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Abstract: We prove that every connected graph of order n ≥ 2 has an induced subgraph

with all degrees odd of order at least cn/ log n, where c is a constant. We also give a bound

in terms of chromatic number, and resolve the analogous problem for random graphs.

0. Introduction.

Given a graph G, it is natural to ask whether G must contain a large induced subgraph

with certain properties. For instance, a classical question in Ramsey theory asks how many

vertices a graph can have if it does not contain either a complete or an empty induced

subgraph on a given number of vertices.

The starting point of this paper is the following theorem due to Gallai (see [4], Problem

5.17).

Theorem A.

(a) For every graph G, there is a partition V (G) = V1 ∪ V2 such that G[V1] and G[V2]

have all degrees even.

(b) For every graph G, there is a partition V (G) = V1∪V2 such that G[V1] has all degrees

odd and G[V2] has all degrees even.

As an immediate consequence of this theorem we have the following.

Corollary B. For every graph G, there is a set W ⊂ V (G) such that |W | ≥ 1
2 |G| and

G[W ] has all degrees even.
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Let us note that this result is best possible, as can be seen by considering Pn, the path

on n vertices, for any n. (As we shall see below, we can say somewhat more for random

graphs.)

It is natural to ask whether we can find analogous results for induced subgraphs with

all degrees odd. If a graph G has an isolated vertex v, then no induced subgraph of G

containing v can have all degrees odd. Thus, in order to ensure that G has a large subgraph

of this form, it is natural to forbid isolated vertices. Equivalently, we may assume that

G is connected: then if G has no isolated vertices, but is not connected, we may consider

each component separately.

This leads to the conjecture (the origins of which are unclear, see [2]) that there is

some ε > 0 such that every graph G without isolated vertices contains an induced subgraph

of order at least ε|G| with all degrees odd. If this were true then ε could be at most 1
3 , as

can be seen by considering K6 with a 1-factor removed.

In order to state the problem more clearly, we define some notation. For any graph

G we define

f(G) = max{|W | : W ⊂ V (G) and G[W ] has all degrees odd}.

Then, for n ≥ 2, let f(n) = min{f(G) : |G| = n and δ(G) ≥ 1}. The conjecture claims

that there is some ε > 0 such that f(n) ≥ εn for all n ≥ 2.

The conjecture has been proved for trees: Caro, Krasikov and Roditty [3] gave a

linear lower bound, and Radcliffe and Scott [5] proved a best possible bound, namely that

f(T ) ≥ 2b(n + 1)/3c for every tree T . In §1 we prove a bound in terms of chromatic

number: f(G) ≥ |G|/(2χ(G)) for every graph G without isolated vertices.

In the general case, Caro [2] proves that f(n) ≥
√

(n−
√
n)/6. In §2 we prove the

stronger result that f(n) ≥ n/900 log n. The result is generalised to weighted graphs in

§3. Finally, in §4, we show that, whenever ω(n) → ∞, almost every G ∈ G(n, 1
2 ) satisfies

|f(G)− (cn+ d log n)| ≤ ω(n), where c = 0.7729 · · · and d = −0.2606 · · ·.

We use standard notation throughout (see [1], say). In particular, let G be a graph

and S ⊂ V (G). Then G[S] denotes the subgraph of G induced by S; where unambiguous,
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we write e(S) for e(G[S]) and, for T ⊂ V (G) \ S, we write e(S, T ) for |{xy ∈ E(G) : x ∈
S, y ∈ T}|. We will also write [n] = {1, . . . , n}.

1. A bound in terms of chromatic number.

We begin by giving a lower bound for f(G) in terms of the largest independent set in G.

Alon (see [2]) has proved that f(G) ≥ 1
3 ind(G); here we improve this to an essentially best

possible result.

Theorem 1. For any graph G without isolated vertices, we have f(G) ≥ 1
2 ind(G).

Proof. Let G be a graph without isolated vertices, and let I ⊂ V (G) be an independent

set of maximal size in G. We note that, for every v ∈ I, we have Γ(v) ∩ (V (G) \ I) 6= ∅,

since G contains no isolated vertices. Let W be a minimal subset of V (G) \ I such that

|Γ(v)∩W | > 0 for every v ∈ I, say W = {w1, . . . , wk}. Then for each wi we can find some

ui ∈ I such that Γ(ui) ∩W = {wi}. Set U = {u1, . . . , uk} and U ′ = I \ U .

For S ⊂W , let US = {u ∈ U ′ : |Γ(u) ∩ S| is odd}, and

IS = S ∪ US ∪ {ui : wi ∈ S and |Γ(wi) ∩ US | is even}.

By construction, in the graph G[IS ] every degree is odd, so f(G) ≥ |IS | ≥ |S|+ |US |.

