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Abstract. Gallai proved that the vertex set of any graph can be
partitioned into two sets, each inducing a subgraph with all degrees
even. We prove that every connected graph of even order has a
vertex partition into sets inducing subgraphs with all degrees odd,
and give bounds for the number of sets of this type required for
vertex partitions and vertex covers. We also give results on the
partitioning and covering problems for random graphs.

Note: For the final version of this paper, see the journal
publication.

1. Introduction

Gallai (see [10], Exercise 5.19) proved that every graph G has a ver-
tex partition into two sets, each of which induces a subgraph with all
degrees even. Thus every graph G contains an induced subgraph with
all degrees even on at least d|G|/2e vertices. For induced subgraphs
with all degrees odd, however, the situation is less clear. Clearly no
subgraph with odd degrees can have an isolated vertex, so we must
restrict our attention to graphs without isolated vertices. Let us write
f(G) for the maximum order of an induced subgraph of G with all
degrees odd and f(n) for the minimum of f(G) over the set of graphs
of order n without isolated vertices. Caro [5] proved that f(n) ≥ c

√
n

for n ≥ 2. It was proved in [12] that

(1) f(n) ≥ cn/ log n.

Best possible bounds for f(T ) where T is a tree have been proved
by Radcliffe and Scott [11], while Berman, Wang and Wargo [3] have
proved optimal bounds for graphs with maximum degree 3. It has been
conjectured (see [5]) that there is c > 0 such that f(n) ≥ cn for n ≥ 2.

In this paper we prove results about partitioning and covering by
induced subgraphs with all degrees odd. We begin by asking under
what conditions a graph G has a vertex partition into sets that induce
subgraphs with all degrees odd. A graph with all degrees odd must
have even order, so clearly every component of a graph with such a
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vertex partition must have even order. Surprisingly, this trivial neces-
sary condition is in fact sufficient, and we prove this in §2. It would
be interesting to determine the number of sets required for a vertex
partition of a graph of order n into sets inducing subgraphs with all
degrees odd. It is known that o(n) sets suffice and we give an example
showing that c

√
n sets may be required.

In §3, we look at vertex coverings by sets that induce subgraphs with
all degrees odd. It turns out that we can in general achieve this with
far fewer sets than for a vertex partition: we prove that every graph
has a vertex covering of this type with c log2 n sets and give an example
showing that we may need c log n sets.

We would expect that for most graphs we could do rather better
than this, and in §4 we prove that this is the case. In particular, we
prove that almost every graph G ∈ G(n, 1

2
) has a vertex partition (and

hence a vertex covering) with three sets inducing subgraphs with all
degrees odd.

In §5, we turn to residue classes modulo k. In particular, following
Caro [5] and Caro, Krasikov and Roditty [6], for a graph G without
isolated vertices, we define fk(G) to be the maximum order of an in-
duced subgraph of G with all degrees congruent to 1 modulo k. We
give a lower bound on fk(G) in terms of the chromatic number of G,
and prove that every connected claw-free graph G of order n satis-
fies fk(G) ≥ (1 + o(1))

√
n/12. This improves upon a result of Caro

[5], who gave a lower bound of c(n log n)1/3. Best possible bounds for
fk(T ), where T is a tree, are given by Berman, Radcliffe, Scott, Wang
and Wargo [2].

Finally, in §6, we consider some open questions.

2. Partitions into induced subgraphs

Under what conditions does a graph G have a vertex partition into
sets inducing subgraphs with all degrees odd? Given a graph G, we
say that a partition V1, . . . , Vk of V (G) is a good partition of G if G[Vi]
has all degrees odd for i = 1, . . . , k. Any subgraph with all degrees
odd must have an even number of vertices, so if G has a good parti-
tion then it must have an even number of vertices in each component.
Surprisingly, this trivial condition is also sufficient.

Theorem 1. Let G be a graph. Then G has a good partition if and
only if every component of G has even order.

