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Abstract

A multigraph drawn in the plane is non-homotopic if no two edges connecting the same
pair of vertices can be continuously deformed into each other without passing through a
vertex, and is k-crossing if every pair of edges (self-)intersects at most k times. We prove
that the number of edges in an n-vertex non-homotopic k-crossing multigraph is at most
613n(k+1), which is a big improvement over previous upper bounds.

We also study this problem in the setting of monotone drawings where every edge is an
x-monotone curve. We show that the number of edges, m, in such a drawing is at most 2( 2n

k+1)

and the number of crossings is Ω
(m2+1/k

n1+1/k

)
. For fixed k these bounds are both best possible up

to a constant multiplicative factor.

1 Introduction

A central question of graph drawing research asks for the maximum number of edges in an
n-vertex graph that admits a drawing satisfying certain properties. For example, it follows from
Euler’s formula that planar graphs have at most 3n− 6 edges (for n ⩾ 3), which is tight for planar
triangulations. The situation for multigraphs (allowing parallel edges and self-loops) is less clear,
since there are planar multigraphs with one vertex and arbitrarily many edges. Two constraints
on the drawing are typically applied to avoid this. The first constraint is that the drawing is
non-homotopic: no pair of parallel edges or loops can be continuously deformed into each other
without passing through vertices. This eliminates the possibility of a planar multigraph with
arbitrarily many edges. The second constraint is that the drawing is k-crossing: the number of
crossings between each pair of edges is at most k and the number of self-intersections of each
edge is at most k. This eliminates non-homotopic drawings on a fixed number of vertices with
arbitrarily many edges where different edges wind round the same vertex increasingly many
times, as illustrated in Figure 1.

In 1996, Juvan, Malnič, and Mohar [12, Thm. 3.5] proved that n-vertex multigraphs with a non-
homotopic k-crossing drawing have a bounded number of edges. Following this, the maximum
cardinality of a collection of curves that is non-homotopic and k-crossing on various surfaces
has been well-studied. See, for example, the papers [2–5, 7, 10, 15, 17, 21, 22].

The first result of this paper is an improved upper bound on the number of edges in a non-
homotopic k-crossing drawing of a multigraph.
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Figure 1: Non-homotopic edges (with no self-crossings) winding around the same vertex
increasingly many times.

Theorem 1.1. Let n, k be positive integers. Let G be an n-vertex multigraph that has a non-homotopic
k-crossing drawing. Then

|E(G)| ⩽ 613n(k+1).

Theorem 1.1 improves on results from the literature, as we now explain. For integers n, k ⩾ 1,
let S denote the set obtained from R2 by removing n distinct points, and fix x ∈ S. Let f (n, k) be
the maximum number of pairwise non-homotopic x-loops in S such that none of them passes
through x, each of them has fewer than k self-intersections, and every pair of them cross fewer
than k times. The argument of Juvan, Malnič, and Mohar [12] shows that

f (n, k) < (nk)O(nk2). (1)

In the fixed n regime, Aougab and Souto [3] improved the dependence on k to

f (n, k) ⩽ 2O(
√

k). (2)

Theorem 1.1 (in the special case that every edge is a loop incident to a single vertex) implies

f (n, k) ⩽ 613nk.

This improves the bound in (1) and improves the dependence on n in (2). Note that Pach, Tardos,
and Tóth [17] proved the exponential lower bound,

f (n, k) ⩾ 2
√

nk/3. (3)

for k ⩾ n ⩾ 2.
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Another common constraint applied to graph drawings is monotonicity: a drawing is monotone
if every edge is an x-monotone curve. See [6, 8, 16, 18, 19] for previous work on crossings in
monotone drawings. The second direction of this paper is to obtain a bound on the number of
edges in a multigraph with a monotone non-homotopic k-crossing drawing, and to prove an
associated crossing lemma. We also derive the corresponding results when every pair of parallel
edges cross at most k times and every pair of incident edges cross at most k times (a pair of
edges is incident if they share at least one common end-vertex). All of these results have optimal
dependence on n.

Theorem 1.2. Let k < n be non-negative integers. For every n-vertex multigraph G and every monotone
non-homotopic drawing D:

(a) If each pair of edges cross at most k times in D, then |E(G)| ⩽ 2 · ( 2n
k+1).

(b) If each pair of incident edges cross at most k times in D, then |E(G)| ⩽ n · ( 2n
k+1).

(c) If each pair of parallel edges cross at most k times in D, then |E(G)| ⩽ n(n − 1) · ( 2n
k+1).

The condition k < n is fully general: if an n-vertex multigraph G has a monotone drawing, then
it has a homotopically equivalent monotone drawing in which every pair of edges cross fewer
than n times.1 In Section 3 we give examples that show the dependence upon n is best possible
in all three parts.

One motivation for such extremal theorems is that they are essential ingredients in proofs of
crossing number lower bounds. The famous ‘Crossing Lemma’ of Ajtai, Chvátal, Newborn, and
Szemerédi [1] and Leighton [14] says that every drawing of any n-vertex simple graph (with
no parallel edges and no loops) with m ⩾ 4n edges has Ω

(m3

n2

)
crossings. Székely [23] proved

an analogous result for multigraphs where the lower bound depends on the edge multiplicity.
Recent research has shown that under certain assumptions, no dependence on the multiplicity
is needed [13, 17, 20]. Similarly, using Theorem 1.2, we prove the following three tight lower
bounds on the number of crossings in monotone non-homotopic drawings where each pair of
parallel edges/incident edges/edges cross at most k times.

Theorem 1.3. For every non-negative integer k there are positive constants αk, βk, and γk such that
the following holds. For every n-vertex m-edge multigraph G with m ⩾ 4n and every monotone
non-homotopic drawing D of G:

(a) If each pair of edges cross at most k times in D, then D has at least αk
m2+1/k

n1+1/k crossings.

(b) If each pair of incident edges cross at most k times in D, then D has at least βk
m2+1/(k+1)

n1+1/(k+1) crossings.

(c) If each pair of parallel edges cross at most k times in D, then D has at least γk
m2+1/(k+2)

n1+1/(k+2) crossings.

In Section 3 we give an example to show that the results in Theorem 1.3 are best possible up to
the values of αk, βk, and γk.

We now compare Theorems 1.2 and 1.3 to related results in the literature. Here we conflate a
vertex or edge with its image in a drawing. Pach and Tóth [20] and Kaufmann, Pach, Tóth, and
Ueckerdt [13] defined a drawing of a multigraph to be:

• separated if any two parallel edges do not cross and the “lens” formed by their union has at
least one vertex in its interior and at least one vertex in its exterior;

1First project the monotone drawing to one that is homotopically equivalent where the vertices of G lie at the
points (1, 0), (2, 0), . . . , (n, 0) on the x-axis. For an edge e in this drawing from px1 = (x1, 0) to px2 = (x2, 0), let pj
(j = x1 + 1, . . . , x2 − 1) be the point where e has x-coordinate j. Let ẽ be the piecewise linear curve going through
px1 , px1+1, . . . , px2 . The new drawing of G where every edge e is replaced by ẽ is homotopically equivalent to the
original. Note that for any integer a, edges ẽ1 and ẽ2 are straight lines (or single points or not present) when restricted
to the region a ⩽ x ⩽ a + 1 and so cross at most once in this region. Hence, every pair of edges cross at most n − 1
times.
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• single-crossing if any pair of edges cross at most once;
• locally star-like if no two edges with a common end-vertex cross.

