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Abstract

In this paper, we prove a “multidimensional” generalisation of Ramsey’s Theorem to cartesian products

of graphs, showing that a doubly exponential upper bound is enough in every dimension. More precisely,

we prove that for every r, n, d ∈ N, in any r-colouring of the edges of the Cartesian product □dKN of d

copies of KN there is a copy of □dKn such that the edges in each direction are monochromatic, provided

N ≥ 22
C(d)rnd

. As an application of our new approach we obtain improvements on the multidimensional

Erdős-Szekeres Theorem proved by Fishburn and Graham 30 years ago thus confirming a conjecture

posed by Bucić, Sudakov, Tran.

1 Introduction

The study of Ramsey theory is a longstanding and central part of combinatorics. As usual, for positive

integers r, k, the Ramsey number Rr(k) is the smallest n for which every r-colouring of Kn contains a

monochromatic copy of Kk. Ramsey [16] showed in 1930 that these numbers exist. Since then, Ramsey

numbers have been studied extensively, upper and lower bounds have been proved and many generalisations

have been considered, see, e.g. [5, 7, 8, 13, 17, 21, 23]. Even for r = 2, the asymptotics are still not fully

resolved. It is not hard to show that R2(k) grows at exponential rate, but the constant in the exponent is yet

not known: the best current bounds are (1+ o(1))
√
2(k+1)

e 2k+1/2 ≤ R2(k+1) ≤ e−c log2 k
(
2k
k

)
the lower bound

due to Spencer [21] and upper bound by Sah [17]. For larger r, the gap between the upper and lower bound

is even larger, and even for k = 3, we do not understand the behaviour of Rr(3) as r → ∞. Very recently,

Conlon and Ferber [6], Wigderson [24], and Sawin [18] found nice constructions which give the best known

lower bounds for Rr(k) when r ≥ 3. In a recent breakthrough, Campos, Griffiths, Morris and Sahasrabudhe,

reduced the the long standing upper bound of 4k to (4− ε)k. This is the first exponential improvement over

the upper bound of Erdős and Szekeres, proved in 1935.

In this paper, we prove a “multidimensional” generalisation of Ramsey’s Theorem for cartesian products

of graphs. Given two graphs H and G, we write G □H for the Cartesian product of H and G, namely the
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graph with vertex set V (G)× V (H) in which (x, y) is joined to (x′, y′) if and only if x = x′ and yy′ ∈ E(H)

or xx′ ∈ E(G) and y = y′. The Cartesian product is associative, so it makes sense to write G1 □G2 □ · · ·□Gd

(without brackets) for the Cartesian product of d graphs; we write □d G for the product G□ · · ·□G of d copies

of G. Note that in a Cartesian product of d graphs G1, . . . , Gd, there is an edge between v = (v1, . . . , vd) and

w = (w1, . . . , wd) if and only if there is some i such that viwi is an edge of Gi and vj = wj for j ≠ i, and in

this case we will say that the edge vw is in direction i.

Given a colouring c of the edges of □dKn, we say that c is monochromatic in every direction if for each

i ∈ {1, . . . , d} there is some ci such that all edges in direction i have colour ci. For positive integers r, d, we

define Rr(d, n) to be the smallest N such that every r-colouring of the edges of □dKN contains a copy of

□dKn that is monochromatic in every direction. Note that we cannot demand a copy of □dKn that has the

same colour in every direction, as we are asking for a full-dimensional subgraph: for example, □dKN could

be coloured with colour 1 for all edges in direction 1 and coloured with 2 for the edges in all other directions.

It is easy to see that if we demand a monochromatic copy of □ℓKn then ℓ must be at most ⌈d/r⌉. It will
follow from Theorem 1.1 that this is also tight.

It is not too hard to prove that Rr(d, n) exists by an iterated application of Ramsey’s Theorem. However,

this would only give an upper bound of tower-type as a function of d. Our main goal is to show that a doubly

exponential bound on nd suffices.

Theorem 1.1. Let d be a positive integer. There exists Cd > 0 such that for every n, r the following holds.

