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Abstract

A vertex u of a graph “t-dominates” a vertex v if there are at most t vertices different from u, v that
are adjacent to v and not to u; and a graph is “t-dominating” if for every pair of distinct vertices,
one of them t-dominates the other. Our main result says that if a graph is t-dominating, then it is
close (in an appropriate sense) to being 0-dominating. We also show that an analogous statement
for digraphs is false; and discuss some connections with the Erdős-Hajnal conjecture.



1 Introduction

In this paper, all graphs are finite and have no loops or parallel edges. We say a vertex u of a graph
t-dominates a vertex v if there are at most t vertices different from u, v that are adjacent to v and
not to u; and a graph is t-dominating if for every pair of distinct vertices, one of them t-dominates
the other.

Graphs that are 0-dominating are easily understood; they are called “threshold graphs” and
have several different characterizations, which we discuss later. But for general fixed t, t-dominating
graphs are not so transparent, and our main result states that every t-dominating graph has bounded
“local difference” from a 0-dominating graph. Let us define this.

Let G,H be graphs on the same vertex set. We say that the local difference between G,H is d if
d is the maximum, over all vertices v, of

|NG(v) \NH(v)|+ |NH(v) \NG(v)|,

where NG(v), NH(v) denote the set of neighbours of v in G,H respectively. Thus, if G,H have local
difference d, then H can be obtained from G by changing the adjacency of some pairs of vertices,
where the changed pairs form a graph with maximum degree d. Local difference is evidently a
metric, and could be used, for instance, to describe “defective colouring”. A d-defective k-colouring
of a graph is a partition of its vertex set into k subsets such that the subgraph induced on each
subset has maximum degree at most d, and this is the same as saying the graph has local difference
at most d from a k-colourable graph.

It is easy to see that if G is 0-dominating and G,H have local difference at most d then H is
2d-dominating, and we prove a kind of converse:

1.1 For all integers t ≥ 0, if G is t-dominating then there is a 0-dominating graph H with the same
vertex set such that G,H have local difference at most 646t4.

The proof is in three stages: we reduce the problem to “split graphs” (graphs with vertex set
partitioned into a clique and a stable set); we reduce the split graph question to a problem about
matrices; and then we solve the matrix problem. They are carried out in reverse order.

It is natural to ask whether there is an analogous result for set containment: given a collection
F of sets such that, for all A,B ∈ F , either A ⊂ B or B ⊂ A, we know immediately that F is a
chain. But what if we are only given that min(|A \ B|, |B \ A|) ≤ t? Is there some f(t) so that we
can add/delete at most f(t) elements to each set to obtain a chain? Equivalently, is there a version
of 1.1 that holds for outneighbourhoods in a digraph? In section 5, we show that the answer is no.

This research was motivated by the Erdős-Hajnal conjecture [4], that for every graph H, there
exists ε > 0 such that every graph G not containing H as an induced subgraph has a stable set
or clique of cardinality at least O(|V (G)|ε), and we discuss an application of our theorem to that
conjecture in the final section.

2 0-domination

There are several different characterizations of 0-dominating graphs, as we explain now. A graph G
is 0-dominating if and only if there are no four distinct vertices u, u′, v, v′ such that uu′ and vv′ are
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edges and the pairs u, v′ and v, u′ are nonadjacent. Here u, v might or might not be adjacent, and
also u′, v′ might or might not be adjacent; so this can restated as:

2.1 A graph is 0-dominating if and only if no induced subgraph is isomorphic to C4, 2K2, or P4.

(C4 denotes the four-vertex cycle graph; 2K2 denotes its complement, the graph consisting of two
disjoint edges; and P4 denotes the four-vertex path.) A split graph is a graph G such that V (G) can
be partitioned into a clique and a stable set, and a graph is a split graph if and only if [6] it has no
induced subgraph isomorphic to C4, 2K2 or C5. Thus every 0-dominating graph is a split graph.

A half-graph is a bipartite graph with bipartition X,Y say, such that X,Y can be ordered as
X = {x1, . . . , xm} and Y = {y1, . . . , yn} with the following property: for all i, i′, j, j′ with 1 ≤ i ≤
i′ ≤ m and 1 ≤ j ≤ j′ ≤ n, if xiyj is an edge then xi′yj′ is an edge. It is easy and well-known that a
bipartite graph is a half-graph if and only if it has no induced subgraph isomorphic to 2K2. Let us
say a split half-graph is a graph obtained from a half-graph with bipartition X,Y by adding edges to
make X a clique.

Let G be 0-dominating, and let V (G) be the disjoint union of a clique X and a stable set Y . Let
B be the bipartite graph with bipartition X,Y formed by the edges of G between X and Y . Then
B has no induced subgraph 2K2, since G has no P4, and it follows that B is a half-graph, and so G
is a split half-graph. Since split half-graphs are 0-dominating, we have shown that:

2.2 G is 0-dominating if and only if G is a split half-graph.

Every nonnull split half-graph has either a vertex of degree zero or a vertex adjacent to all other
vertices, and deleting this vertex gives another split half-graph. A graph G is a threshold graph if
it can be built starting from the null graph by the two operations of adding an isolated vertex and
adding a vertex adjacent to all current vertices; and since threshold graphs are 0-dominating, we
have a third characterization:

2.3 G is 0-dominating if and only if G is a threshold graph.

The characterization 2.2 is the most useful for our purposes.

3 A matrix problem

Let us denote the set of all pairs (i, j) (1 ≤ i ≤ m, 1 ≤ j ≤ n) by [m]× [n]. A subset F of [m]× [n]
is up-closed if for all i, i′, j, j′ with 1 ≤ i ≤ i′ ≤ m and 1 ≤ j ≤ j′ ≤ n, if (i, j) ∈ F then (i′, j′) ∈ F ;
and F is down-closed if ([m]× [n]) \F is up-closed. The union of two up-closed subsets is up-closed,
and so every subset of [m]× [n] has a unique maximal up-closed subset.