Note that every separated drawing is non-homotopic but there are non-homotopic drawings
that are not separated, since parallel edges might cross in a non-homotopic drawing. Also note
that locally star-like is the same as each pair of incident edges cross at most 0 times.

Pach and Tóth [20] defined a drawing to be branching if it is separated, single-crossing, and
locally star-like. They proved that the number of edges, m, in a branching drawing on n vertices
is at most n(n − 2) and the number of crossings is Ω

(m3

n2

)
. Kaufmann, Pach, Tóth, and Ueckerdt

[13] proved that these results still hold without the single-crossing assumption. Theorem 1.2(b)
and Theorem 1.3(b) with k = 0 match these bounds (up to multiplicative constants), replacing the
separated assumption by the weaker non-homotopic assumption and adding the monotonicity
assumption. Kaufmann, Pach, Tóth, and Ueckerdt [13] conjectured that every separated single-
crossing (but not necessarily locally star-like) drawing on n vertices has O(n2) edges. Fox, Pach,
and Suk [7] proved a O(n2 log n) upper bound in this case. Theorem 1.2(a) in the k = 1 case
gives a better bound on the number of edges without the assumption that parallel edges do not
cross, and with the extra monotonicity assumption. The conjecture of Kaufmann, Pach, Tóth,
and Ueckerdt [13] remains open.

The rest of the paper is structured as follows. We introduce formal notation in Section 1.1. In
Section 2 we prove Theorem 1.1. The examples showing the tightness of Theorems 1.2 and 1.3
are given in Section 3. We prove Theorem 1.2 in Section 4 and Theorem 1.3 in Section 5. We
finish with open problems in Section 6.

1.1 Notation

A drawing of a multigraph G is a function ϕ that maps each vertex v ∈ V(G) to a point ϕv ∈ R2

and maps each edge e = vw ∈ E(G) to a continuous curve ϕe : [0, 1] → R2 with endpoints ϕv
and ϕw, such that:

• every vertex is represented by a different point; that is, the points (ϕv : v ∈ V(G)) are
distinct;

• no edge passes through any vertex; that is, ϕe(t) ̸= v for all v ∈ V(G), e ∈ E(G), and
t ∈ (0, 1);

• each pair of edges cross at a finite number of points, where a crossing is an unordered pair
of distinct pairs (e, s), ( f , t) ∈ E(G)× (0, 1) with ϕe(s) = ϕ f (t).

We note that if k edges meet at a point, then this contributes (k
2) crossings. Parallel edges

e, f ∈ E(G) with end-vertices v, w ∈ V(G) are homotopic with respect to a drawing ϕ if there
is a homotopy of R2 \ {ϕx : x ∈ V(G) \ {v, w}} mapping ϕe to ϕ f with ϕv and ϕw fixed. Here
R2 \ {ϕ(x) : x ∈ V(G) \ {v, w}} is the plane with |V(G)| − 2 puncture points. Intuitively, parallel
edges e and f are homotopic if e can be continuously deformed into f without passing through
any vertices and while keeping the end-points fixed. As illustrated in Figure 2, a drawing of
a multigraph is non-homotopic if no two parallel edges are homotopic. It is natural to consider
non-homotopic drawings, since homotopic edges can be considered to be equivalent. The
non-homotopic assumption immediately eliminates the example of a planar multigraph with
exactly one vertex and more than one edge.

A drawing ϕ of a multigraph G is monotone if ϕe is an x-monotone curve for each edge e ∈ E(G);
that is, ϕe intersects each vertical line in at most one point. Note that a monotone drawing has
no self-loops and no edge self-intersects.
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Figure 2: Non-homotopic parallel edges.

2 Non-Homotopic Drawings

In this section we prove Theorem 1.1, which says that every non-homotopic k-crossing drawing
on n vertices has at most 613n(k+1) edges. This result follows quickly from the next lemma.

Lemma 2.1. Let n, k be positive integers. Let x, y be two (not necessarily distinct) vertices of an n-vertex
multigraph G such that every edge of G is from x to y and G has a non-homotopic k-crossing drawing.
Then

|E(G)| ⩽ 613n(k+1)/n2.

Proof of Theorem 1.1. Let G be an n-vertex multigraph as in the statement of Theorem 1.1. For
x, y ∈ V(G), let Gx,y be the subgraph of G consisting of the edges from x to y. Then Gx,y

satisfies the hypothesis of Lemma 2.1, so |E(Gx,y)| ⩽ 613n(k+1)/n2. The result follows since
E(G) = ∪x,yE(Gx,y).

In fact, Lemma 2.1 implies that Theorem 1.1 holds even with the k-crossing assumption weak-
ened to every pair of parallel edges cross at most k times, every pair of loops incident to the
same vertex cross at most k times, and every edge has at most k self-intersections.

Before proving Lemma 2.1 we need a simple lemma about plane graphs as well as some basic
facts about the winding number.

Lemma 2.2. Let G be a connected plane graph in which all but at most r vertices have degree at least
three and every face is incident to at least seven edges. Then |V(G)| ⩽ 10r − 28.

Proof. Let n, m, F denote the number of vertices, edges and faces of G, respectively. Consider all
pairs (e, f ) where f is a face of G and e is an edge of G that is incident to f . Every edge is in at
most two such pairs and every face is in at least seven, so 7F ⩽ 2m. Hence, by Euler’s formula,

n + 2
7 m ⩾ n + F ⩾ m + 2.

Thus m ⩽ 7
5 (n − 2). Finally, since G is connected and so has minimum degree at least one,

14
5 (n − 2) ⩾ 2m = ∑

v∈V(G)

deg(v) ⩾ 3(n − r) + r = 3n − 2r.

Rearranging gives the required result.

The following facts about the winding number that can be found in most texts on complex
analysis or algebraic topology (such as [9]). Let γ : [0, 1] → C be a continuous closed curve (so
γ(0) = γ(1)). For any a /∈ Im γ there are continuous functions r : [0, 1] → R>0 and θ : [0, 1] → R
such that γ = a + re2πiθ . The winding number of γ about a, denoted by I(γ, a), is the integer
θ(1)− θ(0). This integer does not depend on the parameterisation (r, θ). It satisfies the following
properties.

• The winding number I(γ, ·) is constant on each component of C \ Im γ, is zero on the
unbounded component and differs by one between adjacent components.
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• If γ is the union of two continuous closed curves γ1 and γ2, then I(γ, a) = I(γ1, a) +
I(γ2, a) for any a /∈ Im γ.

The following two facts are also standard but do not always appear in textbooks. We include
their proof for completeness.

Lemma 2.3. Let a be a point in the plane and let γ, γ0, and γ1 be closed curves in R2 − a.

1. γ0 and γ1 are homotopic in R2 − a if and only if they have the same winding number about a.
2. γ must self-intersect at least |I(γ, a)| − 1 times (counted with multiplicity2).

Proof. We first address part 1. Viewing γ0 and γ1 as continuous functions from [0, 1] to C, there
are continuous functions r0, r1 : [0, 1] → R>0 and θ0, θ1 : [0, 1] → R such that γj = a + rje2πiθj .
First suppose that γ0 and γ1 have the same winding number I, so I = θ1(1)− θ1(0) = θ0(1)−
θ0(0). Let H : [0, 1]2 → C \ {a} be given by a + re2πiθ where r(·, t) = tr1 + (1 − t)r0 and θ(·, t) =
tθ1 + (1 − t)θ0. Then H is continuous, H(·, 0) = γ0, and H(·, 1) = γ1. Also, θ(1, t) = θ(0, t) + I
and so H(·, t) is a closed curve for each t. Thus γ0 and γ1 are homotopic.