For N ≥ rr
Cdrnd

, every r-colouring of □dKN contains a copy of □dKn which is monochromatic in every

direction. That is, Rr(d, n) ≤ rr
Cdrnd

.

As an immediate corollary, we see that any r-edge colouring of □dKN contains a monochromatic copy of

□ℓKn for ℓ = ⌈d/r⌉.

Corollary 1.2. Let n, d, r be positive integers and ℓ = ⌈d/r⌉. For N ≥ rr
Cdrnd

, every r-edge-colouring of

□dKN contains a monochromatic copy of □ℓKn. The value of ℓ is tight.

Another foundational result in Ramsey theory appears in a paper Erdős and Szekeres [8] from 1935: any

sequence of n2 + 1 distinct real numbers contains either an increasing or decreasing subsequence of length

n+ 1. There are a number of different ways to generalise the Erdős-Szekeres Theorem to higher dimensions

(see, for example, [2, 3, 11, 12, 14, 15, 19, 22]). Perhaps the most natural approach was developed thirty

years ago by Fishburn and Graham [10].

A d-dimensional array is an injective function f from A1 × . . .×Ad to R where A1, . . . Ad are non-empty

subsets of Z; we say f has size |A1| × · · · × |Ad|; if |Ai| = n for each i, it will be convenient to say that f

has size [n]d. A multidimensional array is said to be monotone if for each direction all the 1-dimensional

subarrays in that direction are increasing or decreasing. In other words, for every i, one of the following holds:

� For every choice of aj , j ̸= i, the function f(a1, . . . , ai−1, x, ai+1, . . . , ad) is increasing in x.

� For every choice of aj , j ̸= i, the function f(a1, . . . , ai−1, x, ai+1, . . . , ad) is decreasing in x.

Let Md(n) be the smallest N such that a d-dimensional array on [N ]d contains a monotone d-dimensional

subarray of size [n]d. Fishburn and Graham [10] showed that Md(n) exists but their upper bounds were

a tower of height d. Recently, Bucić, Sudakov, and Tran [1] proved considerably better upper bounds on

Md(n), showing doubly exponential bounds in nd−1 for 2 and 3 dimensions, and triply exponential bounds in

4 or higher dimensions.
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Theorem 1.3. (Bucić, Sudakov, and Tran)

i) M2(n) ≤ 22
(2+o(1))n

,

ii) M3(n) ≤ 22
(2+o(1))n2

,

iii) Md(n) ≤ 22
2Od(nd−1)

, for d ≥ 4.

Bucić, Sudakov, and Tran [1] asked whether a better bound could be proved in four and higher dimensions,

speculating that the triply exponential bound could be reduced to a doubly exponential bound. Using the

methods from our proof of Theorem 1.1, we resolve their question, showing that a doubly exponential upper

bound holds in all dimensions.

Theorem 1.4. For every d ≥ 2, there is Cd > 0, such that for every positive n, Md(n) ≤ 2n
Cdnd−1

.

In our proof, instead of trying to find directly a monochromatic sub-product of cliques, we first find an

intermediate structured object which we call d-consistent and then we show that a density-type argument on

these structured objects allows us to get a monochromatic □dKn. We then use this new approach to improve

the upper bound in Theorem 1.3, leading to Theorem 1.4. This differs from the methods of [1], which makes

significant use of the fact that the Erdős-Szekeres Theorem has a polynomial bound and so it can be iterated

nd−1 times to obtain the bounds for d ≥ 4 in Theorem 1.3. Ramsey’s Theorem, however, has an exponential

bound and so a different approach is required to avoid getting levels of exponentiation.

In our proof, we first find a new intermediate notion of a structured object which we call d-consistent and

then we show that a density-type argument on these structured objects allows us to get a monochromatic

□dKn. We then use this new approach to improve the upper bound in Theorem 1.3, leading to Theorem 1.4.