Now let us choose S ⊂ W randomly, by picking each wi independently, with proba-

bility 1
2 . Then, for every u ∈ U ′, P(|Γ(u) ∩ S| is odd) = 1

2 , so

E(|IS |) ≥ E(|S|) + E(|US |)

= |W |/2 + |U ′|/2

= |I|/2,

since |U ′| = |I| − |U | = |I| − |W |. Therefore, for some S0 ⊂ W we have |IS0 | ≥ |I|/2 =
1
2 ind(G).

Theorem 1 is best possible in the sense that we cannot replace 1
2 with any smaller

constant. Indeed, let Bn be the bipartite graph with vertex classes V1 = [n], V2 = [n](2),
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and edges from {i} to {j, k} if and only if i ∈ {j, k}. We note that if W ⊂ V (Bn), then for

each {i, j} ∈W ∩V2 exactly one of {i} and {j} are in V1. Thus f(Bn) ≤ dn2/4e+n. Since

ind(Bn) =
(
n
2

)
, we have f(Bn)/ind(Bn) → 1

2 as n → ∞, and deduce that the constant in

Theorem 1 is best possible.

As a consequence of Theorem 1 we have the following result.

Theorem 2. Let G be a graph without isolated vertices. Then f(G) ≥ |G|/(2χ(G)).

Proof. Colour G with χ(G) colours and apply Theorem 1 to the largest colour class.

How good is the factor (2χ(G))−1 in Theorem 2? For k ≥ 2, we define

ck = inf{f(G)/|G| : χ(G) = k and δ(G) ≥ 1},

Thus Theorem 2 says that ck ≥ 1/2k. For bipartite graphs, this gives c2 ≥ 1
4 ; from the

other side, the graph Bn, defined above, shows that c2 ≤ 1
2 , and we conjecture that 1

2 is the

correct value. For k ≥ 3, our best upper bound is ck ≤ 1
3 , which we get by considering K6

with a 1-factor removed (this graph is 3-colourable). It seems likely that some improvement

is possible.

The ck clearly form a non-increasing sequence (indeed, suppose k ≤ l and G is k-

chromatic: then by considering many disjoint copies of G together with a copy of Kl+1, we

see f(G) ≥ cl|G|; we deduce ck ≥ cl). The remainder of this section examines how quickly

the sequence can decrease.

Suppose k ≥ l, and we wish to bound ck below in terms of cl. Let G be a k-

chromatic graph. Given a k-colouring of G, we would like to take the l largest colour

classes, say V1, . . . , Vl, and by considering G[
⋃l
i=1 Vi] and our lower bound for cl obtain a

lower bound for f(G). Unfortunately, although G[
⋃l
i=1 Vi] is l-chromatic, it may contain

isolated vertices. This leads us to ask whether G must contain a large induced l-chromatic

graph without isolated vertices.

In order to answer this question, it seems to be easiest to prove a more general result

concerning weighted graphs. We say that a graph G has vertex weighting µ if µ is a

function µ:V (G) → R≥0. The weight of a vertex v ∈ V (G) is µ(v), and the weight of a
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set W ⊂ V (G) is µ(W ) =
∑
w∈W µ(w). If H is a subgraph of G then the weight of H is

µ(H) = µ(V (H)). We have the following result for vertex-weighted graphs.

Theorem 3. Suppose k ≥ 2 and G is a k-chromatic graph with vertex-weighting µ and no

isolated vertices. Then, for each 2 ≤ m ≤ k, G contains an induced m-chromatic subgraph

H such that H has no isolated vertices and

µ(H) ≥ m

k
µ(G).

Proof. If k = m = 2 then the theorem is trivial. Let us suppose that k ≥ 3. We will prove

by induction on |V (G)| that if G is a k-chromatic graph with vertex-weighting µ and no

isolated vertices then G contains an induced (k − 1)-chromatic subgraph with weight at

least k−1
k µ(G) and without isolated vertices. Applying this k−m times gives the required

m-chromatic subgraph.

If |V (G)| = 3 then the inductive statement is trivial. Let us assume that |V (G)| > 3,

that G is k-chromatic and has no isolated vertices, and that our inductive statement is

true for smaller values of |V (G)|. We may assume that G is connected, or else deal with

each component of G separately. Let V (G) = V1 ∪ · · · ∪ Vk be a k-colouring of the vertices

of G.