Next suppose that γ0 and γ1 are homotopic. Then there is a continuous function H : [0, 1]2 →
C \ {a} where H(·, t) is a closed curve for each t, H(·, 0) = γ0, and H(·, 1) = γ1. Now
θ̃ := 1

2π arg(H − a) : [0, 1]2 → R/Z is continuous and R is a covering space for R/Z so, by the
homotopy lifting property (see, for example, [11, Prop 1.30]), there is a continuous θ : [0, 1]2 → R
such that θ̃(x, t) ≡ θ(x, t) (mod 1) for all x and t. The function r := |H − a| : [0, 1]2 → R>0 is
continuous. Thus we may write H = a + re2πiθ for continuous r : [0, 1]2 → R>0 and θ : [0, 1]2 →
R. Since H(·, t) is a closed curve, f (t) := θ(1, t)− θ(0, t) ∈ Z for all t. Note that f is continuous
and so constant. Thus I(γ1, a) = θ(1, 1)− θ(0, 1) = f (1) = f (0) = θ(0, 1)− θ(0, 0) = I(γ0, a)
and so γ0 and γ1 have the same winding number about a.

We now address part 2. We will prove the following equivalent statement by induction on ℓ: if γ
self-intersects ℓ times, then |I(γ, a)| ⩽ ℓ+ 1. First suppose that ℓ = 0. Then γ is a simple closed
curve. By the Jordan Curve Theorem, γ splits the plane into two regions: an interior region
bounded by γ and an exterior unbounded region. I(γ, ·) is zero on the unbounded region and
is ±1 on the interior region (since the interior and exterior regions are adjacent). Now suppose
that ℓ ⩾ 1. Let b be a point of self-intersection of γ. We may partition γ into two closed curves
γ(0) and γ(1) that meet at b. Let γ(j) have ℓj self-intersection. Then ℓ ⩾ ℓ0 + ℓ1 + 1 (the +1 is for
the self-intersection at b). Finally, by induction on ℓ,

|I(γ, a)| = |I(γ(0), a) + I(γ(1), a)| ⩽ |I(γ(0), a)|+ |I(γ(1), a)| ⩽ (ℓ0 + 1) + (ℓ1 + 1) ⩽ ℓ+ 1.

We are finally ready to prove Lemma 2.1.

Proof of Lemma 2.1. We introduce some notation. Suppose that H is a graph drawn in the plane
and E′ ⊆ E(H) is a set of edges. We write C(E′) for the union of the curves given by the
edges of E′. This includes all end-points of edges of E′. For example, if H is a K3 with vertices
{(0, 0), (1, 0), (0, 1)} and straight edges, then C(E(H)) is the perimeter of the right-angled
triangle with vertices {(0, 0), (1, 0), (0, 1)}.

We will first prove the result under the assumption that x ̸= y and at the end of the proof we
will explain how the strategy is adapted to handle the x = y case. Let the vertices of G be
x, y, v1, . . . , vn−2.

Fix a non-homotopic drawing of G in which every pair of edges cross at most k times. Recall
that all edges of G are from x to y. By small applying a small perturbation we may assume that

2If γ passes through the same point k times, then this contributes (k
2) self-intersection which is consistent with the

definition of crossing in Section 1.1
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no three edges meet at a point. For i = 1, . . . , n − 2, let ei be an edge of G passing closest to vi
(the ei may not be distinct). Let pi be a point on ei closest to vi (the pi may not all be distinct,
some of them may be crossings and some of them may be x or y). By the minimality of the
length of line-segment pivi, no edge of G crosses the interior of pivi.

We are going to build a ‘frame’ F which we will use to encode the homotopy of edges of G. This
will be a connected plane graph with V(G) ⊆ V(F). We first build a frame Fn that will be a
plane tree containing all vertices of G. We use f to refer to edges of a frame and e for edges of G.

As illustrated in Figure 3, start with F1 which is the empty graph on vertex set {x}. In step 1, let
f1 be a shortest sub-curve of e1 ∪ p1v1 from x to v1. Note that f1 is a non-self-intersecting curve
from x to v1. Furthermore, all edges of G − e1 intersect f1 at most k times. Let F2 be the plane
graph obtained from F1 by adding the edge f1 and the vertex v1. In step i, for i = 2, . . . , n − 2,
do the following:

1. If vi ∈ V(Fi), then move straight onto step i + 1.
2. Else if vi ∈ C(E(Fi)), then let Fi+1 be the plane tree obtained from Fi by adding vertex vi

(this subdivides an edge of Fi into two). Move straight onto step i + 1.
3. Else let fi be the shortest sub-curve of ei ∪ pivi that goes from C(E(Fi)) to vi. Let v′i be the

point where fi meet C(E(Fi)).
4. If v′i ∈ V(Fi), then let Fi+1 be the plane tree obtained from Fi by adding edge fi and vertex

vi.
5. If v′i /∈ V(Fi), then let Fi+1 be the plane tree obtained from Fi by adding vertex v′i (this

subdivides an edge of Fi into two), adding edge fi, and adding vertex vi.

This defines F1, . . . , Fn−1. If y ∈ V(Fn−1), then take Fn = Fn−1. Else if y ∈ C(E(Fn−1)), then let
Fn be the plane graph obtained from Fn−1 by adding vertex y (this subdivides an edge of Fn−1
into two). Else let en−1 by any edge of G, and let fn−1 be the shortest sub-curve of en−1 that goes
from C(E(Fn−1)) to y (which is an end-point of en−1). Let v′n−1 be the point where fn−1 meets
C(E(Fn−1)). If v′n−1 ∈ V(Fn−1), then let Fn be the plane graph obtained from Fn−1 by adding
edge fn−1 and vertex y. If v′n−1 /∈ V(Fn−1), then let Fn be the plane graph obtained from Fn−1 by
adding vertex v′n−1 (this subdivides an edge of Fn−1 into two), adding edge fn−1, and adding
vertex y.

e1
p1

v1

e2
p2

v2

e3
p3

v3

x y

(a)

f2

v2

f1,1 f1,2

v1

f3 v3

v′1

x y

(b)

f2

v2

v′4f1,1 f1,2

f1,3

f4

v1

f3 v3

v′1

x y

(c)

Figure 3: Example of the n = 5 case: (a) drawing of G, (b) Fn−1 and (c) Fn, where f1,1 f1,2 and f1,3
are obtained by subdividing f1.

We note the following properties of Fn:

• Since each step introduces at most two vertices, Fn is a plane tree with at most 2n vertices.
• Since step i introduces vi (if it is not already present), V(G) ⊆ V(F).
• Since v′i has degree at least three when introduced, all vertices in V(F) \ V(G) have degree

at least three.
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• C(E(Fn)) is a subset of the union of C({e1, . . . , en−1}) and the line-segments pivi (i =
1, . . . , n − 2). In particular, each edge of G − {e1, . . . , en−1} intersects C(E(Fn)) at most
k(n − 1) times.

We now construct a new frame F building on Fn. Fn is a plane tree and so has one (infinite) face.
Let C be a face of the current frame F, and let f , f ′ ∈ E(F) be (not necessarily distinct) edges
incident to C. We say f sees f ′ across C if there is an edge e of G such that, at some point on e’s
journey from x to y, e crosses f and then crosses f ′ and in between e is in the interior of C and
crosses no other edge of F.3

We carry out the following process. Let F be the current frame which is initially Fn. Let E′ be a
subset of E(G) initialised as {e1, . . . , en−1}. Iteratively do the following.