We finish the introduction by pointing out that our results also give improvements for multidimensional

lexicographic-monotone array. In their paper, Fishburn and Graham [10] introduced another natural

generalisation for monotone sequences and the Erdős-Szekeres theorem, which they called a lex-monotone

array. A d-dimensional array f is said to be lex-monotone if the following holds. There exists a permutation

τ ∈ S[d] and a sign vector s ∈ {−1, 1}d, such that f(x) < f(y) if and only if the vector (sτ(i)xτ(i))i∈[d] is smaller

in lexicographic ordering than vector (sτ(i)yτ(i))i∈[d], that is, if there is i ∈ [d] such that sτ(j)xτ(j) = sτ(j)yτ(j)

for every j < i, and sτ(i)xτ(i) < sτ(i)yτ(i). Let Ld(n) be the smallest N such that a d-dimensional array on

[N ]d contains a lex-monotone d-dimensional subarray of size [n]d. Fishburn and Graham gave a tower bound

of order d− 1 on Ld(n), which was improved by Bucić, Sudakov and Tran to a tower of order 5 for d ≥ 4

(and triple exponential for d = 3). We note that using Theorem 1.4 together with Theorem 1.2 from [1] we

obtain a triple exponential upper bound for all d ≥ 3, that is, Ld(n) ≤ 22
2Cdnd−2

.

We prove Theorem 1.1 in Section 2 and Theorem 1.4 in Section 3. We conclude with some further

discussion in Section 4.

2 Upper bound on Rr(d, n)

To simplify notation we will identify the vertex set of KN with [N ] = {1, . . . , N} and the vertex set of

KN □ · · · □KN with [N ]d. Suppose that, for each i ∈ [d] we have a graph Gi and a subgraph Hi ⊆ Gi. For

a ∈ V (Gd), we write H1 □ · · · □ Hd−1 □ a for the copy of H1 □ · · · □ Hd−1 ⊆ G1 □ · · · □ Gd with vertex set
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V (H1) × · · · × V (Hd−1) × {a} (thus all vertices have a as their dth coordinate; we will usually omit the

braces around {a} for simplicity). We define subgraphs such as a1 □ · · · □ ad−1 □Hd analogously. We will

sometimes refer to induced subgraphs by their vertex sets: thus, for an edge-coloured graph G we say that

S ⊂ V (G) contains a monochromatic Kk if there is some set T ⊂ S such that the induced subgraph G[T ] is a

monochromatic copy of Kk.

We begin with a short proof for the case d = 2, and then give a (more involved) argument for the general

case d ≥ 3.

Proof of Theorem 1.1 for d = 2. Note that Rr(1, t) is just the usual Ramsey number for Kt, which is smaller

than rrt. Let N := rr
10rn2

, and consider an r-colouring of the edges of KN □KN . Fix a set S ⊂ [N ] of size

rr
3rn2+1

. By Ramsey’s Theorem, for each i ∈ [N ] we can find a monochromatic copy of Kr3rn2 in S × i. Note

that there are at most r ·
( |S|
r3rn2

)
≤ rr

7rn2

choices for the vertex set of each monochromatic copy of Kr3rn2

and its colour. Since N/rr
7rn2

≥ r2rn, a pigeonhole argument shows that there is a set A1 of size r3rn
2

and a

set A2 ⊂ [N ] of size at least r2rn such that, for each a2 ∈ A2 the set A1 × a2 induces a monochromatic copy

of Kr3rn2 (all with the same choice of colour). Applying Ramsey’s Theorem once again, we can find in each

set b×A2 a monochromatic copy of Kn (as |A2| = r2rn). As there are at most r ·
(|A2|

n

)
≤ r2rn

2

choices for

the vertex set and colour of this Kn, we can apply the pigeonhole principle again: there is a set A′
1 ⊂ A1 of

size at least |A1|/r2rn
2 ≥ k and a set A′

2 ⊂ A2 of size n such that, for every a1 ∈ A′
1, the set a1 ×A′

2 forms a

monochromatic copy of Kn (and all with the same choice of colour). It is clear that A′
1 ×A′

2 forms a copy of

Kn □Kn that is monochromatic in both directions. Hence Rr(2, n) ≤ N , as we wanted to show.