Proof. If a graph G has a good partition then it is clearly necessary
that every component of G have even order. We prove by induction
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on |G| that if every component of G has even order then G has a good
partition.

If |G| = 2 then the statement is trivial. We suppose that |G| > 2,
that every component of G has even order, and that the inductive
statement is true for graphs of smaller order. We may assume that G
is connected (and thus has even order), or else we could partition every
component of G separately.

If, for every edge xy in G, we have d(x) = 1 or d(y) = 1, then G is
a star: since |G| is even, G must itself have all degrees odd, so we can
take the trivial partition. Otherwise, we may assume that we can find
an edge xy with d(x) > 1 and d(y) > 1. Let G′ = G \ {x, y}.

If G′ is connected, then by the inductive hypothesis we can find some
good partition V1, . . . , Vk of G′, in which case V1, . . . , Vk, {x, y} is a good
partition of G. Also, if any component S of G′ has even order then we
can find a good partition of S, and since G\S is connected we can find
a good partition of G \ S and combine these partitions to give a good
partition of G. Thus we may assume that every component of G′ has
odd order.

Let X1, . . . , Xi be the components of G′ adjacent to x but not to y;
let Y1, . . . , Yj be the components of G′ adjacent to y but not to x; and
let Z1, . . . , Zk be the components of G′ adjacent to both x and y. Since
G has even order, i+ j + k must be even. If k > 0 then let

X = {x} ∪
i⋃

m=1

V (Xm) ∪
k⋃

m=2

V (Zm),

and

Y = {y} ∪
j⋃

m=1

V (Ym).

Exactly one of |X| and |Y | is odd: adding V (Z1) to that set gives a
partition of V (G) into two sets inducing non-empty connected graphs
with even order. Both graphs have a good partition by the inductive
hypothesis, and these can be combined to obtain a good partition for
G. We may therefore assume that k = 0, so that i and j are both even
or both odd.

Now if i and j are both odd, then let

X = {x} ∪
i⋃

m=1

V (Xm),
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and

Y = {y} ∪
j⋃

m=1

V (Ym).

Both G[X] and G[Y ] are connected graphs with even order smaller
than |G|, so both have good partitions, and hence G does as well.

Otherwise, both i and j are even (and i+ j ≥ 2). Let

X = {x, y} ∪
i⋃

m=1

V (Xm),

and

Y = {x, y} ∪
i⋃

m=1

V (Ym).

Let V1, . . . , Vp be a good partition of G[X] and W1, . . . ,Wq be a good
partition of G[Y ]. We may assume that x ∈ V1 and y ∈ W1, and so
y ∈ V1 and x ∈ W1. Then V1 ∪W1, V2, . . . , Vp,W2, . . . ,Wq is a good
partition of G. �

Can we say anything further about the subgraphs induced by the
vertex sets in a good partition? We know from Theorem 1 that if G
is a connected graph of even order, then G has a good partition. We
say that G is a basic odd graph if G is minimal with respect to these
partitions: in other words, G has all degrees odd, and the only good
partition of G is the trivial partition {V (G)}.

It is easy to characterize the basic odd graphs.

Lemma 2. A graph G is a basic odd graph iff it is a tree with all
degrees odd.

Proof. Suppose first that G is a tree with all degrees odd and it has a
good partition into sets V1, . . . , Vk, with k ≥ 2. Let xy be any edge in
G between V1 and V (G) \ V1, and let Gx and Gy be the components of
G with the edge xy removed, where x ∈ V (Gx) and y ∈ V (Gy). Since
every vertex of Gx has odd degree (in G and hence in Gx), except for
x, which has even degree in Gx, we must have |Gx| odd, and similarly
|Gy| odd. However, there are clearly no edges other than xy between
Vi ∩ V (Gx) and Vi ∩ V (Gy) , for i = 1, . . . , k, so V1 ∩ V (Gx), . . . , Vk ∩
V (Gx) must be a good partition of Gx, which is impossible, since |Gx|
is odd.