• As illustrated in Figure 4, suppose there is an edge f and a face C of F such that f sees at
least nine other edges of F across C. Label nine of these edges f1, f2, . . . , f9 in any order.

• Since f sees f j across C, there is an edge e′j of G that crosses f and then f j and in between
is in side C and crosses no other edges of F. Let c′j be the shortest sub-curve of e′j from f to
f j whose interior is inside C and crosses no other edges of F.

• Since f sees nine distinct edges, there is some choice of j such that c′j splits C into two faces
both of which are incident to at least seven edges (a part of f , a part of f j, c′j, and four of
{ f1, . . . , f9} \ { f j}. Let e be this c′j and e′ be e′j.

• Add the edge e to F together with a vertex at the point where e meets f and a vertex at the
point where e meets f j (this subdivides each of f and f j exactly once).

• Add e′ to E′.

Figure 4: Building F.

The process stops when, for every edge f ∈ E(F) and face C of F, f sees at most eight other
edges across C. We now show the number of steps in this process is at most 5(n − 1) and the
final frame has at most 10n edges. First note that if Fn has at most nine edges, then no steps will
be carried out and we have the required bounds. Otherwise, Fn is a plane tree with at least ten
edges in which at most n vertices have degree less than three. Every step introduces two vertices
of degree three and splits a face into two faces both of which are incident to at least seven edges.
Hence, every frame in the process is a connected plane graph, has at most n vertices of degree
less than 3 and every face of F is incident to at least seven edges. Thus, by Lemma 2.2, every

3To be precise: using the ϕ notation defined in Section 1.1, there are s < t in [0, 1] such that ϕe(s) is in f , ϕe(t) is in
f , and ϕe((s, t)) is inside C and disjoint from C(E(F)).
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frame within the process has at most 10n − 28 ⩽ 10n vertices. Since each step adds two vertices,
the process must stop within 5n − 14 ⩽ 5(n − 1) steps.

We note some properties of the final frame F and final set E′.

• F is a simple plane graph on at most 10n vertices. Each step introduces at most three new
edges (the edge across the face plus one for each of the two subdivisions) and Fn had at
most 2n edges, so F has at most 2n + 3 · 5(n − 1) ⩽ 17n edges.

• For every edge f and face C of F, f sees at most nine edges across F (it might see itself).
• Since the process stops within 5(n − 1) steps, |E′| ⩽ (n − 1) + 5(n − 1) = 6(n − 1).
• C(E(F)) is a subset of the union of C(E′) and the line-segments pivi. In particular, each

edge in E(G)− E′ intersects C(E(F)) at most 6(n − 1)k times.

We are now going to encode each edge of G − E′ using the edges of F so that if two edges of
G − E′ had the same encoding, then they would be homotopic. Now, F is a simple connected
plane graph with one outer face C∞. The rest of its faces are inner faces. An edge f of F is an outer
edge if it is incident to the outer face of F. Otherwise f is an inner edge.

We will encode each edge e ∈ E(G)− E′ by writing down the sequence of edges of F that e
crosses together with some further information. Consider two consecutive edges f1, f2 ∈ E(F)
in the sequence for e. If e goes from f1 to f2 across an inner face C, then f1, f2 determine this
portion of e up to homotopy. However, this is not the case if e goes from f1 to f2 across the
outer face C∞ – we need to further specify how many times this portion of e loops around F and
whether this looping is anticlockwise or clockwise.

To this end, for each pair of outer edges f , f ′ of F, fix:

• a simple curve Pf , f ′ ⊆ C(E(F)) that joins f to f ′ along the outer face C∞,
• a point p f , f ′ in the plane which is sufficiently close to (but not on) the curve Pf , f ′ so that

the perpendicular segment from p f , f ′ to Pf , f ′ does not intersect any edge of G or F.

If x is incident to the outer face C∞, then, for each outer edge f of F, we fix a curve Px, f ⊆ C(E(F))
that joins x to f along C∞ and fix a point px, f in the plane that is sufficiently close to but not on
Px, f . If y is incident to C∞, then we similarly define Py, f and py, f for each outer edge f .

Now if an edge e goes from f1 to f2 across C∞, then we will encode this portion of the journey
(call it e′) as follows. We form a closed curve consisting of e′, Pf1, f2 as well as parts of f1, f2 that
join these up, we orient this curve so that e goes from f1 to f2 and write down the resulting
winding number about p f1, f2 . By Lemma 2.3, for a point p in the plane, two closed curves in
R2 − p are homotopic if and only if they have the same winding number around p. Since the
closed curve created here never enters an inner face of F, the winding number we write down
determines e′ up to homotopy. Similarly, if an edge e goes from x to an outer edge f across C∞
(call this portion e′) we will form a closed curve consisting of e′, Px, f as well as the part of f that
joins these up and write down the winding number of this closed curve about px, f . Again we do
similarly if an edge e goes from an outer edge f to y.

We are now ready to define, for an edge e ∈ E(G)− E′, the signature of e, denoted by σ(e). It is a
sequence a1, f1, a2, f2, . . . , aℓ, fℓ, aℓ+1 where:

• The edge e starts at x and crosses edges f1, . . . , fℓ ∈ E(F) in that order before arriving at y.
The fi need not be distinct.

• If e goes from fi−1 to fi by crossing an internal face, then ai is defined to be ∗.
• If e goes from fi−1 to fi by crossing C∞, then ai is the winding number defined above.
• If e goes from x to f1 by crossing an internal face, then a1 is defined to be ∗.
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• If e goes from x to f1 by crossing C∞, then a1 is the winding number defined above for the
portion of e going from x to f1.

• If e goes from fℓ to y by crossing an internal face, then aℓ+1 is defined to be ∗.
• If e goes from fℓ to y by crossing C∞, then aℓ+1 is the winding number defined above for

the portion of e going from fℓ to y.

As discussed above, the signature of e determines e up to homotopy, so the number of edges
in E(G) − E′ is at most the number of possible signatures. We look in some more detail at
the value of ai when e goes from fi−1 to fi by crossing C∞; denote this portion of e by e′. By
Lemma 2.3, a closed curve with winding number r about a point must self-intersect at least
|r| − 1 times. Hence, the closed curve consisting of e′, Pfi−1, fi as well as the parts of fi−1, fi joining
these up must self-intersect at least |ai| − 1 times. But none of these self-intersections can occur
on C(E(F)) as the interior of e′ is within C∞. Thus e′ must self-intersect at least |ai| − 1 times.
Note the following properties of σ(e):

• Since each edge in E(G)− E′ intersects C(E(F)) at most 6(n − 1)k times, ℓ ⩽ 6(n − 1)k.
• Since each edge self-intersects at most k times, ∑i max{|ai| − 1, 0} ⩽ k where we ignore

summands corresponding to ∗.
• There are |E(F)| ⩽ 17n choices for f1.
• Since for every edge f and face C of F, f sees at most nine edges across F, there are, given

fi, at most nine choices for fi+1.