We now turn to the general argument for d ≥ 3. Consider an r-edge-coloured product of complete graphs.

We say a 1-dimensional Kk is 1-consistent if it is monochromatic. For d ≥ 2, we say □dKk is d-consistent if

the following two conditions hold:

� for every a ∈ [k], the subgraph (□d−1Kk) □ a has the same colouring: that is, for every edge xy in

□d−1Kk, the colour of the edge between x× a and y× a is the same for every a ∈ [k]; and

� for some (and thus for every) a, the subgraph □d−1Kk □ a is (d− 1)-consistent.

In other words, for each i ∈ [d], the ‘i-dimensional subspaces’ (□i KN ) □ ai+1 □ · · · □ ad have the same

colouring for every choice of ai+1, . . . , ad.

The proof splits into two lemmas. Given suitable N ≫ k ≫ n and an r-edge colouring of □dKN , we first

find a d-consistent subgraph H =□dKk. We then show that H contains a monochromatic copy of □dKn.

Lemma 2.1. For every d ≥ 1 there is a constant g(d) such that the following holds. Let r, k be positive integers

and 0 < ϵ < 1/2. Suppose that N ≥ ϵ−g(d)kd−1 · rg(d)rkd

and □d KN has a d-consistent r-edge-colouring.

Then every set S of at least ϵNd vertices contains a copy of □dKk which is monochromatic in every direction.

Proof. We argue by induction on d that g(d) = (12+ 2r)d−1 will do. It is clear that when d = 1 it is sufficient

to have N ≥ rrk/ϵ, which we do as g(1) = 1. So we assume that d ≥ 2 and we have handled smaller cases.

Let T be the set of elements v ∈ [N ]d−1 such that v × [N ] contains at least ϵN/2 elements of S. A counting

argument shows that |T | ≥ ϵNd−1/2. Let A ⊂ [N ] be a random subset of size (10/ϵ)rrk. For each v ∈ T ,

with probability at least 2/3 the set v ×A contains at least rrk elements of S. So we can choose A so that

the set

T ′ := {v ∈ T : |(v ×A) ∩ S| ≥ rrk}
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has size at least (2/3)|T | ≥ (ϵ/3)Nd−1. By Ramsey’s Theorem, for each v ∈ T ′, there is a monochromatic

copy of Kk contained in (v × A) ∩ S, say on vertices Bv ⊂ A. There are at most r
(
(10/ϵ)rrk

k

)
≤ ϵ−9krrk

2+1

choices for Bv and the colour of the corresponding copy of Kk, so there are B ⊂ A and U ⊂ T ′ such that

|U | ≥ ϵ9kr−rk2−1|T ′| ≥ (ϵ/3)ϵ9kr−rk2−1Nd−1

and Bv = B for every v ∈ U . Now let ϵ̃ = (ϵ/3)ϵ9kr−rk2−1 ≥ ϵ12kr−rk2−1, so |U | ≥ ϵ̃Nd−1. We now apply

the inductive hypothesis to [N ]d−1, with the colouring inherited from [N ]d−1 × a (which by consistency

is the same for any b ∈ B) with the subset U playing the role of S. Since N ≥ ϵ−g(d)kd−1

rg(d)rk
d ≥

ϵ̃−g(d−1)kd−2 · rg(d−1)rkd−1

, we obtain a (d−1)-dimensional product P of copies of Kk which is monochromatic

in every direction. Then P ×B gives a d-dimensional product of copies of Kk which is monochromatic in

every direction (as P × b is coloured in the same way for every b ∈ B, and all sets v × B (v ∈ B) give

monochromatic copies of Kk with the same colour).

Lemma 2.2. For every positive integer d there is f(d) such that for every r, k the following holds. Let

N := rf(d)rk
d

. Then in every r-colouring of □dKN there is a d-consistent □dKk.

Proof. We argue by induction on d that f(d) = 2d−1d! will do. For d = 1, this is true by Ramsey’s Theorem.