Now let A = (aij : (i, j) ∈ [m] × [n]) be a 0/1 matrix. Its support is the set of all pairs
(i, j) ∈ [m] × [n] with aij = 1. We say that A is monotone if its support is up-closed. For i, i′ ∈
{1, . . . ,m} we say that i, i′ are row-inclusive in A if one of the sets {j ∈ {1, . . . , n} : aij 6= ∅},
{j ∈ {1, . . . , n} : ai′j 6= ∅} is a subset of the other (and we define column-inclusive similarly). We
say that the matrix A is inclusive if all i, i′ ∈ {1, . . . ,m} are row-inclusive in A (and therefore all
j, j′ ∈ {1, . . . , n} are column-inclusive in A). It follows that A is inclusive if and only its rows and
columns can be reordered to make a matrix that is monotone.

If t ≥ 0 is an integer, we say that A is t-restricted if
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• for all i, i′ ∈ {1, . . . ,m} with i < i′, there are at most t values of j ∈ {1, . . . , n} such that
aij = 1 and ai′j = 0; and

• for all j, j′ ∈ {1, . . . , n} with j < j′, there are at most t values of i ∈ {1, . . . ,m} such that
aij = 1 and aij′ = 0.

Thus a matrix A is 0-restricted if and only if it is monotone, that is, its support is up-closed. In
order to prove 1.1 we need to prove something similar for t-restricted matrices; but before that we
handle a special case.

Let A,B be two 0/1 matrices both indexed by [m]× [n]. The local difference between A,B is the
maximum, over all rows and columns, of the number of terms in that row or column in which A,B
differ. One might hope that for all t, every t-restricted 0/1 matrix A has bounded local difference
from some monotone matrix; but that is false, even for t = 1. For instance, with m = 1 and n large,
a 1× n matrix A with entries (1, . . . , 1, 0, . . . , 0) (with n/2 ones and n/2 zeroes) is 1-restricted, and
yet has arbitrarily large local difference from every monotone matrix. This is perhaps unfair in that
being 1-restricted has no content for a 1× n matrix, but we could pad it by adding more rows; say
n/2 rows of all zeroes, then the given row, and then n/2 rows of all ones, making an (n + 1) × n
matrix, which is also a counterexample. One might try assuming in addition that the rows are in
increasing order of row-sum, and the same for columns (which will be the case when we apply these
results to our graph problem), but a similar counterexample still can be made, as follows. Take the
(n + 1)× n matrix just described, and change the n/2 entries ai,n

2
+i (1 ≤ i ≤ n/2) to ones and the

n/2 entries an
2
+i+1,i (1 ≤ i ≤ n/2) to zeroes.

Nevertheless, something like this is true; replace “monotone” by “inclusive”. We will prove:

3.1 For all integers t ≥ 0 and every t-restricted 0/1 matrix A, there is an inclusive matrix B, such
that the local difference between A,B is at most 644t4.

This means that we can change a bounded number of entries in every row and column and then
reorder rows and columns to get a monotone matrix. But before we prove this, we handle a special
case, matrices of bounded “breadth”, and next we define this. Let A = (aij : (i, j) ∈ E) be a 0/1
matrix, with support E1, and let E0 = ([m]× [n]) \E1. Let X be the maximal down-closed subset of
E0, and Y the maximal up-closed subset of E1. (X is unique, since the union of two down-closed sets
is also down-closed, and similarly Y is unique.) Thus X ∩ Y = ∅. A diagonal for A means a subset
F of [m]× [n] such that for some integer c, F is the set of all pairs (i, j) ∈ [m]× [n] with j = i + c
and (i, j) /∈ X ∪ Y . Since X is down-closed and Y is up-closed, it follows that every diagonal F is
an interval in the sense that if (i, i + c), (i′′, i′′ + c) ∈ F where i′′ > i then (i′, i′ + c) ∈ F for all i′

with i ≤ i′ ≤ i′′. We call the maximum cardinality of all diagonals the breadth of A. We first show:

3.2 For all integers t, w ≥ 0 with 2w ≥ t + 1, and every t-restricted 0/1 matrix A with breadth
at most w, there is an inclusive matrix B such that the local difference between A,B is at most
2(t+ w)w3.

Proof. Let A be a t-restricted 0/1 matrix indexed by [m] × [n], with breadth at most w, let its
support be E1, let E0 = ([m]× [n]) \E1, and let X,Y be the maximal down-closed subset of E0 and
up-closed subset of E1 respectively. Let Z = ([m]× [n]) \ (X ∪Y ). We will give rules to change some
of the entries aij for (i, j) ∈ Z. We need to satisfy two conditions:
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• after the changes, all pairs i, i′ will be row-inclusive; and

• for each row or column, at most (2t+ w)w3 entries in that row or column will be changed.

Our first task is to give the rules, but that needs a number of definitions. For 1 ≤ j ≤ n, the jth
column means the set {(i, j) : 1 ≤ i ≤ m} for some j ∈ {1, . . . , n}, and a row is defined similarly. A
post is the nonempty intersection of a column with Z, and a beam is the nonempty intersection of a
row with Z. Every member of Z belongs to a unique post and a unique beam, and how we change
the corresponding entry of A depends on the types of this post and beam. (Posts and beams again
are intervals, in the natural sense.)

Let P, P ′ be posts, where P, P ′ are the intersection of the jth column with Z and the j′th column
with Z, respectively. They are parallel if

• for all i ∈ {1, . . . ,m}, (i, j) ∈ Z if and only if (i, j′) ∈ Z; and

• for all i ∈ {1, . . . ,m}, if (i, j) ∈ Z then aij = aij′ .

Thus two parallel posts involve the same rows, and have the same entries in those rows. The
multiplicity of a post P is the number of posts that are parallel to P (counting P itself). We define
parallelness and multiplicity for beams similarly.

Let (i, j) ∈ Z. We associate four integers with (i, j):

• p−(i, j), the number of i′ < i such that (i′, j) ∈ Z;

• q−(i, j), the number of j′ < j such that (i, j′) ∈ Z;

• p+(i, j), the number of i′ > i such that (i′, j) ∈ Z;

• q+(i, j), the number of j′ > j such that (i, j′) ∈ Z.