We now upper bound the number of possible sequences satisfying these properties. Fix ℓ. The
number of options for f1, f2, . . . , fℓ is at most 17n · 9ℓ−1. For each i, let bi = max{|ai| − 1, 0} if
ai ̸= ∗ and let bi = 0 if ai = ∗. The bi are ℓ+ 1 non-negative integers with sum at most k and so
there are at most (k+ℓ+1

k ) choices for b1, . . . , bℓ+1. Given bi there are at most four options for ai (if
bi = 0, then ai could be −1, 0, 1, or ∗). Hence, the number of options for a1, . . . , aℓ+1 is at most
4ℓ(k+ℓ+1

k ). Thus, for fixed ℓ, the number of signatures is at most

17n · 9ℓ−1 · 4ℓ
(

k + ℓ+ 1
k

)
⩽ 2n · 62ℓ

(
6nk

k

)
⩽ 2n · 612(n−1)k · (6en)k.

There are fewer than 6nk choices for ℓ, and |E(G)| is at most the number of signatures plus |E′|.
So

|E(G)| ⩽ 6nk · 2n · 612(n−1)k · (6en)k + |E′| ⩽ 12n2k · (6en)k · 612(n−1)k + 6(n − 1)

⩽ 12n2(k + 1) · (6en)k · 612(n−1)k.

Hence, it suffices to prove that

12n4(k + 1) · (6en)k ⩽ 6nk+13n+12k.

But n4 ⩽ 6n, 12(k + 1) ⩽ 63k, and (6en)k ⩽ (6n+2)k = 6nk+2k, as required.

Now we outline how the above argument is altered to prove the result in the case x = y (when
all edges are x-loops). Let the vertices of G be x, v1, . . . , vn−1. We build the frame Fn exactly as
before but with vn−1 replacing y when we build Fn from Fn−1. Again Fn satisfies the following
properties:

• Fn is a plane tree with at most 2n vertices.
• V(G) ⊆ V(Fn) and all vertices in V(Fn) \ V(G) have degree at least three.
• Each edge of G − {e1, . . . , en−1} intersects C(E(Fn)) at most k(n − 1) times.

We construct the frame F from Fn exactly as before. The process stops when, for every edge
f ∈ E(F) and face C of F, f sees at most eight other edges across C. Again, by Lemma 2.2, the
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number of steps in this process is at most 5(n − 1) and the final frame has at most 10n vertices.
The final frame F and final set of edges E′ satisfy the same properties as before.

We now encode each edge e ∈ E(G)− E′. Direct each such edge and encode them as before by
writing down the signature a1, f1, . . . , aℓ, fℓ, aℓ+1 where the fi are the sequence of edges of F that
e crosses and the ai are either winding numbers (if e is crossing the unbounded face C∞) or are ∗
(if e is crossing an internal face). The only difference now is that there is no need for the curves
Py, f and points py, f .

We then finish the argument as before.

Theorem 1.1 applies for k ⩾ 1. The k = 0 case (with no crossings) is handled by the following
elementary result.

Proposition 2.4. Every non-homotopic plane multigraph on n ⩾ 2 vertices has at most 4n − 4 edges.

Proof. Let G be a non-homotopic plane multigraph on n ⩾ 2 vertices with m edges. By adding
edges, we may assume that G is connected.

A loop of G is trivial if it has no vertices in its interior. Any two trivial loops incident to the same
vertex are homotopic, so G has at most n trivial loops. Let G′ be obtained from G by deleting all
the trivial loops, and let m′ := |E(G′)|. Then m ⩽ m′ + n. We claim that m′ ⩽ 3n − 4 which will
suffice. Since G is connected, so too is G′. Define the length of a face F to be the number of edges
(counting multiplicity) in a walk around F. As an example, the length of the face F shown in
Figure 5 is 3 (the edge e is traversed twice in a walk around F).

e
F

Figure 5: A face F of length 3.

Consider a face F of length at most 2. If F has a vertex in its interior, then, since G′ is connected,
there is an edge from an interior vertex to a vertex on the boundary of F and so F has length at
least 3. Thus F has no vertex in its interior. The boundary of F must either be a loop or a pair
of parallel edges between two vertices u and v. Since G′ contains no trivial loops and parallel
edges are not homotopic, F must be the outer face of G′. In particular, every face of G′ except
the outer face has length at least 3. Consider the sum of the lengths of the faces of G′. Each edge
contributes 2 to this sum and so the sum is equal to 2m′. On the other hand, each face, except the
outer face, contributes 3. Since n ⩾ 2 and G′ is connected, the outer face contributes at least 1. In
particular, the sum is at least 3 f − 2 where f is the number of faces of G′. Thus 3 f − 2 ⩽ 2m′. By
Euler’s formula, 2 + m′ − n ⩽ f ⩽ 2

3 (m
′ + 1), and so m′ ⩽ 3n − 4, as desired.

The bound in Proposition 2.4 is tight. For n = 2, take the multigraph on {u, v} consisting of edge
uv, trivial loops at u and v as well as a loop at u that has all the other edges in its interior. For
n ⩾ 3, start with any simple plane triangulation on n vertices, with the outer face bounded by
the triangle (u, v, w). Add a parallel edge uv so that w is no longer on the outer face boundary.
Add a loop incident to u so that v is no longer on the outer face boundary. Finally, for each
vertex x add a loop incident to x drawn in an internal face incident to x. The resulting drawing
is non-homotopic, and with (3n − 6) + 1 + 1 + n = 4n − 4 edges.
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3 Construction of Monotone Drawings

Here we give a construction showing the tightness of Theorems 1.2 and 1.3. For integers
1 ⩽ k < n define the multigraph Gn,k as follows, and illustrated in Figure 6. It has vertex
set V(Gn,k) = {v1, . . . , vn} where each vertex vi is drawn at (i, 0) in the plane. For integers
1 ⩽ a0 < a1 < · · · < aℓ ⩽ n where 1 ⩽ ℓ ⩽ k, add to Gn,k an edge e = ea0,a1,...,aℓ with endpoints
va0 and vaℓ , drawn as a degree-(k + 1) monic polynomial

y = Pe(x) := xk−ℓ(x − a0)(x − a1 − 1
2 )(x − a2 − 1

2 ) · · · (x − aℓ−1 − 1
2 )(x − aℓ)

with domain a0 ⩽ x ⩽ aℓ. This is a monotone curve crossing the x-axis at (ai +
1
2 , 0) for each

i ∈ {1, . . . , ℓ− 1}. The resulting multigraph Gn,k has ∑k
ℓ=1 (

n
ℓ+1) = Θk(nk+1) edges.

e1,6

e1,2,6

e1,3,6

e1,4,6

e1,5,6

v1 v2 v3 v4 v5 v6

Figure 6: Edges between v1 and v6 in Gn,2.

Suppose that two edges e = es,a1,...,aℓ−1,t and f = es,b1,...,bℓ′−1,t between vertices vs and vt are
homotopic. Then the signs of Pe and Pf must agree at each integer i strictly between s and t. Every
crossing of one of the polynomials with the x-axis occurs at x = m + 1

2 for m ∈ {s + 1, . . . , t − 1}
and all such crossings except t − 1

2 correspond to a change in sign of the polynomial. Hence
Pe and Pf must cross the x-axis at the same places (except possibly for t − 1

2 ). In particular, the
sets {a1, . . . , aℓ−1} and {b1, . . . , bℓ′−1} are the same or differ by the element t − 1. If they are
the same, then e = f . If they differ by the element t − 1, then WLOG ℓ′ = ℓ− 1, a1 = b1, . . . ,
aℓ−2 = bℓ−2, and, aℓ−1 = t − 1. But then xPe(x) = (x − t + 1

2 )Pf (x) and so Pe and Pf differ in
sign at x = t − 1 and so e and f are not homotopic. Therefore, the drawing of Gn,k given is
indeed non-homotopic.