Now, let M := rf(d−1)rkd−1

and consider the subgraph (□d−1KM ) □KN . By induction any r-colouring of

□d−1KM contains a (d− 1)-consistent □d−1Kk. Therefore, for every a ∈ [N ] the subgraph □d−1KM × a

contains a (d− 1)-consistent □d−1Kk × a. As there are most r(d−1)k2+(d−2)

possible r-colourings of □d−1 Kk

and at most
(
M
k

)d−1
possible vertex sets, there are at most r(d−1)k2+(d−2)(M

k

)d−1 ≤ r(d−1)kd

Mk(d−1)/k <

rf(d)rk
d

/k = N/k possible combinations. Thus, by the pigeonhole principle, there is a (d − 1)-consistent

colour pattern c of □d−1 Kk and a set A ⊂ [N ] of size k, such that for every a ∈ A, the subgraph □d−1Kk×a

has colour pattern c, and all these boxes lie on the same vertex set in the first d− 1 dimensions, as we wanted

to show.

Proof of Theorem 1.1. We will show that the statement holds with Cd = 3dg(d− 1) + f(d) + 1, where f and

g are any functions satisfying the previous two lemmas. Let N := rr
Cdrnd

. Let t := r3g(d−1)rnd

and u := rrn.

Applying Lemma 2.2 to □dKN , we obtain a d-consistent copy B of □dKt. Relabelling, and restricting the

final coordinate to u choices, we may assume that we have a d-consistent colouring of □d−1Kt □Ku.

For every a1 × · · · × ad−1, where each ai ∈ [t], we can apply Ramsey’s Theorem to a1 □ · · ·□ ad−1 □Ku to

get a monochromatic copy of Kn. There are
(
u
n

)
· r choices of colour and coordinates C for this copy; setting

ϵ = 1/(run) we see that there is some set S of at least ϵtd−1 vertices in □d−1Kt for which both colour and

coordinates agree.

Finally, we apply Lemma 2.1 to S ⊂ □d−1Kt and obtain a copy K of □d−1Kn contained in S that is

monochromatic in every direction. This lemma holds for t ≥ ϵ−g(d−1)nd−2

rg(d−1)rnd−1

, which holds by our

choice of constants, as

ϵ−g(d−1)nd−2

= (run)g(d−1)nd−2

= r(rn
2+1)g(d−1)nd−2

.

Then K □ C is a copy of □dKn that is monochromatic in every direction.
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3 Upper bound on Md(n)

We note first that an immediate application of Theorem 1.1 gives an upper bound of Md(n) ≤ 22
Cdnd

by

giving an edge xy colour red if f(x) < f(y) and blue otherwise. However, we wish to get a dependence of

d− 1 in the exponent in Theorem 1.4, and so prove it separately.

The proof follows along the same route as the proof of Theorem 1.1. However, we need an modified

version of Lemma 2.1 where the exponent is slightly better. In what follows, , we will assume all the arrays

hereafter are injective, which we can ensure by a small perturbation to the values. We say a 1-dimensional

array is consistent if it is monotone. For d ≥ 2, we say an array f : [N ]d → R is d-consistent if the following

two conditions hold:

� for every a ∈ [N ], f restricted to [N ]d−1 × {a} has the same order pattern i.e. for every x,y ∈ [N ]d−1,

if f(x× a) < f(y× a), for some a then the same holds for all a ∈ [N ]; and

� for some (and thus for every) a, the (d−1)-dimensional subarray f : [N ]d−1×a → R is (d−1)-consistent.

As in Section 2, we will show that being d-consistent with the appropriate parameters is enough for our

purpose.

Lemma 3.1. For every d ≥ 1, there is a constant g(d) such that the following holds. Let r, k be positive

integers and 0 < ϵ < 1/2 . Suppose that N ≥ ϵ−g(d)kd−1 · kg(d)kd−1

and the array f : [N ]d → R is d-consistent.

Then every S ⊆ [N ]d of size at least ϵNd contains a monotone subarray of size [k]d.