We observe that the post containing (i, j) has cardinality p−(i, j) + p+(i, j) + 1, and a similar state-
ment holds for the beam.

(1) For each (i, j) ∈ Z, min(p−(i, j), q+(i, j)) < w, and min(q−(i, j), p+(i, j)) < w.

Suppose that p−(i, j), q+(i, j) ≥ w. It follows that (i − w, j), (i, j + w) ∈ Z. Since X is down-
closed and (i − w, j) /∈ X, it follows that for 0 ≤ h ≤ w, (i − w + h, j + h) /∈ X; and similarly,
since (i, j + w) /∈ Y it follows that for 0 ≤ h ≤ w, (i − w + h, j + h) /∈ Y . Consequently the set
{(i − w + h, j + h) : (0 ≤ h ≤ w)} is a subset of a diagonal. But it has cardinality w + 1, a con-
tradiction. Consequently min(p−(i, j), q+(i, j)) < w, and similarly min(p+(i, j), q−(i, j)) < w. This
proves (1).

(2) For every post P , if (i, j) ∈ P then the multiplicity of P is at most q−(i, j) + q+(i, j) + 1.

The beam containing (i, j) has cardinality q−(i, j) + q+(i, j) + 1; but it intersects all posts parallel
to P , and so its cardinality is at least the multiplicity of P . This proves (2).

Now we can give the rules. For each (i, j) ∈ [m] × [n] define bij as follows. If (i, j) /∈ Z then
bij = aij , so we may assume that (i, j) ∈ Z; let (i, j) belong to a post P and a beam Q.
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• If both p−(i, j), q−(i, j) ≥ w then bij = 1;

• if both p+(i, j), q+(i, j) ≥ w then bij = 0;

• if both p−(i, j), p+(i, j) < w and P has multiplicity at least 2w then bij = aij ;

• if both q−(i, j), q+(i, j) < w and Q has multiplicity at least 2w then bij = aij ;

• if both p−(i, j), p+(i, j) < w and P has multiplicity less than 2w then bij = 0;

• if both q−(i, j), q+(i, j) < w and Q has multiplicity less than 2w then bij = 0.

We claim the rules are consistent; for let (i, j) ∈ Z. By (1), only one of the first two rules applies to
(i, j), and if one of the first two applies then none of the other rules apply. If the third rule applies
to (i, j), then the fifth does not; and since P has multiplicity at least 2w, it follows by (2) that
q−(i, j) + q+(i, j) + 1 ≥ 2w, so at least one of q−(i, j), q+(i, j) ≥ w and consequently the fourth and
sixth rules do not apply. Similarly if the fourth rule applies then the fifth and sixth do not. Finally,
both the fifth and sixth may apply simultaneously, but they assign the same value to bij . Thus the
rules are consistent. Furthermore, we observe that every (i, j) ∈ Z falls under one of the rules, by
(1), and so the matrix B = (bij) is well-defined.

Now we must check the two bullets given at the start of this proof. We say B is increasing in
row i if bij ≤ bij′ for all j, j′ with 1 ≤ j < j′ ≤ n, and we define increasing in column j similarly.

(3) Let P be a post, a subset of the jth column. If |P | < 2w then B is increasing in column j.

Suppose that there exist i, i′ with 1 ≤ i < i′ ≤ m, such that bij = 1 and bi′j = 0. It follows
that (i, j) /∈ X, and so (i′, j) /∈ X, since X is down-closed; and similarly (i, j), (i′, j) /∈ Y , and conse-
quently (i, j), (i′, j) ∈ Z. Let Q,Q′ be the beams containing (i, j), (i′, j) respectively. Since |P | < 2w,
both Q,Q′ have multiplicity less than 2w. Since bij = 1, not both q−(i, j), q+(i, j) < w from the
sixth rule. If p+(i, j) ≥ w, then by (1) q−(i, j) < w, so q+(i, j) ≥ w and bij = 0, a contradiction.
Thus p+(i, j) < w.

Suppose that also p−(i, j) < w. Since bij = 1 it follows that P has multiplicity at least 2w,
and aij = bij = 1. If ai′j = 0, then since P has multiplicity at least 2w ≥ t + 1, there are t + 1
values of j′ ∈ {1, . . . , n} such that aij′ = 1 and ai′j′ = 0, contradicting that A is t-restricted. Thus
ai′j = 1, and in particular ai′j 6= bi′j . Since P has multiplicity at least 2w it follows that one of
p−(i′, j), p+(i′, j) ≥ w, and hence p−(i′, j) ≥ w, since p+(i′, j) < p+(i, j) < w. By (1), q+(i′, j) < w.
Since P has multiplicity at least 2w, (2) implies that q−(i′, j)+q+(i′, j)+1 ≥ 2w, and so q−(i′, j) ≥ w.
This contradicts the first rule, since bi′j = 0. This proves that p−(i, j) ≥ w.

We have seen that not both q−(i, j), q+(i, j) < w, and so from (1), q−(i, j) ≥ w. But q−(i′, j) ≥
q−(i, j) since X is down-closed, and so q−(i′, j) ≥ w; and also p−(i′, j) > p−(i, j) ≥ w, and yet
bi′j = 0, contrary to the rules. This proves (3).

(4) Let 1 ≤ i < i′ ≤ m; then i, i′ are row-inclusive in B.

Suppose not, then in particular, there exists j ∈ {1, . . . , n} such that bij = 1 and bi′j = 0. Now
(i, j) /∈ X since bij = 1, and since X is down-closed it follows that (i′, j) /∈ X. Also (i′, j) /∈ Y since
bi′j = 0, and so (i, j) /∈ Y since Y is up-closed. Consequently (i, j), (i′, j) ∈ Z. Let P be the post
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containing them both, and let Q,Q′ be the beams containing (i, j), (i′, j) respectively. Since B is not
increasing in the jth column, |P | ≥ 2w by (3). If B is increasing in the ith row, and B is increasing
in the i′th row, then (since B is 0/1-valued) i, i′ are row-inclusive in B, a contradiction. So B is not
increasing in one of the ith row or the i′th row, and so one of |Q|, |Q′| ≥ 2w by (3).