Suppose that some v ∈ V (G) has all its neighbours in one colour class, say v ∈ V1

and Γ(v) ⊂ V2. Then consider G′ = (G \ ({v} ∪ Γ(v))) ∪ {w}, where w is a new vertex

joined to
⋃
x∈Γ(v) Γ(x) \ {v}. Note that w is not an isolated vertex in G′, since otherwise

{v}∪Γ(v) would have been a component of G with chromatic number 2. Let V ′1 = V1\{v},
V ′2 = (V2 \ Γ(v)) ∪ {w} and V ′i = Vi for i > 2. Then G′ is k-chromatic and V ′1 , . . . , V

′
k is a

k-colouring. Define µ′(x) = µ(x) for x ∈ V (G′) \ {w} and µ′(w) = µ(v) +
∑
x∈Γ(v) µ(x).

Thus µ′(G′) = µ(G). Since |V (G′)| < |V (G)|, we can find a (k − 1)-chromatic induced

subgraph H ′ ⊂ G′ without isolated vertices and with

µ′(H ′) ≥ k − 1
k

µ′(G′) =
k − 1
k

µ(G).

If w ∈ V (H ′) then let H = G[(V (H ′) \ {w}) ∪ {v} ∪ Γ(v)]; if w 6∈ V (H ′) then let H = H ′

(considered as a subgraph of G). We see that µ(H) = µ′(H ′), and H is an induced

(k − 1)-chromatic subgraph of G without isolated vertices.
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Thus we may assume that every vertex in G has neighbours in at least two colour

classes. In that case, we may delete the colour class of smallest weight, to obtain the

required induced subgraph of G.

This gives an immediate corollary for unweighted graphs.

Corollary 4. Let 2 ≤ m ≤ k. If G is a k-chromatic graph without isolated vertices then

it contains an induced m-chromatic graph H without isolated vertices such that

|H| ≥ m

k
|G|.

Proof. Define µ(v) = 1 for all v ∈ V (G) and apply Theorem 3.

Both Theorem 3 and Corollary 4 are best possible, as can be seen by considering a

complete k-partite graph with all vertex classes of equal size.

We are now ready to prove our bound on how fast {ck}∞k=2 can decrease.

Theorem 5. For every 2 ≤ k ≤ l, cl ≥ k
l ck.

Proof. Let G be an l-chromatic graph. Then by Corollary 4, we can find an induced

k-chromatic subgraph H such that H has no isolated vertices and |H| ≥ k|G|/l. Therefore

f(G) ≥ f(H) ≥ ck|H| ≥
kck
l
|G|.

We deduce that cl ≥ kck/l.

We note that any improvement in the lower bound for ck gives corresponding improve-

ments in the lower bounds for cl, for every l ≥ k. In particular, it would be interesting to

improve c2, since this would lead to a corresponding improvement on the factor (2χ(G))−1

in Theorem 2.

It is not impossible that the conjecture f(n) ≥ cn for all n ≥ 2, for some constant

c, is false. Even if it is true, we may only be able to prove it with c small, in which case

Theorem 2 will give a better bound for graphs of low chromatic number. If c2 = 1
2 , as

conjectured above, an application of Theorem 5 would improve Theorem 2 by a factor of
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2: we would get the attractive result that f(G) ≥ |G|/χ(G) for every graph G without

isolated vertices.

2. A general bound.

We have proved a bound in terms of chromatic number; we now turn to the general

case. The idea of the proof is to look for subgraphs of G satisfying conditions which ensure

that G contains relatively large induced subgraphs with all degrees odd.

For instance, suppose we have an edge vw ∈ E(G) with d(v) large and |Γ(v) ∩ Γ(w)|
small. Let S = Γ(v) \ (Γ(w) ∪ {w}). Then, by Theorem B, we can find S′ ⊂ S such

that |S′| ≥ |S|/2 and G[S] has all degrees even. If |S| is even then set W = S′ ∪ {v, w};
if |S| is odd, then set W = S′ ∪ {v}. In either case, G[W ] has all degrees odd and

|W | ≥ 1
2 (d(v)− |Γ(v) ∩ Γ(w)|).

More generally, suppose have a set of independent edges v1w1, . . . , vkwk, and let V0 =⋃k
i=1 Γ(vi) and W0 =

⋃k
i=1 Γ(wi). If |V0 ∩W0| is small compared with |V0 ∪W0|, then we

can use a similar argument to find a comparatively large induced subgraph of G with all

degrees odd. The main part of the proof works by looking for such collections of edges.

Theorem 6. Every graph G without isolated vertices contains a set W ⊂ V (G) such that

|W | ≥ |G|/900 log(|G|) and G[W ] has all degrees odd.

Proof. Let G be a graph of order n without isolated vertices, and let c be a constant (we

will take c = 0.086 below). We begin by partitioning V (G) into sets X1, Y1 and Z1. We

will do this in such a way that X1 contains a large structure of the sort described above;

Y1 has highly connected components; and Z1 does not contain too many edges. Both X1

and Y1 can be used to find relatively large induced subgraphs of G with all degrees odd;

our only problem is Z1, which we again partition, into sets X2, Y2 and Z2. We apply the

algorithm repeatedly, each time partitioning Zi−1 into sets Xi, Yi and Zi, ending up with

a partition of V (G) into sets X1, . . . , Xk, Y1, . . . , Yk, Zk, where Zk is an independent set.