Now suppose that G is not a tree with all degrees odd. It is enough to
find a partition of V (G) into at least two non-empty sets, each of which
has even order and induces a connected graph, since such a partition
can always be refined to a good partition. If G is not connected then we
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are done. If G does not have all degrees odd then Theorem 1 gives the
required partition. Thus we may assume that G has all degrees odd and
is not a tree. Let H be a spanning tree of G with one edge (from E(G))
added. If H does not have all degrees odd then, by Theorem 1, we can
partition V (H) into sets inducing connected subgraphs of H with all
degrees odd (which thus induce connected subgraphs of G), each of
which must have even order. Otherwise H has all degrees odd. Let C
be the unique cycle in H. Then consider H ′ = (V (H), E(H) \ E(C)),
which also has all degrees odd. This has |C| components, and since all
degrees of H ′ are odd each component has even order. Thus the vertex
sets of the components of H ′ give the required non-trivial partition of
G. �

The following corollary follows immediately from Theorem 1 and
Lemma 2.

Corollary 3. Let G be a graph, and suppose that every component of
G has even order. Then G has a vertex partition such that every vertex
class induces a tree with all degrees odd.

How many sets do we need for a good partition? Let G be a con-
nected graph such that every component has even order. We know
from Theorem 1 that G has a good partition: we ask for bounds in
terms of the order of G. Define

p(G) = min{k : G has a good partition with k sets},

and, for even n,

p(n) = max{p(G) : |G| = n, every component of G has even order}.

We begin with a lower bound on p(n), and prove that

p(n) ≥ (1 + o(1))
√

2n.

Indeed, consider the bipartite graph Bn, with vertex classes V0 = [n](1)

and V1 = [n](2), and edges from {i} to {j, k} iff i ∈ {j, k}. Note that
|Bn| = (1 + o(1))n2/2. If n ≡ 0, 3 mod (4) then |Bn| is even, so by
Theorem 1, we can partition V (Bn) into sets inducing subgraphs with
all degrees odd. However, let S ⊂ V (Bn) be one set in the partition.
If {i} ∈ S and {j} ∈ S, where i 6= j, then we cannnot place {i, j}
into any set in the partition. Thus {1}, . . . , {n} are all in separate
sets, and p(Bn) ≥ n. Since p(n) is clearly increasing in n, we see
p(n) ≥ (1 + o(1))

√
2n.

It does not seem to be obvious how large p(n) is: it is not even
immediately clear that p(n) = o(n), and proving this takes a little
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work. In fact the best upper bound we have proved is only

p(n) ≤ cn(log log n)−1/2.

In order to prove this, it is enough to prove that, for sufficiently large
even n, every graph G of order n with every component of even order
has a set W ⊂ V (G) with |W | ≥ (log log n)1/2 such that G[W ] has all
degrees odd and G \W has a good partition. Successively removing
such sets, we obtain the required partition. A subset W of this form
is found by taking a partition of G into basic odd graphs: if any has
order at least (log log n)1/2 we are done. Otherwise there is some odd
subgraph T that occurs many times. A careful examination of the
edges between the copies of T enables us to find the required set W .
Details were given in [13].

This upper bound is rather weak. We conjecture that the lower
bound is essentially correct, and that p(n) = (1 + o(1))c

√
n for some

constant c.
Let us remark that the bound p(n) ≥ c

√
n contrasts sharply with

Gallai’s result that, for induced subgraphs with all degrees even, two
sets suffice to partition any graph. It is therefore interesting to ask for
conditions under which a graph G has a good partition into fairly few
sets. For instance, what if G is k-connected? For k even, we consider a

generalisation of the graph Bn defined above. Let B
(k)
n be the bipartite

graph with vertex sets V0 = [n](1) and V1 = [n](k), and an edge from

i ∈ V0 to S ∈ V1 iff i ∈ S. Thus Bn = B
(2)
n . Now |B(k)

n | is even

for infinitely many n (for instance, any large power of 2), and B
(k)
n is

k-connected. However, when k is even, as in the case k = 2, any set

S in a good partition of B
(k)
n must have |S ∩ V0| ≤ k − 1, since no

vertex in V1 can have all its neighbours in one set of the partition. We

deduce that p(B
(k)
n ) ≥ n/(k − 1). Since |B(k)

n | ≤ nk, we get a sequence
Gi of k-connected graphs with |Gi| → ∞ and p(Gi) ≥ ck|Gi|1/k, where
ck depends only on k. Perhaps these give an essentially best possible
lower bound.