Suppose that |Q| ≥ 2w. Then one of q−(i, j), q+(i, j) ≥ w, and one of p−(i, j), p+(i, j) ≥ w, and
since bij = 1, it follows from (1) and the rules that p−(i, j), q−(i, j) ≥ w. But q−(i′, j) ≥ q−(i, j)
since X is down-closed, and so q−(i′, j) ≥ w; and also p−(i′, j) > p−(i, j) ≥ w, and yet bi′j = 0,
contrary to the first rule. Thus |Q| < 2w, and so |Q′| ≥ 2w.

Hence one of q−(i′, j), q+(i′, j) ≥ w, and one of p−(i′, j), p+(i′, j) ≥ w, and since bi′j = 0, it fol-
lows from (1) and the rules that p+(i′, j), q+(i′, j) ≥ w. But q+(i, j) ≥ q+(i′, j), and so q+(i, j) ≥ w;
and also p+(i, j) > p+(i′, j) ≥ w, and yet bij = 1, contrary to the rules. This proves (4).

(5) The local difference between A,B is at most 2(t+ w)w3.

Let 1 ≤ j ≤ n; by the symmetry between axes, it suffices to show that there are at most (2t+w)w3

values of i such that aij 6= bij . For every such value of i, it follows that (i, j) ∈ Z; so we may assume
that there is a post P included in the jth column with |P | > (2t + w)w3, and choose i1, i2 with
1 ≤ i1 ≤ i2 ≤ m such that

• for 1 ≤ i < i1, (i, j) ∈ X;

• for i1 ≤ i ≤ i2, (i, j) ∈ P ; and

• for i2 < i ≤ m, (i, j) ∈ Y .

Let i1 ≤ i ≤ i2, and suppose that aij = 0 and bij = 1. From the rules, it follows that p−(i, j), q−(i, j) ≥
w; and so from (1), p+(i, j) < w. Consequently i2 −w+ 1 ≤ i ≤ i2, and so there are at most w such
values of i. Now let i1 ≤ i ≤ i2, and suppose that aij = 1 and bij = 0. From the rules, it follows that
either

• p+(i, j), q+(i, j) ≥ w, or

• both p−(i, j), p+(i, j) < w and P has multiplicity less than 2w, or

• both q−(i, j), q+(i, j) < w and Qi has multiplicity less than 2w, where Qi is the beam containing
(i, j).

At most w values of i satisfy the first bullet, as before. If i satisfies the second bullet then |P | ≤ 2w−1,
a contradiction since |P | > (2t + w)w3; so we may assume that i satisfies the third bullet. There
are therefore only w2 possibilities for the pair q−(i, j), q+(i, j). Let h, k ≥ 0 with h, k < w, and let
I(h, k) be the set of all i that satisfy i1 ≤ i ≤ i2, and aij = 1, and bij = 0, and q−(i, j) = h and
q+(i, j) = k, and Qi has multiplicity less than 2w. We need to bound |I(h, k)|. We can evidently get
an exponential bound, since there are only 22w+1 possibilities for the entries of Qi, and only 2w − 1
values of i ∈ I(h, k) in which all the entries are the same; but we can do better.

If i ∈ I(h, k), A may or may not be increasing in the ith row. Let I1 be the set of i ∈ I(h, k)
such that A is increasing in the ith row, and I2 = I(h, k) \ I1. For each i ∈ I1, there are only h+ 1
possibilities for the entries of Qi, and at most 2w− 1 distinct i ∈ I1 with the same set of entries, and
so |I1| ≤ (h+ 1)(2w− 1). If i ∈ I2 then there exists j′ with j − h ≤ j′ ≤ j + k− 1 such that aij′ = 1
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and ai,j′+1 = 0. There are only h + k choices for j′, and for each j′ there are at most t values of
i ∈ I2 such that aij′ = 1 and ai,j′+1 = 0, since A is t-restricted; and so |I2| ≤ t(h+ k). Consequently
|I(h, k)| ≤ (h+1)(2w−1)+ t(h+k). Since h, k < w, it follows that |I(h, k)| ≤ w(2w−1)+2(w−1)t.

In summary, at most w values of i satisfy the first bullet above; none satisfy the second bullet;
and (since there are at most w2 choices for h, k), at most (w(2w−1)+2(w−1)t)w2 satisfy the third.
Consequently there are at most (w(2w − 1) + 2(w − 1)t)w2 + w values of i such that aij = 1 and
bij = 0. As we saw, there are at most w values of i such that aij = 0 and bij = 1; so there are at
most (w(2w − 1) + 2(w − 1)t)w2 + 2w values of i such that aij 6= bij . This proves (5).

From (4) and (5), this proves 3.2.

Now we eliminate the hypothesis about bounded breadth, by means of the following.

3.3 For all integers t ≥ 0 and every t-restricted 0/1 matrix A, there is a t-restricted 0/1 matrix B
with breadth at most 4t, such that the local difference between A,B is at most 4t.

Proof. Let A be a 0/1 matrix indexed by [m]× [n], let its support be E1, let E0 = ([m]× [n]) \E1,
and let X,Y be the maximal down-closed subset of E0 and up-closed subset of E1 respectively. Let
Z = ([m] × [n]) \ (X ∪ Y ). Let P1 be the set of all (i, j) ∈ [m] × [n] such that there exist at least
2t values of i′ < i with (i′, j) ∈ E1, and let Q1 be the set of all (i, j) such that there are at least 2t
values of j′ < j with (i, j′) ∈ E1. Let P0 be the set of all (i, j) such that there exist at least 2t values
of i′ > i with (i′, j) ∈ E0, and let Q0 be the set of all (i, j) such that there are at least 2t values of
j′ > j with (i, j′) ∈ E0.