Consider two distinct edges e and f of G. Both Pe and Pf are monic polynomials of degree k + 1,
so their difference is a polynomial of degree at most k, which has at most k roots. Thus the
edges e and f cross at most k times. Now suppose that edges e and f are incident at vertex va.
Then both e and f are monic polynomials of degree k + 1 with a root at a, so their difference is
a polynomial of degree at most k with a root at a. The root at a is not a crossing point of e and
f , so e and f cross at most k − 1 times. Similarly if e and f are parallel, then they cross at most
k − 2 times. In particular,

• Gn,k has a monotone non-homotopic drawing in which each pair of edges cross at most k
times,

• Gn,k+1 has a monotone non-homotopic drawing in which each pair of incident edges cross
at most k times,

• Gn,k+2 has a monotone non-homotopic drawing in which each pair of parallel edges cross
at most k times.

12



This shows that the dependence on n is best possible in Theorem 1.2 except for the case k = 0
in part (a). For this particular case we note that any straight-line plane triangulation gives a
monotone non-homotopic drawing with 3n − 6 edges and no crossings.

Next we address the tightness of Theorem 1.3. Let t ∈ {2k, . . . , n}. Let Gn,k,t be the sub-
multigraph of Gn,k consisting of those edges ea0,...,aℓ with aℓ − a0 ⩽ t. Each vertex has degree
between ∑k

ℓ=1 (
t
ℓ) and 2 ∑k

ℓ=1 (
t
ℓ), that is, has degree Θk(tk). Thus Gn,k,t has m = Θk(ntk) edges.

Fix an edge e = ea0,...,aℓ . Suppose an edge f = eb0,...,bℓ crosses e. Then b0 < aℓ and bℓ > a0. Since
aℓ − a0 ⩽ t and bℓ − b0 ⩽ t, we have b0 ⩾ bℓ − t > a0 − t and b0 < aℓ ⩽ a0 + t. In particular,
there are at most 2t choices for b0. Each vertex has degree Θk(tk), so e crosses at most Ok(tk+1)
other edges. Hence the number of crossings in Gn,k,t is at most m · Ok(tk+1) = Ok(nt2k+1). But
nt2k+1 = (ntk)2+1/k/n1+1/k = Θk(m2+1/k/n1+1/k), so Gn,k,t has Ok(m2+1/k/n1+1/k) crossings.

Thus Gn,k,t shows Theorem 1.3(a) is tight where m can be chosen independently of n by varying
t. Gn,k+1,t and Gn,k+2,t show that parts (b) and (c) are tight, respectively.

4 Number of Edges in Monotone Drawings

In this section we prove Theorem 1.2. The main work is part (a); the other two parts then follow
quickly.

Proof of Theorem 1.2(b) and (c) assuming Theorem 1.2(a). Let G be an n-vertex multigraph with a
monotone non-homotopic drawing in which each pair of incident edges cross at most k times.
For each vertex x, let Gx denote the sub-multigraph of G consisting of those edges incident to x.
Then Gx is an n-vertex multigraph with a monotone non-homotopic drawing in which each pair
of edges cross at most k times. By Theorem 1.2(a), |E(Gx)| ⩽ 2 · ( 2n

k+1), implying

|E(G)| = 1
2 ∑

x∈V(G)

|E(Gx)| ⩽ n ·
(

2n
k + 1

)
,

which proves Theorem 1.2(b).

Now let G be an n-vertex multigraph with a monotone non-homotopic drawing in which each
pair of parallel edges cross at most k times. For each pair of vertices {x, y} ∈ (V(G)

2 ), let Gx,y
denote the sub-multigraph of G consisting of those edges between x and y. By Theorem 1.2(a),
|E(Gx,y)| ⩽ 2 · ( 2n

k+1). Thus,

|E(G)| = ∑
{x,y}∈(V(G)

2 )

|E(Gx,y)| ⩽ n(n − 1) ·
(

2n
k + 1

)
,

which proves Theorem 1.2(c).

It remains to prove Theorem 1.2(a). To do so we first encode the edges in the monotone non-
homotopic k-crossing drawing of G by a sequence of length n and then bound the number of
such sequences. We consider sequences in which each entry is in {+, 0,−, ∗}. Such a sequence
is a monotone drawing sequence if it is of one of the two following forms:

∗, . . . , ∗︸ ︷︷ ︸
⩾0

, 0,±, . . . ,±︸ ︷︷ ︸
⩾0

, 0, ∗, . . . , ∗︸ ︷︷ ︸
⩾0

±, . . . ,±︸ ︷︷ ︸
⩾0

, 0, ∗, . . . , ∗︸ ︷︷ ︸
⩾0
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where ± denotes that the entry is either a + or a − (independently between different symbols).
In other words, there are two types of sequences: those with two 0’s which have a sequence of +
and − symbols between them and ∗’s at both ends, and those with one 0 which has a sequence
of + and − symbols before and a sequence of ∗’s after.

Partially order the four symbols, − < 0 < +, where ∗ is incomparable with the others. Given
two monotone drawing sequences (ai) and (bi) we say that (ai) is below (bi) at j if aj < bj and
(ai) is above (bi) at j if aj > bj. Note that if aj or bj is a ∗, then the sequences are incomparable or
equal at j.

Two sequences (ai) and (bi) cross k times if there are indices i0 < i1 < · · · < ik such that (ai) is
below (bi) at i0, i2, i4, . . . and (ai) is above (bi) at i1, i3, i5, . . . or vice versa. Note that if (ai) and
(bi) have length n, then they cross at most n − 1 times.

Lemma 4.1. If an n-vertex multigraph G has a monotone drawing in the plane such that no edges are
homotopic and every pair of edges cross at most k times, then there exists a set of |E(G)| monotone
drawing sequences of length n any two of which cross at most k times.

Proof. We may perturb the vertices so that no two vertices have the same x-coordinate. Let
v1, . . . , vn be the vertices of G ordered by increasing x-coordinate. Let Li be the vertical line
through vi. Consider each edge e with endpoints vi and vj with i < j. For ℓ ∈ {1, . . . , i− 1} ∪ {j+
1, . . . , n}, let se,ℓ = ∗. Let se,i = 0 and se,j = 0. For ℓ ∈ {i + 1, . . . , j − 1}, let se,ℓ = + if e crosses
Lℓ above vℓ, and let se,ℓ = − if e crosses Lℓ below vℓ. Since e is x-monotone, se,ℓ is well-defined.
Let se := (se,1, . . . , se,n). By construction, se is a monotone drawing sequence. Fix distinct edges
e, f ∈ E(G). Since e and f are not homotopic, se ̸= s f . Also, if there are indices i < j with se
above s f at i and se below s f at j, then e and f must have a crossing whose x-coordinate is strictly
between i and j. Hence, se and s f cross at most k times.

Lemma 4.2. Let k < n be positive integers. Let A be a set of monotone drawing sequences of length n,
each pair of which cross at most k times. Then

|A| ⩽ 2 ·
(

2n
k + 1

)
.

Proof. Let g(n, k) denote the size of the largest set of length n monotone drawing sequences
where every pair crosses at most k times. In this definition we allow k ⩾ n, in which case
g(n, k) = g(n, n − 1), since no two monotone drawing sequences of length n cross n times. We
also allow k = −1, in which case g(n,−1) = 1 (as no two sequences cross at most −1 times).

Let A be a set of monotone drawing sequences of length n + 1, such that every pair crosses
at most k times. The proof will proceed by deleting the first entry of each sequence in A and
analysing how many sequences elide.

