here we conjecture that the limit constant does depend only on EC when C
is bounded away from zero. See Section 4 for further related work and open
problems.

1.1 Statement of results

Consider the complete n-vertex graph whose edges e have independent ran-
dom capacities C(e) whose common distribution satisfies

0 < EC <∞. (2)
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Note that the function

φ→ 2Emax(φ− C, 0) − Emax(C − φ, 0)

in continuous and strictly increasing from −EC to ∞ as φ increases from 0
to ∞, and so we can define a constant 0 < φ∗ <∞ as the unique solution of

Emax(C − φ∗, 0) = 2Emax(φ∗ − C, 0). (3)

For example, if C is uniform on {0, 1} then φ∗ = 1/3, and if C is uniform on
[0, 1] then φ∗ =

√
2− 1.

Theorem 1. Under assumption (2) the MUFV Φn satisfies Φn → φ∗ in
probability as n→∞.
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Figure 1: a worked example

In order to gain an intuitive understanding of the problem, let us consider
a small example. Figure 1 shows (top) a particular instance of integer edge-
capacities with n = 6: three edges have zero capacity and are not shown.
How might we try to route a flow of volume 2 between each vertex pair?
First try to route along the direct edge e; if capacity C(e) ≥ 2 then we can
do so, leaving surplus capacity C(e) − 2, and the center left diagram shows
the graph of surplus capacity edges. If instead C(e) < 2 then the edge has
“deficit” 2 − C(e) and the center right diagram shows the graph of deficit
capacity edges. Regard each of those graphs as a multigraph whose edges
have surplus/deficit 1. To complete the routing it is enough to associate each
deficit edge with a pair of surplus edges forming a triangle (with each sur-
plus edge being used at most once), because then the flow required between
endpoints of the deficit edge can be routed through the two surplus edges.
The deficit multigraph corresponding to Figure 1 has 9 edges. The bottom
row diagrams illustrate one way of producing the required 9 triangles (the
deficit edges are drawn thicker).

How does this construction idea lead intuitively to the formula (3) and
Theorem 1? Suppose we wish to route a uniform flow of volume φ. As in
the example, first route as much flow as possible across the direct edge, that
is route volume min(φ,C(e)) across an edge e. This leaves a deficit volume
max(φ − C(e), 0) for edge e. Now the mean surplus capacity per edge is
Emax(C − φ, 0). We try to route the unsatisfied demand via 2-step paths
with surplus capacity; for this to work it is plausibly necessary that

Emax(C − φ, 0) ≥ 2Emax(φ− C, 0).
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Conversely, this should be sufficient because the set of edges with surplus
capacity forms a dense random graph which should be sufficiently well-
connected to permit construction of the desired 2-step paths.

The “necessary” part is indeed easy to formalize (Lemma 2), and we do
this in Section 2. We prove the converse (Lemma 5) in Section 3.1; the proof
uses a reduction to a result (Proposition 3) on random coloured graphs which
we prove in Section 3.2.

Finally, we mention a possible connection between our setting and the
more elaborate setting of dynamic routing (of e.g. phone calls) on a complete
network. Section 2.1 of [7] analyzes the throughput of a model in which it is
assumed that calls use either a one-link or two-link route, having previously
commented

We shall occasionally mention the possibility that a call might
be connected along a path of more than two links, but . . . this
possibility is rarely of interest and we shall exclude it from our
formal development.

Our results suggest the possibility of proving that asymptotically one cannot
improve throughput by using such longer paths.

2 The upper bound

The upper bound in Theorem 1 is provided by

Lemma 2. Fix φ > φ∗. Then limn P (Φn ≥ φ) = 0.

Proof. Fix a realization of the edge-capacities. Suppose a uniform flow of
volume ρ exists. For an edge (v, w)∑

e

(fv,w(e) + fw,v(e)) ≥ ρ if C(vw) ≥ ρ

≥ C(vw) + 2(ρ− C(vw)) if C(vw) ≤ ρ

because in the latter case volume of at least ρ − C(vw) must use at least a
2-step route. Combining the two cases,∑

e

(fv,w(e) + fw,v(e)) ≥ min(ρ, C(vw)) + 2 max(ρ− C(vw), 0).
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Summing over edges e′ = (v, w) and using the capacity constraint (1),∑
e

C(e) ≥
∑
e′

(min(ρ, C(e′)) + 2 max(ρ− C(e′), 0)) .