We can also consider the effects of demanding high minimal degrees:

for any odd integer m, let G
(k)
m,n be the graph obtained by modifying the

construction of B
(k)
n as follows. We replace each vertex v ∈ V1 = [n](k)

by a copy K(v) of Km, and join every vertex of K(v) to all the neighbours

(in B
(k)
n ) of v. It is easily seen that the graph G

(k)
m,n satisfies δ(G

(k)
m,n) ≥

m, κ(G
(k)
m,n) = k, p(G

(k)
m,n) ≥ n/(k − 1) and |G(k)

m,n| < mnk. This gives
us some information about the relationship between minimal degree,
connectivity and the number of sets required for a good partition. For
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instance, given ω(i) → ∞, we can find a sequence of graphs Gi with
|Gi| → ∞, κ(Gi)→∞, δ(Gi) ≥ |Gi|/ω(i) and p(Gi)→∞.

We have not however dealt with the case when δ(G) ≥ c|G|, for some
fixed constant c. In fact, it seems quite possible that if δ(G) ≥ c|G| then
p(G) ≤ k(c), where k(c) depends only on c. Of course, ‘most’ graphs
satisfy this condition, so if this were true then we would expect ‘most’
graphs to have a partition into a very few sets inducing subgraphs with
all degrees odd. We shall return to this in §3.

Finally, we might also try to find good partitions into fairly few sets
by relaxing our conditions on the subgraphs that we want to be induced.
For instance, we might allow them to have just a few degrees even. Let
k be an integer and G be a graph. We define pk(G) to be the minimum
number of sets in a partition of V (G) into sets that induce subgraphs
of G with at most k degrees odd. For n even, we define pk(n) to be the
maximal value of pk(G) for connected graphs G of order n. Is pk(n)
much smaller than p(n)? Consider the graph Bn defined above, and
suppose that we have a partition of V (Bn) into p sets, say W1, . . . ,Wp.
Let si = |Wi ∩ V0|, for i = 1, . . . , p. Now if {a, b} ⊂ Wi, for some i,
then the vertex {a, b} ∈ V1 cannot have odd degree in our partition (it
must either belong to Wi and have degree 2, or else to a different set,
in which case it has degree 0). Since we have a total of at most kp
vertices of even degree in all the subgraphs induced by our partition,
we deduce that

kp ≥
p∑

i=1

(
si
2

)

=

p∑
i=1

s2i
2
− n

2

≥ p

(
n/p

2

)2

− n

2
,

and so p ≥ c(k)n, for some constant c(k). Thus pk(Bn) ≥ c(k)n and so
pk(n) ≥ c(k)

√
n.

3. Covers by induced subgraphs

We now turn from vertex partitions to vertex coverings. For a graph
G without isolated vertices, let t(G) be the smallest integer k such that
G has a vertex cover with k sets inducing subgraphs with all degrees
odd. We define

t(n) = max{t(G) : |G| = n, δ(G) ≥ 1}.
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How large is t(n)? Clearly t(n) ≤ n, as we can always find a vertex
covering by taking for each vertex the subgraph induced by that vertex
and an adjacent vertex. With a little thought it is easy to prove that
t(n) = o(n). However, we can give a more accurate answer.

Theorem 4. There exist a, b > 0 such that

a log n < t(n) < b log2 n (4)

for all n > 1.