More precisely, let Z0 = V (G). By assumption, e(Z0) > 0: we partition Z0 into
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sets X1, Y1 and Z1 using the algorithm described below. If e(Z1) = 0 then set k = 1.

Otherwise, apply the algorithm to Z1 to get X2, Y2 and Z2. Repeat this process until Zi

is first an independent set, at which point put k = i.

Our algorithm for partitioning Zj−1 into Xj , Yj and Zj is as follows. We shall use

the notation X(i)
j , Y (i)

j and Z(i)
j for our successive ‘approximations’ to Xj , Yj and Zj . Let

X
(1)
j = Y

(1)
j = Z

(1)
j = ∅. At the ith stage, given X

(i)
j , Y (i)

j and Z
(i)
j , we define

V
(i)
j = Zj−1 \ (X(i)

j ∪ Y
(i)
j ∪ Z(i)

j ).

Thus V (i)
j is the set of vertices we have not yet partitioned. If there is some v ∈ V (i)

j which

satisfies

|Γ(v) ∩X(i)
j | ≥ c|Γ(v) ∩ V (i)

j | (1)

then set
X

(i+1)
j = X

(i)
j

Y
(i+1)
j = Y

(i)
j

Z
(i+1)
j = Z

(i)
j ∪ {v}.

Otherwise, if there is an edge vw in G[V (i)
j ] such that |Γ(v) ∩ V (i)

j | > 1 and

|Γ(v) ∩ Γ(w) ∩ V (i)
j | ≤ (2/3) max{|Γ(v) ∩ V (i)

j | − 1, |Γ(w) ∩ V (i)
j | − 1}, (2)

then set

X
(i+1)
j = X

(i)
j ∪ ((Γ(v) ∪ Γ(w)) ∩ V (i)

j ) \ {v, w}

Y
(i+1)
j = Y

(i)
j ∪ {v, w} (3)

Z
(i+1)
j = Z

(i)
j .

If neither of these conditions is satisfied, then set

Xj = X
(i)
j

Yj = V
(i)
j

Zj = Z
(i)
j ,

(4)
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and terminate the algorithm.

We have now partitioned V (G) into 2k+ 1 sets. Note that the number e(Zj) of edges

in G[Zj ] satisfies e(Zj) ≤ e(Zj−1)/(1 + c), for j = 1, . . . , k. Indeed, let Zi = {z1, . . . , zp},
where zj is chosen at stage ij and i1 < · · · < ip. Using (1), we have

e(Zi) =
p−1∑
j=1

|Γ(zj) ∩ {zj+1 . . . , zp}|

≤
p−1∑
j=1

|Γ(zj) ∩ V
(ij)
i |

≤
p−1∑
j=1

|Γ(zj) ∩X
(ij)
i |/c

≤ e(Zi, Xi)/c.

Since Xi ∪ Zi ⊂ Zi−1, we have

e(Zi−1) ≥ e(Zi) + e(Zi, Xi) ≥ (1 + c)e(Zi),

as claimed. Thus k (the smallest integer such that Zk is an independent set) is well defined,

and

k ≤ log1+c

(
n

2

)
≤ 2 log n/ log(1 + c). (5)

We claim that each set in our partition guarantees the existence of a comparatively

large induced subgraph of G with all degrees odd. The next three lemmas prove that this

is indeed the case.

Lemma 7. For i = 1, . . . , k, we have f(G) ≥ 1−6c
16 |Xi|.

Proof. If Xi = ∅ then we are done. Otherwise, Xi is in the neighbourhood of a sequence

of edges v1w1, . . . , vpwp chosen to satisfy (2). Let us suppose that vjwj was chosen at the

ijth stage, where i1 < · · · < ip, and that

|Γ(vj) ∩ V
(ij)
i | ≥ |Γ(wj) ∩ V

(ij)
i |. (6)

Let V0 = {v1, . . . , vp}, V1 = {w1, . . . , wp} and S = {v ∈ Xi : Γ(v) ∩ V1 = ∅}. We

remark that, from (2) and (3), V0 and V1 are independent sets of Yi, that Γ(vi)∩V1 = {wi},
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and that every v ∈ S has at least one neighbour in V0. Let T ⊂ V0 be a random subset,

where each v ∈ V0 is chosen independently with probability 1
2 . We define

ST = {v ∈ S : |Γ(v) ∩ T | is odd}.