Let B be those sequences of A which, upon deleting their first entry, are no longer monotone
drawing sequences. The only sequence in B is 0, ∗, ∗, . . . , ∗ and so |B| ⩽ 1. Let A+,A0,A−,A∗
be those sequences in A − B which start with a +, 0, −, ∗, respectively. Let A′

+ be those
sequences obtained by deleting the first entry (which, of course, is a +) from sequences in A+.
Similarly define A′

0,A′
−,A′

∗. Note that each of these is a set of monotone drawing sequences of
length n. Let A′ = A′

+ ∪A′
0 ∪A′

− ∪A′
∗ be those sequences obtained by deleting the first entry

from a sequence in A−B. Note A′ is a set of monotone drawing sequences of length n where
every pair of sequences crosses at most k times and so |A′| ⩽ g(n, k).

In any monotone drawing sequence, the symbol ∗ can be only be succeeded or preceded
by a 0 or ∗. In particular, the first entry of a sequence in A′

∗ is a ∗ or a 0. If a sequence in
A′

+ ∪A′
0 ∪A′

− starts with a ∗, then the original sequence (before deleting the first entry) must
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have been 0, ∗, ∗, . . . , ∗ and this was discounted when we removed B. Further, the only sequence
in A′

+ ∪A′
0 ∪A′

− starting with a 0 is 0, ∗, ∗, . . . , ∗. Hence, |A′
∗ ∩ (A′

+ ∪A′
0 ∪A′

−)| ⩽ 1.

We now consider those sequences that are in A′
+ ∩ (A′

0 ∪A′
−) and show that every pair of them

crosses at most k − 1 times. Indeed, suppose that (ai), (bi) ∈ A′
+ ∩ (A′

0 ∪A′
−) cross k times. Let

j be the first index where aj ̸= bj. We first show that neither aj nor bj is a ∗. Suppose that aj = ∗.
Since (ai) ∈ A′

+ ∪A′
0 ∪A′

−, its first entry is a +, 0, or −. Hence, from the definition of monotone
drawing sequences, there is some ℓ < j with aℓ = 0. By the minimality of j, bℓ is also 0. But
(bi) ∈ A′

+ ∪A′
0 ∪A′

−, so every entry after bℓ is a ∗ and so bj = ∗, contradicting aj ̸= bj.

Since aj, bj are distinct and neither is ∗, (ai) is either above or below (bi) at j. Without loss of
generality (ai) is below (bi) at j. But (ai) and (bi) agree before j and cross k times, so there are
indices j = i1 < i2 < · · · < ik+1 with (ai) below (bi) at i1, i3, . . . and (ai) above (bi) at i2, i4, . . . .
As (ai) ∈ A′

+, the sequence obtained by appending a + to the start of (ai) is in A, while, since
(bi) ∈ A′

0 ∪A′
−, the sequence obtained by appending a 0 or − (depending on whether (bi) ∈ A′

0
or (bi) ∈ A′

−) to the start of (bi) is in A. These two sequences cross k + 1 times, a contradiction.

Hence, A′
+ ∩ (A′

0 ∪A′
−) is a set of monotone drawing sequences of length n, every pair of which

cross at most k − 1 times and so |A′
+ ∩ (A′

0 ∪A′
−)| ⩽ g(n, k − 1). Similarly, |A′

− ∩ (A′
0 ∪A′

+)| ⩽
g(n, k − 1). Hence, the number of sequences in at least two of A′

+,A′
0,A′

−,A′
∗ is at most

2g(n, k − 1) + 1. By the inclusion-exclusion principle we have

|A| = |A′
+|+ |A′

0|+ |A′
−|+ |A′

∗|+ |B| ⩽ |A′|+ 2g(n, k − 1) + 2
⩽ g(n, k) + 2g(n, k − 1) + 2.

Hence, g(n + 1, k) ⩽ g(n, k) + 2g(n, k − 1) + 2. It suffices to show that g(n, k) ⩽ 2 · ( 2n
k+1) for all

−1 ⩽ k ⩽ n − 1. There are some easy base cases:

• g(n,−1) = 1 for all n (any two sequences cross at least 0 times);
• g(1, k) = 1 for all k ⩾ 0 (the only monotone drawing sequence of length 1 is 0);
• g(2, k) = 4 for all k ⩾ 0 (the only monotone drawing sequences of length 2 are +, 0; 0, 0;

−, 0; and 0, ∗).

These and the recurrence give g(n, 0) ⩽ 4n − 4 for n ⩾ 2. Hence, the required inequality holds
whenever n ⩽ 2 or k ⩽ 0. Suppose the result holds for n ⩾ 2. First suppose that 1 ⩽ k ⩽ n − 1.
Then

g(n + 1, k) ⩽ g(n, k) + 2g(n, k − 1) + 2 ⩽ 2( 2n
k+1) + 4(2n

k ) + 2

⩽ 2( 2n
k+1) + 4(2n

k ) + 2( 2n
k−1) = 2(2n+2

k+1 ).

Finally suppose that k = n. Now

g(n + 1, n) ⩽ g(n, n) + 2g(n, n − 1) + 2 = 3g(n, n − 1) + 2

⩽ 6(2n
n ) + 2 ⩽ 2(2n+2

n+1 ),

where the last inequality holds as (2n+2
n+1 )(

2n
n )

−1
= (4n + 2)/(n + 1) > 3 for n ⩾ 2.

Proof of Theorem 1.2(a). Let G be an n-vertex multigraph that has a monotone non-homotopic
drawing in which every pair of edges cross at most k times, where k < n are integers. By
Lemma 4.1, there exists a set A of |E(G)| monotone drawing sequences of length n, each pair of
which cross at most k times. Applying Lemma 4.2 to A gives

|E(G)| = |A| ⩽ 2 ·
(

2n
k + 1

)
.
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5 Crossing Number Lemma for Monotone Drawings

In this section we prove a tight lower bound on the number of crossings in monotone non-
homotopic drawings, Theorem 1.3, which we restate for the reader’s convenience.

Theorem 1.3. For every non-negative integer k there are positive constants αk, βk, and γk such that
the following holds. For every n-vertex m-edge multigraph G with m ⩾ 4n and every monotone
non-homotopic drawing D of G:

(a) If each pair of edges cross at most k times in D, then D has at least αk
m2+1/k

n1+1/k crossings.

(b) If each pair of incident edges cross at most k times in D, then D has at least βk
m2+1/(k+1)

n1+1/(k+1) crossings.

(c) If each pair of parallel edges cross at most k times in D, then D has at least γk
m2+1/(k+2)

n1+1/(k+2) crossings.

The following definitions are due to Kaufmann, Pach, Tóth, and Ueckerdt [13]. A drawing style
is a collection of drawings of multigraphs. A drawing style D is edge-deletion-closed if for every
drawing of a multigraph G in style D, for every edge e of G, the drawing of G − e obtained from
ϕ by deleting e is in style D.

Let ϕ be a drawing of a multigraph G, and let v be a vertex of G. Let B be a disc of positive
radius centred at ϕ(v) containing no crossing points between edges in G. Consider the following
operation: delete v and the parts of the edges incident to v within B, insert two vertices v1 and
v2 in the interior of B, for each edge e incident to v, join the end of e at the boundary of B to
either v1 or v2, so that no edges cross within B. The resulting multigraph G′ and drawing ϕ′ of
G′ is a vertex split of G at v.

Figure 7: A vertex-split.