Proof. We follow the proof of Lemma 2.1, with k2 playing the role of rrk, g(d) = 2 ·15d−1, and with the remark

that in the 1-dimensional case, the Erdős-Szekeres Theorem implies that it is enough to have N ≥ ϵ−1(2k)2.

We include the full details here for completeness.

We argue by induction on d that g(d) = 2 · 15d−1 will do. It is clear that when d = 1 it is sufficient to

have N ≥ k2/ϵ, which we do as g(1) = 2. So we assume that d ≥ 2 and we have handled smaller cases. Let

T be the set of elements v ∈ [N ]d−1 such that v × [N ] contains at least ϵN/2 elements of S. A counting

argument shows that |T | ≥ ϵNd−1/2. Let A ⊂ [N ] be a random subset of size (10/ϵ)k2. For each v ∈ T , with

probability at least 2/3 the set v ×A contains at least k2 elements of S. So we can choose A so that the set

T ′ := {v ∈ T : |(v ×A) ∩ S| ≥ k2}

has size at least (2/3)|T | ≥ (ϵ/3)Nd−1. By the Erdős-Szekeres Theorem, for each v ∈ T ′, there is a monotone

subarray of size k contained in (v×A) ∩ S, say on vertices Bv ⊂ A. There are at most 2
(
(10/ϵ)k2

k

)
≤ ϵ−9kk2k

choices for Bv and the direction of monotonicity (i.e. increasing or decreasing), so there are B ⊂ A and

U ⊂ T ′ such that

|U | ≥ ϵ9kk−2k|T ′| ≥ (ϵ/3)ϵ9kk−2kNd−1

and Bv = B for every v ∈ U . Now let ϵ̃ = (ϵ/3)ϵ9kk−2k ≥ ϵ12kk−2k, then |U | ≥ ϵ̃Nd−1. We now apply

the inductive hypothesis to the subset U ⊆ [N ]d−1, with the values inherited from [N ]d−1 × b (which by

consistency are the same for any b ∈ B). Since

N ≥ ϵ−g(d)kd−1

kg(d)k
d−1

≥ ϵ̃−g(d−1)kd−2

· kg(d−1)kd−2

,

we obtain a (d− 1)-dimensional monotone subarray of size [k]d−1. Then P ×B gives a monotone subarray of

size [k]d.
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It is thus enough to find a d-consistent array. The following lemma is analogue of Lemma 2.2 for arrays.

Lemma 3.2. For every positive integer d there is f(d) such that for every k the following holds. Let

N := kf(d)k
d−1

. Then in every d-dimensional array of size [N ]d there is a d-consistent subarray of size [k]d.

Proof. We argue by induction on d that f(d) = 2d−1d!+1 will do. For d = 1, this is true by the Erdős-Szekeres

Theorem. Now let M := kf(d−1)kd−2

. By induction any array on [M ]d−1 contains a (d− 1)-consistent array

of size [k]d−1 . Therefore, for every a ∈ [N ] the (d − 1)-dimensional array on [M ]d−1 × {a} contains a

(d − 1)-consistent array on A1 × · · · × Ad−1 × {a}, where |Ai| = n for all i ∈ [d − 1]. As there are most

k(d−1)k1+(d−2)

possible orderings of an array of size kd−1, and at most
(
M
k

)d−1
choices for the sets Ai, there

are at most k(d−1)k1+(d−2)(M
k

)d−1
< k(d−1)kd−1

Mk(d−1)/k ≤ kf(d)k
d−1

/k = N/k possible combinations. Thus,

by the pigeonhole principle there are an ordering O of [k]d−1 and a set A ⊂ [N ] of size k, where [k]d−1 × {a}
have the same ordering O for every a ∈ A and all these (d− 1)-dimensional arrays lie on the same vertex set

in the first d− 1 dimensions, as we wanted to show.