Clearly, E(|ST |) = |S|/2, so for some T0 ⊂ V0 we have |ST0 | ≥ |S|/2. By Corollary B, we

can find some S0 ⊂ ST0 such that |S0| ≥ |ST0 |/2 ≥ |S|/4 and G[S0] has all degrees even.

Let

S′ = S0 ∪ T0 ∪ {wi ∈ V1 : vi ∈ T0 and |Γ(vi) ∩ S0| is even}.

It is easily seen that G[S′] has all degrees odd and |S′| ≥ |S0| ≥ |S|/4.

In order to prove the assertion of the lemma, it is therefore enough to prove that

|S| ≥ (1 − 6c)|Xi|/4. We do this by using inequalities (2) and (6), and following through

the algorithm for partitioning Zi−1. This will require some calculation which appears

rather unattractive, but is in fact quite straightforward.

Define S0 = ∅ and, for j = 1, . . . , p,

Sj = {v ∈ X(ij)
i : Γ(v) ∩ {w1, . . . , wj} = ∅}, (7)

Note that Sp = S and X
(ip)
i = Xi, so we want to show that |Sp| ≥ (1 − 6c)|X(ip)

i |/4. Set

i0 = 0, so that X(i0)
i = X

(0)
i = ∅. From (3) and (7) we see that, for j = 1, . . . , p,

Sj = (Sj−1 \ Γ(wj)) ∪ (Γ(vj) ∩ V
(ij)
i \ ({wj} ∪ Γ(wj))),

so

|Sj | ≥ |Sj−1| − |Γ(wj) ∩ Sj−1|+ |Γ(vj) ∩ V
(ij)
i | − 1− |Γ(vj) ∩ Γ(wj) ∩ V

(ij)
i |. (8)

On the other hand, from (3), we have

X
(ij)
i = X

(ij−1)
i ∪ ((Γ(vj) ∪ Γ(wj)) ∩ V

(ij)
i \ {v, w}),

so

|X(ij)
i | − |X(ij−1)

i | = |Γ(vj) ∩ V
(ij)
i |+ |Γ(wj) ∩ V

(ij)
i | − |Γ(vj) ∩ Γ(wj) ∩ V

(ij)
i | − 2

≤ 2(|Γ(vj) ∩ V
(ij)
i | − 1)− |Γ(vj) ∩ Γ(wj) ∩ V

(ij)
i |, (9)
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by inequality (6). For ease of notation we write a = |Γ(vj) ∩ V
(ij)
i | and b = |Γ(vj) ∩

Γ(wj) ∩ V
(ij)
i |. Note that, from (1), |Γ(wj) ∩ Sj−1| ≤ |Γ(wj) ∩X

(ij)
i | ≤ c|Γ(wj) ∩ V

(ij)
i | ≤

c|Γ(vj) ∩ V
(ij)
i | = ca. Then (8) and (9) become

|Sj | − |Sj−1| ≥ (a− 1)− b− ca,

and

|X(ij)
i | − |X(ij−1)

i | ≤ 2(a− 1)− b.

Inequality (2) becomes b ≤ 2(a− 1)/3, so

|Sj | − |Sj−1|
|X(ij)

i | − |X(ij−1)
i |

≥ (a− 1)− b− ca
2(a− 1)− b

≥
1
3 (a− 1)− ca

4
3 (a− 1)

=
1− 3c

4
− 3c

4(a− 1)

≥ 1− 6c
4

,

since a > 1. This is true for j = 1, . . . , p, so

|Sp| =
p∑
j=1

(|Sp| − |Sp−1|)

≥
p∑
j=1

1− 6c
4

(|X(ij)
i | − |X(ij−1)

i |)

=
1− 6c

4
|X(ip)

p |

.

Lemma 8. For i = 1, . . . , k, f(G) ≥ 1
4 |Yi|.

Proof. We note first that G[Yi] has no isolated vertices. Indeed, every vertex v ∈ Yi was

added in (3) or (4). If v was added in (3), then it is adjacent to some w ∈ Yi that was

added at the same time; while if v was added in (4), then |Γ(v) ∩ Yi| ≥ |Γ(v) ∩ V (i)
j | > 0,

or else v would have satisfied the condition (1).
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We consider the components of G[Yi]. The vertices added to Yi in (3) induce a set of

independent edges, so they are all in components of order 2; components of great order

must come from (4). We claim that each component H contains a set VH ⊂ V (H) such

that |VH | ≥ 1
4 |H| and G[VH ] has all degrees odd. This is enough to prove the lemma, since

the union of these sets has order at least |Yi|/4 and induces a subgraph with all degrees

odd. We will suppress unnecessary mention of H, writing for instance Γ for ΓH .

If |H| = 2 then we are done. Otherwise, |H| > 2, and V (H) was added to Yi in (4).