Dividing by
(
n
2

)
and recalling we supposed that the uniform flow exists, we

have shown

Qn :=
1(
n
2

)∑
e′

C(e′)− 1(
n
2

)∑
e′

(min(ρ, C(e′)) + 2 max(ρ− C(e′), 0)) ≥ 0 on {Φn ≥ φ}.

But as n→∞ the quantity Qn converges in probability to

q := EC−(Emin(ρ, C) + 2Emax(ρ− C, 0)) = Emax(C−ρ, 0)−2Emax(ρ−C, 0).

If ρ > φ∗ then q < 0 and hence we must have limn P (Φn ≥ φ) = 0.

3 The reduction argument

3.1 The reduction

We will use a reduction to the following “random graph” result. To motivate
this reduction, consider the case where the edge-capacity C takes only values
{0, 1, 2} and where we seek to route a uniform flow of volume 1. Then traffic
across capacity-0 edges (colored scarlet, say) needs to be routed through two
capacity-2 edges (colored blue, say). Colors are mnemonics for smaller and
bigger capacity.

Proposition 3. Fix 0 < ps < pb/2 with ps + pb ≤ 1. Randomly colour
the edges of the complete n-vertex graph as blue (probability pb) or scarlet
(probability ps) or neither (probability 1− pb − ps). Then whp there exists a
collection of edge-disjoint triangles, each triangle having one scarlet edge and
two blue edges, such that every scarlet edge is in some triangle.

We defer the proof of this proposition to the next subsection, and show
here how to deduce the lower bound in Theorem 1, stated as Lemma 5. Note
that the condition ρ < φ∗ is equivalent to

r :=
Emax(ρ− C, 0)

Emax(C − ρ, 0)
<

1

2
. (4)

We first prove a version of the result for integer capacities and demands,
and then use this to deal with the general case in Lemma 5.

6



Lemma 4. Suppose C is integer-valued and bounded, and suppose ρ is an
integer satisfying (4). Then, with high probability, we can construct flows of
volume ρ between every pair of vertices such that the capacity constraint (1)
holds.

Proof. Let M be an upper bound for C. We construct M separate flow
problems P1, . . . ,PM of the following type. Each problem Pi will be encoded
by an n-vertex graph with scarlet and blue edges. A scarlet edge vw indicates
a demand of 1 and capacity of 0 between v and w, while blue edges have
capacity 1 and demand 0. The absence of an edge indicates that demand
and capacity are both 0.

We construct the problems as follows. For each edge vw with C(vw) ≥ ρ
we choose (uniformly at random) a subset I ⊂ {1, . . . ,M} of size C(vw)− ρ
and insert a blue edge between v and w in Pi for each i ∈ I. For each edge vw
with C(vw) < ρ we choose (uniformly at random) a subset I ⊂ {1, . . . ,M}
of size ρ − C(vw) and insert a scarlet edge between v and w in Pi for each
i ∈ I. Note that the instances Pi and Pj may be dependent, but the edges
inside any instance Pi are present (and coloured) independently.

By (4) the hypothesis of Proposition 3 is satisfied, so with high proba-
bility, we can find for each instance Pi a collection of edge-disjoint triangles
with two scarlet edges and one blue edge covering all scarlet edges. For each
scarlet edge in one of the triangles, route unit flow between its end-vertices
by using the two blue edges in the triangle. Taking the sum of these flows
over all M instances, we establish the lemma.

Lemma 5. Assume (2) and let φ < φ∗. Then limn P (Φn ≥ φ) = 1.

Proof. Let p0 = P (C > 0) and choose c0 > 0 such that P (C ≥ c0) ≥ p0/2.
Define

Ck = max{min(2−kbC2k − 1c, k), 0}

for k sufficiently large that 2−k < c0. So 0 ≤ Ck ≤ max{C − 2−k, 0}. Define
ρk as the largest multiple of 2−k for which

Emax(Ck − ρk, 0) > 2Emax(ρk − Ck, 0).