(1) There do not exist (i1, j1) ∈ P1 and (i0, j0) ∈ Q0 such that i0 ≥ i1 and j0 ≥ j1. Also, there
do not exist (i1, j1) ∈ Q1 and (i0, j0) ∈ P0 such that i0 ≥ i1 and j0 ≥ j1.

Suppose that such (i1, j1), (i0, j0) exist. From the symmetry between axes, we may assume that
(i1, j1) ∈ P1, and hence (i0, j0) ∈ Q0. Consequently (i0, j1) ∈ P1 ∩ Q0. Choose I1 ⊆ {1, . . . , i0 − 1}
with cardinality 2t such that (i, j1) ∈ E1 for each i ∈ I1, and choose J0 ⊆ {j1 + 1, . . . , n} with
cardinality 2t such that (i0, j) ∈ E0 for each j ∈ J0. From the symmetry between zeroes and ones,
we may assume without loss of generality that (i0, j1) ∈ E0. If E1 contains at least half of the pairs
(i, j) with i ∈ I1 and j ∈ J0, then there exists i ∈ I1 such that (i, j) ∈ E1 for at least t values of
j ∈ J0, and hence for at least t+ 1 values of j ∈ J0 ∪{j0}; and since (i, j0) ∈ E0 for each such j, this
contradicts that A is t-restricted. On the other hand, if E0 contains more than half of the pairs (i, j)
with i ∈ I1 and j ∈ J0, then there exists j ∈ J0 such that (i, j) ∈ E0 for at least t+ 1 values of i ∈ I1;
and since (i1, j) ∈ E1 for each such i, this also contradicts that A is t-restricted. This proves (1).

(2) There do not exist (i1, j1) ∈ P1∪Q1 and (i0, j0) ∈ P0∪Q0 such that i0 ≥ i1 + 4t and j0 ≥ j1 + 4t.

Suppose that such (i1, j1), (i0, j0) exist. From the symmetry between axes, we may assume that
(i1, j1) ∈ P1. By (1) it follows that (i0, j0) /∈ Q0, and so (i0, j0) ∈ P0. Choose I1 ⊆ {1, . . . , i1 − 1}
with cardinality 2t such that (i, j1) ∈ E1 for each i ∈ I1, and choose I0 ⊆ {i0 + 1, . . . ,m} with
cardinality 2t such that (i, j0) ∈ E0 for each i ∈ I0. If E0 contains more than half of the pairs (i, j)
with i ∈ I1 and j1 < j < j0, then there exists j with j1 < j < j0 such that (i, j) ∈ E0 for at least
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t + 1 values of i ∈ I1, contradicting that A is t-restricted. If E1 contains at least half of the pairs
(i, j) with i ∈ I1 and j1 < j < j0, then there exists i ∈ I1 such that (i, j) ∈ E1 for at least half of the
values of j with j1 < j < j0, and since (i, j1) ∈ E1, it follows that (i, j0) ∈ Q1, contrary to (1) since
(i0, j0) ∈ P0. This proves (2).

Construct a matrix B = (bij) as follows. Let (i, j) ∈ [m]× [n].

• If (i, j) ∈ Z and there is no (i0, j0) ∈ P0 ∪Q0 such that i0 ≥ i and j0 ≥ j then bij = 1;

• if (i, j) ∈ Z and there exists (i0, j0) ∈ P0 ∪ Q0 such that i0 ≥ i and j0 ≥ j, and there is no
(i1, j1) ∈ P1 ∪Q1 such that i1 ≤ i and j1 ≤ j, then bij = 0;

• if neither of these applies then bij = aij .

We need to show that B is t-restricted, B has breadth at most 4t, and the local difference between
A,B is at most 4t. Let the support of B be F1, let F0 = ([m] × [n]) \ F1, and let X ′, Y ′ be the
maximal down-closed subset of F0 and up-closed subset of F1 respectively.

(3) For all (i, j) ∈ [m] × [n], if there is no (i0, j0) ∈ P0 ∪ Q0 such that i0 ≥ i and j0 ≥ j then
(i, j) ∈ Y ′. Also, if there is no (i1, j1) ∈ P1 ∪Q1 such that i1 ≤ i and j1 ≤ j, then (i, j) ∈ X ′.

Suppose there is no (i0, j0) ∈ P0 ∪ Q0 such that i0 ≥ i and j0 ≥ j. Let F be the set of all
(i′, j′) ∈ [m] × [n] such that i ≤ i′ and j ≤ j′; then for every such pair, (i′, j′) ∈ Z ∪ Y , and there
is no (i0, j0) ∈ P0 ∪ Q0 such that i0 ≥ i′ and j1 ≥ j′, and so (i′, j′) ∈ F1. Hence F is an up-closed
subset of F1, and since Y ′ is the unique maximal up-closed subset of F1, it follows that F ⊆ Y ′, and
in particular (i, j) ∈ Y ′ as required. The second statement follows similarly. This proves (3).

(4) B is t-restricted.

Suppose that there exist i, i′ with 1 ≤ i < i′ ≤ m such that bij = 1 and bi′j = 0 for t + 1 val-
ues of j ∈ {1, . . . , n}. For each such j, (i, j) /∈ Y ′ since (i′, j) ∈ F0; (i, j) /∈ X ′ since (i, j) /∈ F0; and
similarly (i′, j) /∈ X ′, Y ′. By (3), bij = aij and bi′j = ai′j , contradicting that A is t-restricted. From
the symmetry between axes, this proves (4).

(5) B has breadth at most 4t.

Let Z ′ = ([m] × [n]) \ (X ′ ∪ Y ′). Since X ⊆ X ′ and Y ⊆ Y ′, it follows that Z ′ ⊆ Z. Suppose
that for some i, j all of the pairs (i + h, j + h) (0 ≤ h ≤ 4t) belong to Z ′. Thus (i, j) ∈ Z, and
since (i, j) /∈ X ′, it follows from (3) that there exists (i1, j1) ∈ P1 ∪Q1 such that i1 ≤ i and j1 ≤ j.
Similarly, since (i+4t, j+4t) /∈ Y ′, there exists (i0, j0) ∈ P0∪Q0 such that i0 ≥ i+4t and j0 ≥ j+4t.
But then i0 ≥ i1 + 4t and j0 ≥ j1 + 4t, contrary to (2). This proves (5).