Proof of Theorem 1.4. We will show that the statement holds with Cd = 4dg(d − 1) + f(d), where f and

g are any functions satisfying Lemma 3.1 and Lemma 3.2. Let N := nnCdnd−1

. Let t := n3g(d−1)nd−1

and

u := n2. Applying Lemma 3.2 to [N ]d, with t playing the role of k, we obtain a d-consistent array on

B1× · · ·×Bd := B, where |Bi| = t for all i ∈ [d]. Relabelling, and restricting the final coordinate to u choices,

we may assume that we have a d-consistent array on [t]d−1 × [u]. For every a1 × · · · × ad−1 ∈ [t]d−1, we can

apply the Erdős-Szekeres Theorem to the 1-dimensional array on a1 × · · · × ad−1 × [u] to get a monotone

subarray of size n. By a simple counting argument there are at most
(
u
n

)
· 2 choices for the coordinates of the

subarray and whether it is increasing or decreasing, and hence there is some choice of these which occurs

on a fraction of at least (2 ·
(
u
n

)
)−1 := ϵ̂ of the vertices of [t]d−1, say on a set S. let A ⊆ [u] be the common

choice of coordinates for the monotonic subarrays corresponding to S.

Finally, we apply Lemma 3.1 to S ⊆ [t]d−1. By the choices of t, u, ϵ̂ we have that t ≥ ϵ̂−g(d−1)nd−2 ·
ng(d−1)nd−2

, and so we obtain a monotone (d− 1)-dimensional array T of size [u]d−1. Since B is d-consistent,

T × {a} is monotone for every a ∈ A (with the same choice of direction of monotonicity). By construction,

this gives a monotone d-dimensional array on T ×A.

4 Concluding remarks

In Theorem 1.1, we have given a doubly exponential upper bound on the d-dimensional Ramsey numbers.

From below, we have only a singly exponential bound (which follows easily by considering random colourings).

It would be very interesting to close the gap. In particular, it would be good to know whether there is a

simple exponential upper bound, or whether the numbers grow more quickly.

Problem 4.1. Fix r, d ≥ 2. Is R2(2, n) superexponential in n?

The same gap between lower and upper bounds is seen in the multimensional Erdős-Szekeres Theorem.

Bucić, Sudakov and Tran [1] gave a doubly exponential upper bound for d = 2, 3; and Theorem 1.4 gives a

doubly exponential upper bound for d ≥ 4 (improving on the previous triply exponential upper bound [1]).

But a frustrating gap between singly and doubly exponential bounds remains.

It is easy to see that M2(n) ≤ R2(2, n) for every n. It would be interesting to see if R2(2, n) can be

bounded above by a function of M2(n). For example, is the following true.
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Problem 4.2. Does there exist C > 0 such that logR2(2, n) ≤ (log(M2(n))
C?
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[11] K. Kalmanson, On a theorem of Erdős and Szekeres, J. Comb. Theory Ser. A 15 (1973), 343–346. 2

[12] J. B. Kruskal, Monotonic subsequences, Proc. Amer. Math. Soc. 4 (1953), 264–274. 2

[13] H. Lefmann, A note on Ramsey numbers, Studia Sci. Math. Hungar. 22 (1987), 445–446. 1

[14] N. Linial and M. Simkin, Monotone subsequences in high-dimensional permutations, Comb. Prob.

Comput. 27 (2018), 69–83. 2

[15] A. P. Morse, Subfunction structure, Proc. Amer. Math. Soc. 21 (1969), 321–323. 2

[16] F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc., Ser. 2 30 (1930), 264–286. 1

[17] A. Sah, Diagonal Ramsey via effective quasirandomness, Preprint available at arXiv: 2005.09251. 1

8



[18] W. Sawin, An improved lower bound for multicolor Ramsey numbers and the half-multiplicity Ramsey

number problem. arXiv preprint arXiv:2105.08850 (2021). 1

[19] R. Siders, Monotone subsequences in any dimension, J. Comb. Theory Ser. A 85 (1999), 243–253. 2

[20] J. M. Steele, Variations on the monotone subsequence theme of Erdős and Szekeres. In Discrete probability
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