It is easy to check that ρk ↑ φ∗ as k →∞. Thus it is sufficient to show that,
for each fixed large k,

P (uniform flow of volume ρk exists)→ 1 as n→∞. (5)
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But by applying Lemma 4 to the bounded integer-valued quantities 2kCk and
2kρk, then rescaling by a factor 2−k, we find that (with high probability) we
can construct flows of volume ρk between every pair such that the total flow
volume f(e) satisfies the capacity constraints f(e) ≤ Ck(e) ∀e.

3.2 Proof of Proposition 3

Given nonnegative reals p1, . . . , pk with
∑k

i=1 pi ≤ 1, we write G(n; p1, . . . , pk)
for the probability space of edge-coloured graphs on n vertices, obtained as
follows: for each pair of vertices independently we have an edge of colour i
with probability pi, and no edge with probability 1 −

∑k
i=1 pi. Proposition

3 follows immediately from the following result (give scarlet edges colour 1,
and blue edges colour 2 or colour 3 with probability 1/2 each).

Lemma 6. Fix δ > 0, and suppose that p1, p2, p3 ≥ 0 with sum at most one
satisfy p1 + δ ≤ min{p2, p3}. Then for G ∈ G(n; p1, p2, p3) there is whp a
collection T of edge-disjoint triangles such that every triangle in T contains
one edge of each colour and every edge of colour 1 is contained in some
triangle in T .

Proof. The proof will go in two steps: we begin by setting aside a subset of
the edges of colours 2 and 3, and use the remainder to cover most of the edges
of colour 1. We then use the edges we have set aside to cover the remaining
edges of colour 1.

Let G ∈ G(n; p1, p2, p3). We define edge-disjoint subgraphs G1 and G2 of
G with V (G1) = V (G2) = V (G) as follows: G1 contains all edges of colour
1; each edge of colour i > 1 is placed in G1 with probability p1/pi and in
G2 with probability δ/pi (and is discarded with the remaining probability
(pi − p1 − δ)/pi ≥ 0). Then G1 has distribution G(n; p1, p1, p1) and G2 has
distribution G(n; 0, δ, δ).

We begin with G1, and try to cover edges of colour 1 with multicoloured
triangles. We shall first partition V = V (G1) into a number of sets of size
Θ(
√
n): we ignore the edges inside vertex sets, and break up the remainder

into edge-disjoint tripartite graphs that we handle separately.
Recall that a Steiner triple system on a set U is a collection S of triples

in U such that every pair of elements of U is contained in exactly one triple
from S. Steiner triple systems exist whenever |U | ≡ 1 or 3 mod 6. So let
t ∼
√
n be of form 6k + 1 and let V1, . . . , Vt be a partition of V into t sets of

size bn/tc or dn/te. Let S be a Steiner triple system on [t] = {1, . . . , t}, so S
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contains
(
t
2

)
/3 triples. For each element S = {i, j, k} of S, we consider the

corresponding tripartite subgraph GS of G1 with vertex classes (Vi, Vj, Vk)
that contains all edges from G1 joining these vertex classes. The graphs
{GS : S ∈ S} are independent (disjoint) tripartite random graphs, and every
edge of G1 is contained either in some vertex class Vi or in exactly one of the
GS.

Consider a fixed S = {α1, α2, α3} ∈ S. The corresponding subgraph GS

has vertex classes Vα1 , Vα2 and Vα3 . We decompose GS into subgraphs G1
S, G

2
S

and G3
S where, for each i = 1, 2, 3, Gi

S has all edges from GS with colour j
that join Vαi+j

and Vαi+j+1
for j = 1, 2, 3 (all subscripts taken modulo 3).

Thus each Gi
S has edges of different colours between different pairs of vertex

classes, and in particular all triangles in Gi
S have edges of three different

colours. Furthermore, if we ignore colours, then Gi
S is a random tripartite

graph with vertex classes Vα1 , Vα2 , Vα3 and edge probability p1.
Now fix i, and consider Gi

S. Given vertices x, y in different classes, the
number X of x-y paths of length 2 in Gi

S has distribution B(r, p2
1), where

r ∼ n/t ∼
√
n is the size of the third vertex class. By Chernoff’s inequality,

the probability that |X − rp2
1| ≥ n

1
2/ lnn is at most exp(−Ω(n

1
2/ ln2 n)).