(6) The local difference between A,B is at most 4t.

Let 1 ≤ i ≤ m, and let J be the set of all j with 1 ≤ j ≤ n such that bij 6= aij . We need to
bound |J |. Let J1 be the set of all j ∈ J such that bij = 1 and aij = 0, and let J0 be the set of all
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j ∈ J such that bij = 0 and aij = 1. If j ∈ J1, then there is no (i0, j0) ∈ P0 ∪ Q0 such that i0 ≤ i
and j0 ≥ j, and in particular (i, j) /∈ Q0; and so (i, j′) ∈ E0 for at most 2t− 1 values of j′ < j. Since
J1 ⊆ E0, it follows (by choosing j ∈ J1 maximal, if possible) that |J1| ≤ 2t.

If j ∈ J0, then there is no (i1, j1) ∈ P1 ∪ Q1 such that i1 ≤ i and j1 ≤ j, and in particular
(i, j) /∈ Q1, and so (i, j′) ∈ E1 for at most 2t − 1 values of j′ > j; and so |J0| ≤ 2t. Summing, it
follows that |J | ≤ 4t. From the symmetry between axes, this proves (6).

From (4), (5), (6), this completes the proof of 3.3.

Combining the previous two theorems, we deduce 3.1, which we restate::

3.4 For all integers t ≥ 0 and every t-restricted 0/1 matrix A, there is an inclusive matrix B, such
that the local difference between A,B is at most 644t4.

Proof. By 3.3 there is a t-restricted 0/1 matrix A′ with breadth at most 4t, such that the local
difference between A,A′ is at most 4t. By 3.2 applied to A′, with w = 4t, there is an inclusive matrix
B such that the local difference between A′, B is at most 640t4. But then the local difference between
A,B is at most 640t4 + 4t ≤ 644t4. This proves 3.4.

4 Near-dominating graphs

Now we use the results of the previous section to study t-dominating graphs. It is tempting to try
to apply 3.1 directly to the adjacency matrix A of a t-dominating graph, but that does not work.
3.1 would give us an inclusive matrix B that has bounded local difference from A, and so we could
reorder its rows and columns to make it monotone; but we need the corresponding permutations of
the rows and columns to be the same, and we need the monotone matrix to be symmetric, and the
direct application of 3.1 gives neither of these things. We will apply 3.1 in another way. First we
show:

4.1 Let G be a t-dominating split graph. Then there is a split half-graph H with V (H) = V (G)
such that the local difference between G,H is at most 644t4.

Proof. Let G be a t-dominating split graph, and let V (G) be the disjoint union of a clique M and
a stable set N . Let M = {u1, . . . , um}, where for 1 ≤ i < j ≤ m the degree of ui is at most that of
uj , and let N = {v1, . . . , vn}, where for 1 ≤ i < j ≤ n the degree of vi is at most that of vj . Let
A = (aij) be the 0/1 matrix where aij = 1 if ui, vj are adjacent and aij = 0 otherwise. We claim
that A is t-restricted. For let 1 ≤ i < i′ ≤ m, and suppose that there are t values of j ∈ {1, . . . , n}
such that aij = 1 and ai′j = 0. Thus for each such j, vj is adjacent to ui and not to ui′ . Since the
degree of ui′ is at least that of ui, it follows that there are at least t vertices adjacent to ui′ and
not to ui, contradicting that G is t-dominating. A similar argument shows that there do not exist
j, j′ ∈ {1, . . . , n} with j < j′ such that for t values of i, aij = 1 and aij′ = 0. Hence A is t-restricted.
By 3.4, there is an inclusive matrix B such that the local difference between A,B is at most 644t4.
Let H be the graph with vertex set M ∪N in which ui, vj are adjacent if bij = 1, and M is a clique
and N is a stable set. It follows that H is a split half-graph, and its local difference from G is at
most 644t4. This proves 4.1.
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4.2 Let G be a t-dominating graph. Then there is a t-dominating split graph H with V (H) = V (G)
and with local difference at most 2t from G.

Proof. Let V (G) = {v1, . . . , vn}, where for 1 ≤ i < j ≤ n, the degree of vj is at least that of vi.
Choose i minimum such that some vertex in {v1, . . . , vi} has at least 2t+1 neighbours in {v1, . . . , vi}.
(If this is not possible then every vertex has degree at most 2t, and so G has local difference at most
2t from the graph H obtained by deleting all the edges, which is a t-dominating split graph.) Let
N = {v1, . . . , vi−1} and M = {vi, . . . , vn}. Thus every vertex in N has at most 2t neighbours in N .
Choose x ∈ N ∪ {vi} and X ⊆ N \ {x} with |X| ≥ 2t (and X 6= ∅ if t = 0), such that X is the set
of neighbours of x in N . For all j ≥ i, there are at most t vertices adjacent to x and not to vj , since
the degree of vj is at least that of x and G is t-dominating. In particular, vj is adjacent to at least
half the vertices in X. Let j ≥ i, and let Y be the set of vertices in M that are different from and
nonadjacent to vj . Since every vertex in Y is adjacent to at least half the vertices in X, and X 6= ∅,
some vertex vh ∈ X is adjacent to at least half the vertices in Y . But there are at most t vertices
adjacent to vh and not to vj , since the degree of vh is at most that of vj and G is t-dominating; and
consequently |Y |/2 ≤ t. Thus every vertex v ∈M is nonadjacent to at most 2t vertices in M \ {v}.
Let H be the split graph obtained from G by deleting all edges with both ends in N and making
adjacent all pairs of vertices in M ; then the local difference between G,H is at most 2t.

We claim that H is t-dominating. For let u, v ∈ V (H) = V (G). If u, v ∈ M then since one of
u, v t-dominates the other in G, the same is true in H (since in H, u, v have the same neighbours in
M \ {u, v}). Similarly if u, v ∈ N then one of u, v t-dominates the other. If u ∈ M and v ∈ N then
v 0-dominates and hence t-dominates u. This proves that H is t-dominating, and so proves 4.2.