By (2), each adjacent pair of vertices x and y in H satisfy

|Γ(x) ∩ Γ(y)| > 2
3

max{d(x)− 1, d(y)− 1}. (10)

Note that if xy ∈ E(H) and d(x) ≥ 2 then d(y) ≥ 2; since H is connected, we may assume

that δ(H) ≥ 2.

Suppose that ∆(H) ≥ 1
2 |H|, and let x ∈ V (H) be a vertex of maximal degree in

H. If d(x) is odd then let W = Γ(x); otherwise let W = Γ(x) \ {y} for some y ∈ Γ(x).

By Theorem A we may split V (W ) ∪ {x} into sets W1 and W2, each of which induces a

subgraph of H with all degrees even. We may assume that x ∈ W1. Let W ′1 = W1 \ {x},
W ′2 = W2 ∪ {x}. The subgraph W ′1 has all degrees odd, and thus an even number of

vertices. G[W ′2] has all degrees odd, except possibly for x; but |Γ(x) ∩ W ′2| = |W2| =

|W |+ 1− |W1| = |W | − |W ′1|, which is odd, so x has an odd number of neighbours in W ′2.

Since |W ′1|+ |W ′2| ≥ ∆(H) ≥ 1
2 |H|, one of W ′1 and W ′2 must contain at least 1

4 |H| vertices,

and will thus do for VH .

It is therefore enough to prove that if H satisfies (10) then ∆(H) ≥ 1
2 |H|.

We claim first that diam(H) ≤ 2. Indeed, suppose diam(H) > 2, say d(w, z) = 3

for some w, z ∈ H. Let wxyz be a shortest path from w to z. We will prove that

|Γ(w) ∩ Γ(z)| > 0.

We may assume d(x) ≥ d(y). Now Γ(w) ∩ Γ(x) and Γ(y) ∩ Γ(x) are subsets of

Γ(x) \ {w, y}, so by (10),

|Γ(w) ∩ Γ(y)| ≥ |Γ(w) ∩ Γ(x)|+ |Γ(y) ∩ Γ(x)| − (|Γ(x)| − 2)

>
2
3

(d(x)− 1) +
2
3

(d(x)− 1)− d(x) + 2

=
1
3
d(x) +

2
3
.

12



Since d(x) ≥ d(y) we have

|Γ(w) ∩ Γ(y)| ≥ 1
3
d(y) +

2
3
.

We get
|Γ(w) ∩ Γ(z)| ≥ |Γ(w) ∩ Γ(y)|+ |Γ(z) ∩ Γ(y)| − |Γ(y)|

>
1
3
d(y) +

2
3

+
2
3

(d(y)− 1)− d(y)

= 0.

Thus we must have d(w, z) ≤ 2, which is a contradiction. Hence diam(H) ≤ 2.

We now prove that ∆(H) ≥ 1
2 |H|. Indeed, suppose d(x) = ∆(H) < 1

2 |H|. Let

Y = Γ(x) and Z = H \ (Y ∪ {x}). Then Y and Z are nonempty. We count e(Y,Z) in two

ways.

First, for y ∈ Y , we have by (10),

e(y, Z) = |Γ(y)| − |Γ(x) ∩ Γ(y)| − 1

< d(y)− 2
3

(d(y)− 1)− 1

=
1
3

(d(y)− 1)

≤ 1
3

(d(x)− 1). (11)

For z ∈ Z, pick w ∈ Γ(z) ∩ Γ(x) (we can do this because diam(H) ≤ 2). We have, as

before,

e(z, Y ) = |Γ(z) ∩ Γ(x)|

≥ |Γ(z) ∩ Γ(w)|+ |Γ(x) ∩ Γ(w)| − (Γ(w)− 2)

>
2
3

(d(w)− 1) +
2
3

(d(x)− 1)− (d(w)− 2)

=
2
3
d(x)− 1

3
d(w) +

2
3

≥ 1
3
d(x) +

2
3
. (12)

Therefore, using (11) and (12) to bound e(Y,Z) above and below, we get

1
3

(d(x)− 1)|Y | > e(Y,Z) >
1
3

(d(x) + 2)|Z|.

13



If d(x) < |H|/2 then |Z| > d(x)− 1, so

1
3

(d(x)− 1)d(x) >
1
3

(d(x) + 2)(d(x)− 1),

which is a contradiction. Thus ∆(H) ≥ 1
2 |H|.

Lemma 9. We have f(G) ≥ |Zk|/2.

Proof. Since Zk is an independent subset of V (G), this is immediate from Theorem 1.

We are now ready to complete the proof of Theorem 6. From the preceding lemmas

we have

f(G) ≥ max
{

1− 6c
16

max
i=1,...,k

|Xi|,
1
4

max
i=1,...,k

|Yi|,
1
2
|Zk|

}
≥ max

{
1− 6c
16k

k∑
i=1

|Xi|,
1
4k

k∑
i=1

|Yi|,
1
2
|Zk|

}
.