It follows that, with failure probability O(exp(−n1/3)), every edge of Gi
S

is contained in (1 + o(1))p2
1n/t triangles. Thus, giving each triangle in Gi

S

weight (1 − o(1))t/np2
1, we obtain a fractional triangle-packing of size (1 −

o(1))e(Gi
S)/3. We now use Theorem 1 of Haxell and Rödl [9], which implies

that the maximum size of a triangle-packing in a graph on m vertices differs
from the maximum size of a fractional triangle-packing by o(m2) (we could
also use arguments of Frankl and Rödl [6]). Applying this result with m ∼
3n/t ∼ 3

√
n, we see that, with failure probability as above, there is a (proper)

triangle-packing in Gi
S of size (1 + o(1))e(Gi

S)/3 − o(n), which thus covers
all but o(n) edges from Gi

S; and by symmetry we may require that at each
vertex of Gi

S the expected number of uncovered edges is o(n/t) = o(
√
n).

We therefore have, with probability 1−o(1), for every S and i, a triangle-
packing such that at each vertex v of Gi

S the expected number of uncovered
edges is o(

√
n), and this happens uniformly over all S, i and v. Let T1 be

the union of these triangle-packings, and let H be the subgraph of G1 that
remains after removing all the triangles in T1.

We claim that, with probability 1 − o(1), H has maximum degree o(n).
Consider a vertex v, say v ∈ Vi. The edges inside Vi only contribute O(

√
n) to

the degree of v, so it is enough to consider edges between vertex classes. Since
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i belongs to (t−1)/2 ∼
√
n/2 triples from S, v belongs to (1+o(1))

√
n/2 sub-

graphs GS. These subgraphs and their packings are independent: each sub-
graph contains at most 2dn/te ∼ 2

√
n edges that remain incident with v in H,

and an expected o(
√
n) such edges. Thus EdH(v) = o(n) and dH(v)−EdH(v)

is the sum of O(
√
n) independent random variables, each with absolute value

at most O(
√
n). It follows by (for instance) the Azuma-Hoeffding inequality

that with probability 1 − o(1/n), we have ∆(H) = o(n). Let us choose n
large enough that we can assume ∆(H) < δ2n/10.

Finally, we use the edges from G2 to cover the remaining edges of colour
1 in H. Let us orient the edges of G2 at random. Then (easily, by Chernoff’s
inequality) with probability 1− o(1), for every ordered pair (x, y) of vertices
there are at least δ2n/5 oriented paths xzy in G2 such that xz has colour 2
and zy has colour 3. We now choose triangles greedily: for each edge xy of
colour 1 (taking edges in arbitrary order and with arbitrary orientation), we
pick an oriented path xzy in G2 (with xz of colour 2 and zy of colour 3).
Since we have previously used at most ∆(H)− 1 edges out of x and at most
∆(H)−1 edges into y, and there are at least 2∆(H) directed paths to choose
from, there is at least one path edge-disjoint from all previous choices. This
enables us to cover all colour 1 edges of H; adding the resulting triangles to
T1 gives our desired collection T of triangles.

4 Related work and open problems

As mentioned in the Introduction, the problem studied here for the complete
graph could be posed for any family of n-vertex graphs, and the cube graph
{0, 1}d seems particularly interesting. For a large class of related problems,
suppose there exist feasible flows of given volume but that our objective is to
minimize (over such flows) some “cost” of the flow. Such problems have been
intensively studied as finite algorithmic problems [1] but only sporadically
studied in our “probabilistic model of network and n → ∞” setting. For
instance, consider the complete n-vertex graph with independent exponen-
tially distributed edge-lengths, and for each pair of distinct vertices send unit
flow along the shortest path between them, without capacity constraints. A
typical route uses about lnn short edges (and is much shorter than the one
direct edge). The explicit limit distribution of suitably scaled flows across
different edges is obtained in [4]. But it seems a challenging problem to un-
derstand what happens when edge capacities are imposed, in which case we
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can no longer use shortest-path routing but instead seek to minimize overall
mean route length: how does optimal mean route length vary with capacity
constraint?

Another variant is to replace the “hard constraint” of edge-capacities by
a “soft constraint” of congestion costs – the cost to the system of a volume
of flow across an edge grows super-linearly with volume. This variant was
studied in the lattice setting in [3] and in a locally tree-like directed network
in [2]; but analytic understanding of the behavior of any more realistic model
of e.g. road networks seems far out of reach, as does understanding of the
optimal design of such networks.
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