A drawing style D is split-compatible if for every drawing of a multigraph G in style D and for
every vertex split G′ of G, within the disc B the edges can be embedded to obtain a drawing
of G′ in style D. The planarisation of a drawing ϕ of multigraph G is the drawing ϕ′ obtained
from ϕ as follows: first make local adjustments to ϕ so that no three edges cross at a single point
(while not changing the number of crossings), then insert a new vertex at each crossing point.
We obtain a drawing ϕ′ of a planar graph G′, in which each added vertex has degree 4.

The following lemma is implicitly proved by Kaufmann, Pach, Tóth, and Ueckerdt [13] (building
on the work of Pach and Tóth [20], which employs the bisection-width method).

Lemma 5.1 ([13]). Suppose D is an edge-deletion-closed and split-compatible drawing style, and there
are constants c1, c2 > 0 and b > 1 such that for every multigraph G:

• if G has a drawing in style D with no crossings, then |E(G)| ⩽ c1|V(G)|;
• if G has a drawing in style D, then |E(G)| ⩽ c2|V(G)|b.
• if G has a drawing in style D with C crossings, then G has a drawing in style D with at most C

crossings whose planarisation is separated.
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Then there exists a constant α = α(b, c1, c2) > 0 such that for every multigraph G with |E(G)| > (c1 +
1)|V(G)|, every drawing of G in style D has at least α|E(G)|2+1/(b−1)/|V(G)|1+1/(b−1) crossings.

Let Mk/Nk/Ok denote the collection of monotone non-homotopic multigraph drawings in which
each pair of edges/incident edges/parallel edges cross at most k times, respectively.

Lemma 5.2. Mk, Nk, and Ok are edge-deletion-closed split-compatible drawing styles. Further if
a multigraph G has a drawing in style Mk/Nk/Ok with C crossings, then G has a drawing in style
Mk/Nk/Ok with at most C crossings whose planarisation is separated.

Proof. (The proof of this result is very similar to the proof of an analogous result of Kaufmann
et al. [13].) It is immediate that Mk, Nk, and Ok are edge-deletion-closed. We now show that they
are all split-compatible. Let ϕ be a drawing of a multigraph G in style Mk, Nk, or Ok. Orient each
edge of G left-to-right. Let v be a vertex of G. Let E−(v) and E+(v) be the sets of incoming and
outgoing edges incident to v. Let B be a disc of positive radius centred at ϕ(v) containing no
crossing points between edges in G. As illustrated in Figure 8, let G′ be a multigraph obtained
by splitting G at v within disc B, where v is replaced by v1 and v2. Consider each edge of G′ to
inherit the orientation of the corresponding edge in G. Let Ei be the set of edges of G′ incident
to vi. By assumption, no two edges in E−(v1) ∪ E+(v1) ∪ E+(v2) ∪ E−(v2) cross within B. Thus,
the edges incident with v1 or v2 appear as E−(v1), E+(v1), E+(v2), E−(v2) in the cyclic ordering
determined by where the edges cross the boundary of B. Thus the edges incident to v1 or v2
can be drawn within B so that no two edges cross, each edge is x-monotone, and the resulting
drawing of G′ is non-homotopic. Since each pair of parallel/incident edges in the new drawing
were parallel/incident in the original, the styles Mk, Nk, and Ok are all split-compatible.

Figure 8: Splitting a vertex in a monotone drawing.

Consider a drawing of a multigraph G in style Mk/Nk/Ok with C crossings. By local adjustments,
we may assume that no three edges cross at a single point (while maintaining monotonicity and
not creating any crossings). We now show that G has a drawing in the same style with at most C
crossings whose planarisation is separated.

Consider the drawing of G in style Mk/Nk/Ok with the smallest number of crossings. This
minimal number is some c ⩽ C. Suppose there is a simple closed curve γ formed by portions of
two edges e1 and e2, where there is no vertex of G in the interior of γ. Assume that the interior
of γ is inclusion-minimal among all such curves. This implies that every time an edge enters γ
by crossing e1, it must leave γ by crossing e2 and vice versa.

As illustrated in Figure 9, redraw the diagram replacing e1 with e′1 which is the same as e1
outside γ and is e2 ∩ γ on γ and replacing e2 with e′2 which is the same as e2 outside γ and is very
close to e1 ∩ γ inside γ. By the observation about edges entering and leaving γ, any crossing

Figure 9: Rerouting a monotone drawing.
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between an edge e and e′1 corresponds to a crossing between e and e1 and similarly for e2. Thus
the number of crossings between pairs of parallel edges/incident edges/edge in the resulting
drawing is at most k. Furthermore, the resulting drawing has less than c crossings (a crossing
between e1 and e2 has been removed), is x-monotone, and is non-homotopic (since no vertex
is in the interior of γ). This contradiction shows that every simple closed curve γ formed by
portions of two edges of G has a vertex of G in its interior. A similar proof shows that γ has a
vertex of G in its exterior. Therefore, the planarisation of this drawing is separated.

Lemma 5.2 shows that Lemma 5.1 is applicable to drawing style Mk/Nk/Ok. Theorem 1.2(a)
with k = 0 shows that we may take c1 = 4 for all three styles. Theorem 1.2(a) shows we may take
b = k + 1 and c2 = 2k+2

(k+1)! for Mk. Theorem 1.2(b) shows we may take b = k + 2 and c2 = 2k+1

(k+1)!

for Nk. Theorem 1.2(c) shows we may take b = k + 2 and c2 = 2k

(k+1)! for Ok. All three parts of
Theorem 1.3 immediately follow.

6 Open Problems

Let h(n, k) denote the maximum number of edges in an n-vertex multigraph that has a non-
homotopic k-crossing drawing. Theorem 1.1 establishes the upper bound h(n, k) ⩽ 2O(nk). For
lower bounds, (3) gives h(n, k) ⩾ 2Ω(

√
nk) while the graphs Gn,k from Section 3 give h(n, k) ⩾

∑k
ℓ=1 (

n
ℓ+1). What is the true growth rate of h(n, k)? For fixed n and k growing, (2) and (3) show

that h(n, k) = 2Θ(
√

k). Improved bounds in other regimes would be very interesting.

In the monotone setting we have established the correct growth rate in terms of n. Let hmon(n, k)
denote the maximum number of edges in a monotone non-homotopic k-crossing drawing of an
n-vertex multigraph. Theorem 1.2(a) and the graphs Gn,k give ∑k

ℓ=1 (
n

ℓ+1) ⩽ hmon(n, k) ⩽ 2 · ( 2n
k+1).

Hence, hmon = Θk(nk+1) but the growth rate in terms of k is unclear. It seems likely that the lower
bound is closer to the truth. Is there some absolute constant c such that hmon(n, k) ⩽ c ∑k

ℓ=0 (
n

ℓ+1)?
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[13] MICHAEL KAUFMANN, JÁNOS PACH, GÉZA TÓTH, AND TORSTEN UECKERDT. The number of

crossings in multigraphs with no empty lens. J. Graph Algorithms Appl., 25(1):383–396, 2021.
[14] F. THOMSON LEIGHTON. Complexity issues in VLSI. MIT Press, 1983.
[15] JUSTIN MALESTEIN, IGOR RIVIN, AND LOUIS THERAN. Topological designs. Geom. Dedicata,

168:221–233, 2014.
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[17] JÁNOS PACH, GÁBOR TARDOS, AND GÉZA TÓTH. Crossings between non-homotopic edges. J.

Combin. Theory Ser. B, 156:389–404, 2022.
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