Now |G| =
∑k
i=1 |Xi|+

∑k
i=1 |Yi|+ |Zk|, so by (5) we have

f(G) ≥ n

16k/(1− 6c) + 4k + 2

≥
(

8
(

5− 6c
1− 6c

)
log n

log(1 + c)
+ 2
)−1

n.

Set c = 0.086. Since f(G) ≥ 2 always, we get f(G) ≥ n/900 log n.

If G is triangle-free then the proof of Theorem 6 yields a better constant in our bound.

Corollary 10. Let G be a triangle-free graph without isolated vertices. Then f(G) ≥
|G|/155 log |G|.

Proof. Let n = |G|. We use the notation of the proof of Theorem 6. Note that, since G

is triangle-free, (2) is satisfied for every edge in G[V (ij)
j ]. Since Γ(v)∩Γ(w) = ∅ whenever

v and w are adjacent, we have b = |Γ(vj) ∩ Γ(wj) ∩ V
(ij)
i | = 0 in Lemma 7, so

|Sj | − |Sj−1|
|X(ij)

i | − |X(ij−1)
i |

≥ (a− 1)− ca
2(a− 1)

=
1
2
− ca

2(a− 1)

≥ 1
2
− c,
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since a > 1. It follows from (3) and (4) that G[Yi] is a collection of independent edges, so

Lemma 8 becomes f(G) ≥ |Yi|. Therefore

f(G) ≥ max

{
1− 2c

8k

k∑
i=1

|Xi|,
1
k

k∑
i=1

|Yi|,
1
2
|Zk|

}

≥
(

8k
1− 2c

+ k + 2
)−1

n

≥
(

9− 2c
1− 2c

2 log n
log(1 + c)

+ 2
)−1

n.

Set c = 0.24: we get that f(G) > n/155 log n.

We note that any restriction on cl(G) gives a corresponding restriction on the size of

components in Yi and thus a small improvement in the constant in our bound for f(G).

(For instance, if cl(G) = 3 then Yi can contain only triangles and independent edges.)

3. Induced subgraphs of weighted graphs.

We now consider weighted versions of our results. For a graph G with vertex-weighting

µ, let fµ(G) be the maximum weight of an induced subgraph of G with all degrees odd.

We have the following equivalent to Theorem 1.

Theorem 11. Let G be a graph with vertex-weighting µ and without isolated vertices,

and I be an independent subset of V (G). Then

fµ(G) ≥ 1
4
µ(I).

Proof. As in Theorem 1, pick W ⊂ V \ I to be a minimal set covering I and find U ⊂ I

so that G[V ∪W ] is a set of independent edges. If µ(U) ≥ µ(I)/2 then partition W into

W1 and W2 so that G[W1] and G[W2] have all degrees even. One of W1 ∪ (U ∩Γ(W1)) and

W2 ∪ (U ∩ Γ(W2)) will do. If µ(U) < µ(I)/2, choose S ⊂ I \ U as in Theorem 1. Then

E(µ(US)) = µ(I \ U)/2 > µ(I)/4, so we may proceed as before.

This can be used in the same way that Theorem 1 was used for Theorem 6.
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Theorem 12. There is a constant c such that for every graph G with vertex-weighting µ

and without isolated vertices,

fµ(G) ≥ cµ(G)/ log |G|.

Proof. (Sketch) We follow closely the proof of Theorem 6, replacing |·| with µ(·) where

appropriate. We replace (1) with

µ(Γ(v) ∩X(i)
j ) > cµ(Γ(v) ∩ V (i)

j ),

and (2) with the conditions

µ(Γ(v) ∩ V (i)
j \ {w}) > 0

and

µ(Γ(v) ∩ Γ(w) ∩ V (i)
j ) ≤ (2/3) max{µ(Γ(v) ∩ V (i)

j )− µ(w), µ(Γ(w) ∩ V (i)
j )− µ(v)}.

In the final step of the algorithm we leave the definitions of Xj , Yj and Zj unchanged.

We can use this to find large induced subgraphs with all degrees odd that satisfy

additional conditions on the distribution of vertices. For instance, we have the following

more general version of Theorem 6.

Theorem 13. There is a constant c such that for every graph G without isolated vertices

and for every S ⊂ V (G) there is an induced subgraph H of G with all degrees odd such

that

|V (H) ∩ S| ≥ c|S|/ log |G|.

Proof. Set µ = χS , the indicator function for S, and apply Theorem 12.