Combining 4.1 and 4.2, we obtain our main result, which we restate:

4.3 Let G be a t-dominating graph. Then there is a split half-graph H with V (H) = V (G) and with
local difference at most 646t4 from G.

Proof. Let G be t-dominating. By 4.2 there is a t-dominating split graph G′ with V (G′) = V (G)
and with local difference at most 2t from G. By 4.1, there is a split half-graph H with V (H) = V (G)
such that the local difference between G′, H is at most 644t4. Thus the local difference between G,H
is at most 644t4 + 2t ≤ 646t4. This proves 4.3.

5 A counterexample

Here is a concept similar to t-domination for graphs and t-restriction for matrices. Let G be a
bipartite graph with bipartition (A,B); we say G is t-nested on (A,B) if for all distinct u, v ∈ B, one
of them has at most t neighbours nonadjacent to the other. Thus, 0-nested graphs are half-graphs.
(Being t-nested is “half” of being t-restricted; t-restriction also requires the analogous statement
with A,B exchanged. We could also view t-nestedness as a version of t-domination for digraphs, if
we regard the matrix as the adjacency matrix of a digraph.)

Let G,H both be bipartite graphs with bipartition (A,B); we say the bipartite local difference
between G,H is the maximum over v ∈ B of |NG(v) \NH(v)| + |NH(v) \NG(v)|. One might hope
that for all t there exists f(t) such that if G is t-nested on (A,B) then there is a half-graph H with
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the same bipartition (A,B), with bipartite local difference at most f(t) from G. (Indeed, this looked
like an easier question than our main result, and we tried it first as a warm-up.) But this is false,
even if t = 1. Here is a counterexample.

Let S be the set of all 0/1 sequences with at most k terms, and let T be the binary tree defined
by S; thus V (T ) = S, and s, s′ are adjacent if their lengths differ by one and one of them is an
initial subsequence of the other. Let I be the set of all s ∈ S of length less than k, and B those of
length exactly k. (Thus B is the set of leaves of T , and I the set of internal vertices.) Each s ∈ B
is a sequence of k terms (s1, . . . , sk) say, and we define n(s) =

∑
1≤i≤k si2

k−i. Thus all the numbers

n(s) (s ∈ B) are different and range from 0 to 2k − 1. For s, s′ ∈ B, we write s < s′ if n(s) < n(s′).
For each s ∈ B take a set Ws of 2k+1 + 2k new vertices, so that all the sets V (T ) and Ws (s ∈ B)

are pairwise disjoint. Let W =
⋃
s∈BWs, and let A = I ∪W . We construct a bipartite graph G

with bipartition (A,B) as follows. Let s ∈ B. For s′ ∈ B, s has no neighbour in Ws′ if s′ > s, and
s is adjacent to every vertex in Ws′ if s′ ≤ s. For s′ ∈ I, we decide the adjacency of s, s′ in G by
the following rule. Choose i minimum such that either i is greater than the number of terms of s′,
or the ith terms of s and of s′ are different, and let x be the ith term of s; we make s, s′ adjacent if
and only if x = 0. (In other words, if we consider the paths Ps and Ps′ from the root to s and s′ in
T , we have that s, s′ are adjacent in G if the first vertex of Ps′ that does not lie on Ps gets label 0.)

This graph is 1-nested; and indeed, for s, s′ ∈ B with s < s′, there is at most one v ∈ I adjacent
to s and not to s′, and no such v ∈ W . Suppose that there is a 0-nested graph H with bipartition
(A,B) that has bipartite local difference less than k from G. For each s ∈ S, its degree in G is at
least (2k+1 + 2k)n(s) and at most (2k+1 + 2k)n(s) + 2k+1 − 1; and so its degree in H is at least
(2k+1 + 2k)n(s)− k and at most

(2k+1 + 2k)n(s) + 2k+1 − 1 + k < (2k+1 + 2k)(n(s) + 1)− k.

Consequently, for distinct s, s′ ∈ B, if s < s′ then the degree of s in H is less than that of s′. Since
H is 0-nested, it follows that every vertex of A adjacent to s in H is also adjacent to s′.

Let t0 be the null sequence, and let L0, R0 be the sets of members of B with first term 0 and 1
respectively. It follows that t0 is adjacent in G to every vertex in L0, and nonadjacent to every vertex
in R0; and yet s < s′ for every s ∈ L0 and s′ ∈ R0. Consequently, in H either t0 is nonadjacent to
every member of L0, or adjacent to every member of R0. If the first, let t1 be the one-term sequence
(0), and otherwise t1 = (1). Let L1 be the set of members of B such that t1 is an initial segment,
and the second term is 0, and let R1 be those such that t1 is an initial segment with second term 1.
Again, t1 is adjacent in G to every member of L1, and nonadjacent to every member of R1, and in
H either t1 is nonadjacent to all vertices in L1 or adjacent to all in R1; let t2 be the corresponding
two-term sequence. By continuing this process we obtain a sequence t0, t1, t2, . . . , tk−1 ∈ I, and a
vertex tk ∈ B, where for 0 ≤ i ≤ k, ti has i terms and ti−1 is an initial segment of ti, and for
0 ≤ i ≤ k − 1, tk is adjacent to ti in exactly one of G,H. Since tk ∈ B, this contradicts that the
bipartite local difference between G,H is at most k − 1.

This could be viewed another way: for each vertex in B, take its set of neighbours in A. Then
we obtain a collection of subsets C of A such that for every two of them, say X,Y , one of |X \ Y |,
|Y \X| ≤ 1. But if we want to change this last 1 to a 0 by adding and subtract elements of A from
the sets of C, then some set has to have an arbitrarily large number of elements added or subtracted.