We note that Theorem 13 can also be proved directly from Theorem 6 and Theorem 1:

if ind(G[S]) > |G|/2 then apply Theorem 1; otherwise apply Theorem 6 to each non-trivial

component of G[S].
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4. Random graphs.

So far we have considered results that hold for all graphs. In this section, we consider

the same questions for random graphs.

Caro [2] has proved that almost every graph (in the model G(n, 1/2)) satisfies f(G) ≥
n/4, and Alon (see [2]) has proved that almost every graph satisfies f(G) ≥ ( 1

2 − ε)|G|.
We prove a more precise result.

Let s(n) be the smallest positive even integer such that 21−s(n
s

)
≤ 1, and let c be the

solution of (2c)c(1− c)1−c = 1. Then c = 0.7729 · · · and s(n) = cn+ d log n+O(1), where

1/d = 2 log( 1−c
2c ) = −3.8359 · · ·.

Theorem 14. Let s(n) be as above, and let ω(n) → ∞ as n → ∞. Then almost every

graph G ∈ G(n, 1/2) satisfies

|f(G)− s(n)| ≤ ω(n).

In particular, almost every graph satisfies

f(G) ≥ 0.7729n.

Proof. Let G ∈ G(n, 1/2) be a random graph, with vertex set V = [n], say. For A ⊂ V

let XA be the indicator variable of the event

{G[A] has all degrees odd},

and, for x, y ∈ V , let Exy be the indicator variable of the event {xy ∈ E(G)}. We define

Xi =
∑

A∈V (i)

XA.

If |A| is odd, then XA = 0. If |A| is even, then pick a ∈ A and let A′ = A \ {a}. Since∑
x∈A dG[A](x) is even, we have XA = 1 iff dG[A](x) is odd for all x ∈ A′. We condition on

G[A′]: for x ∈ A′, the parity of dG[A](x) depends on Eax, and these events are independent,

so XA = 1 with probability 2−|A
′| = 21−|A|. Thus if i is even, then

EXi = 21−i
(
n

i

)
.
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To prove the required upper bound, suppose that t ≥ s(n) +ω(n). It is easily checked

that s(n) > n/2, so EXs(n)+k ≤ 2−kEXs(n) for k > 0. Therefore

P(f(G) ≥ t) = P(Xi > 0 for some i ≥ t)

≤
n∑
i=t

P(Xi > 0) ≤
n∑
i=t

E(Xi)

≤
n∑
i=t

2i−s(n)EXs(n) ≤ 21−ω(n).

Therefore P(f(G) > s(n) + ω(n))→ 0 as n→∞.

For the lower bound, we calculate the variance of Xi, where i is even. Let A,B ∈ V (i)

be such that A 6= B, and pick a ∈ A\B and b ∈ B\A. Let C = A∪B\{a, b}. Conditioning

on G[C], we see that, for x ∈ A \ {a}, the event

{dG[A](x) is odd}

depends on Eax, while, for x ∈ B \ {b}, the event

{dG[B](x) is odd}

depends on Ebx. These events are all independent, so

P(XA = XB = 1) = 2−|C| = 22−2i = P(XA = 1)P(XB = 1),

regardless of G[C]. Thus the events XA, for A ∈ V (i), are pairwise independent. This

means that the variance turns out to be surprisingly small. Indeed,

var(Xi) =
∑
A∈V(i)

∑
B∈V (i)

E(XAXB)− E(XA)E(XB)

=
∑

A∈V (i)

E(XA)− E(XA)2

≤
∑

A∈V (i)

E(XA) = E(Xi).

By Chebyshev’s inequality, we have

P(Xi = 0) ≤ var(Xi)/E(Xi)2 ≤ 1/E(Xi).
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Now, we may assume that s(n)− ω(n) is even, and that ω(n)→∞ slowly enough so that

s(n)− ω(n) > n/2. Therefore

E(Xs(n)−ω(n)) ≥ 2ω(n)−2E(Xs(n)−2)

≥ 2ω(n)−2,

by the definition of s(n). Thus P(Xs(n)−ω(n) = 0) → 0 as n → ∞, so P(f(G) < s(n) −
ω(n))→ 0 as n→∞.

The same arguments, with a little modification, give essentially the same result for

induced subgraphs with all degrees even (note that such a subgraph can have any order, in

contrast to the odd case), thus yielding the following analogue of Corollary B for random

graphs.

Theorem 15. Let s(n) be the smallest positive integer such that 21−s(n
s

)
≤ 1, and let

ω(n)→∞ as n→∞. Then almost every G ∈ G(n, 1
2 ) satisfies the following.

(a) There is a set S ⊂ V (G) such that |S| = ds(n)−ω(n)e and G[S] has all degrees even.

(b) There is no set S ⊂ V (G) such that |S| ≥ s(n) + ω(n) and G[S] has all degrees even.
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