11



6 The Erdős-Hajnal conjecture

Let us say an ideal of graphs is a class C of graphs, such that if G ∈ C and H is isomorphic to
an induced subgraph of G then H ∈ C; and an ideal is proper if some graph is not in it. The
Erdős-Hajnal conjecture [4] asserts:

6.1 Conjecture: For every proper ideal C, there exist c, ε > 0 such that for every graph G ∈ C,
G has a clique or stable set of cardinality at least c|V (G)|ε.

We are interested in the way the (optimal) coefficient ε depends on C. In particular, when does
taking ε = 1 work? If C is the set of all graphs not containing one particular graph H as an induced
subgraph, then there are almost no choices of H for which ε = 1 works — only those graphs H with
at most two vertices, as is easily seen. For instance, let St be the star with centre of degree t, and
C the class of all graphs that do not contain St as an induced subgraph; then ε = O(1/t), since the
Ramsey number R(k, t) is at least (k/ log k)(t+1)/2 for fixed t and large k [2] (and ε is known to exist
because of a result of Alon, Pach and Solymosi [1]).

But there are ideals defined by excluding more than one graph. If we take C to be the class of
graphs that contain neither St nor its complement as an induced subgraph, then [3] for every graph
G ∈ C, either G or its complement has maximum degree bounded by a function of t, and so there
exist c, ε with ε = 1.

Another ideal of interest is the class of all t-dominating graphs, for fixed t. Every split graph has
a clique or stable set containing at least half its vertices, and so by 4.2, in every t-dominating graph
G, there is a subset X ⊆ V (G) with |X| ≥ |V (G)|/2 such that either the subgraph induced on X has
maximum degree at most 2t or its complement graph does. Consequently G has a clique or stable
set with cardinality at least |V (G)|/(4t+ 2); and so we may take ε = 1 in 6.1 for this class.

Take a “substar” (a graph obtained from a star by deleting some edges) and the complement of a
substar, and let C be the class containing neither of these graphs; in this case ε = 1 does not work in
general (consider a disjoint union of n1/2 cliques each with n1/2 vertices), but ε = 1/2 works. This is
a special case of the following. (If G is a graph, ω(G) and α(G) denote the cardinalities of its largest
clique and largest stable set respectively, and we denote max(ω(G), α(G)) by ρ(G).) We recall that
threshold graphs were defined in section 2, and are the same as 0-dominating graphs, because of 2.3.

6.2 Let H1, H2 be threshold graphs, with |V (H1)|+ |V (H2)| = m and ω(H1)+α(H2) = k. For every
graph G, if G has no induced subgraph isomorphic to H1 or to H2, then |V (G)| ≤ (2m − 1)ρ(G)k−2.

Proof. We proceed by induction on m. If one of H1, H2 has at most one vertex the claim is trivial,
so we assume they both have at least two vertices. A vertex is isolated if it has degree zero, and
universal if it is adjacent to all other vertices. For i = 1, 2, let H ′i be obtained from Hi by deleting
an isolated vertex if there is one, and if not let H ′i = Hi; and let H ′′i be obtained from Hi by deleting
a universal vertex if there is one, and if not let H ′′i = Hi. Let G contain neither of H1, H2. For
X ⊆ V (G), G[X] denotes the subgraph induced on X. Let v ∈ V (G), and let N be the set of
neighbours of v, and M = V (G) \ (N ∪ {v}).

Suppose first that one of H1, H2 has an isolated vertex, and one has a universal vertex. Since
G[M ] contains neither of H ′1, H

′
2, it follows that |M | ≤ (2m−1 − 1)ρ(G)k−2; and similarly |N | ≤

(2m−1 − 1)ρ(G)k−2. Consequently

|V (G)| = |N |+ |M |+ 1 ≤ 2(2m−1 − 1)ρ(G)k−2 + 1 ≤ (2m − 1)ρ(G)k−2
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as required.
Thus either H1, H2 both have no isolated vertex, or they both have no universal vertex. We can

reduce the second case to the first by replacing H1, H2 and G by their complements, and exchanging
H1, H2 (to preserve the property that ω(H1) +α(H2) = k); so we may assume the first case holds. It
follows that H1, H2 both have universal vertices, since they are threshold graphs; and in particular,
ω(H ′′1 ) + α(H ′′2 ) = k − 1.

Choose v ∈ V (G) with maximum degree, and let N be its set of neighbours. Since G[N ] contains
neither of H ′′1 , H

′′
2 , it follows from the inductive hypothesis that

|N | ≤ (2m−2 − 1)ρ(G)k−3 ≤ 2m−2ρ(G)k−3 − 1.

Since v has maximum degree, it follows that G is 2m−2ρ(G)k−3-colourable, and so some stable set
has cardinality at least |V (G)|/(2m−2ρ(G)k−3). In particular ρ(G) is at least this quantity, and so
2m−2ρ(G)k−2 ≥ |V (G)|, and again the result follows. This proves 6.2.

One can also ask, what is the size of the largest clique or stable set in almost all graphs in an
ideal? This may be much larger than we can guarantee for every graph in the ideal. Thus while for
every ε > 0 there exists t such that there are Kt-free n-vertex graphs with no stable set of size at
least nε, it is known [5] that for every t there exists Ct > 0 such that almost every Kt-free n-vertex
graph has a stable set of size at least Ctn.

It remains an open problem to determine whether for some ε > 0 and every graph H, there exists
CH > 0 such that almost every graph G that does not contain H as an induced subgraph has a stable
set or clique of size at least CH |V (G)|ε. This would be true (see Lemma 3 of [7] and the discussion
around it) if for some ε > 0 and every integer t ≥ 0, there exists Ct > 0 such that, for every graph
G, either

• there are two vertices u, v and a stable set S with |S ∩ (N(u) −N(v))|, |S ∩ (N(v) −N(u))|,
|S ∩N(u) ∩N(v)| all of cardinality t, or

• there are two vertices u, v and a clique T with |T ∩ (N(u) − N(v))|, |T ∩ (N(v) − N(u))|,
|T \ (N(u) ∪N(v))| all of cardinality t, or

• G contains a clique or stable set of size at least Ct|V (G)|ε.

Our results are a first step in proving this statement.
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