Proof. We begin with the upper bound on t(n). Given a graph G,
we define inductively sets V1, . . . , Vk, each inducing a subgraph with
all degrees odd. Let V1 ⊂ V (G) be a set of maximal size inducing
a subgraph of G with all degrees odd. Suppose now we have defined
V1, . . . , Vi. If Wi = V (G)\

⋃i
j=1 Vj is an independent set then put k = i

and finish. Otherwise, choose in each component of Wi a largest set
of vertices that induces a subgraph with all degrees odd, and let the
union be Vi+1. By considering the order of the largest component of
Wi, it is clear from (1) that we finish in at most c log2 n steps, for some
constant c.

We now consider Wk, which is an independent set. If we can show
that for any independent set W ⊂ V (G) there is a set V ′ ⊂ V (G) with
odd degrees in G such that |V ′∩W | > 1

4
|W | then we will be done, since

Wk can then be covered with c′ log n sets inducing subgraphs with all
degrees odd, and hence the whole graph can be covered by c′′log2n such
subsets.

Let X = {x1, . . . , xm} be a minimal set in G \W such that Γ(x1) ∪
· · · ∪ Γ(xm) ⊃ W . For i = 1, . . . ,m, we can find yi ∈ W such that
Γ(yi) ∩ {x1, . . . , xm} = {xi}, or else we could replace X by X \ {xi}.

Suppose m ≥ 1
2
|W |. By Gallai’s theorem there is S ′ ⊂ {x1, . . . , xm}

with |S ′| ≥ m/2 such that G[S ′] has all degrees even. Set V ′ = S ′∪{yi :
xi ∈ S ′}. Then G[V ′] has all degrees odd and |V ′∩W | = |S ′| ≥ |W |/4.

Otherwise, m < 1
2
|W |. Let W ′ = W \ {y1, . . . , ym}, so |W ′| ≥ 1

2
|W |.

Let S ⊂ {x1, . . . , xm} be a random subset, where each xi is chosen
independently with probability 1/2, and let

WS = {v ∈ W ′ : |Γ(v) ∩ S| is odd}.
Then E(|WS|) = |W ′|/2 ≥ |W |/4. Thus, for some S0 ⊂ X, we have
|WS0| ≥ |W |/4. Set

V ′ = S0 ∪WS0 ∪ {yi : xi ∈ S0 and |Γ(xi) ∩ (S0 ∪WS0)| is even}.
Then G[V ′] has all degrees odd and |V ′ ∩W | ≥ |WS0| ≥ 1

4
|W |.

To prove the lower bound, consider the bipartite graph Bn defined
after Theorem 1. If W1, . . . ,Wm is a vertex covering then {j, k} ∈ Wi
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implies that exactly one of {j} and {k} are in Wi. Thus for every {j, k}
there must be some i with exactly one of {j} and {k} in Wi. Therefore
m ≥ c1 log n ≥ c2 log |Bn|, for some c1 and c2. �

We remark that the average size of the sets used in the vertex cover
of G in Theorem 4 is at least cn/ log2 n.

We obtain an alternative proof of Theorem 5 by using Theorem 13
from [12], which asserts that there is c > 0 such that for every graph G
without isolated vertices and every S ⊂ V (G) there is an induced sub-
graph of G with all degrees odd that contains at least c|S|/ log |S| ver-
tices from S. To prove Theorem 5, we cover V (G) with sets S0, S1, . . .
defined inductively as follows. Let V0 = V (G) and apply the theorem

to get S0. At the ith step, let Vi = V (G) \
⋃i−1

j=1 Si, and apply the the-

orem to get Si. Continue until Vi = ∅. This gives a covering of V (G)
with at most c log2 n sets. Note that the longer proof is more general;
furthermore, if the conjecture that f(n) ≥ εn for all n > 1 were true,
then the same proof would give an upper bound of b log n for t(n).

4. Induced subgraphs of random graphs

In this section, we give results on the partitioning and covering
problems for random graphs. We prove that, for almost every graph,
both problems can be solved with very few sets. It was proved in
[12] that almost every graph G ∈ G(n, 1

2
) satisfies f(G) ∼ cn, where

c = 0.7729 · · · . The following result about partitions uses a similar
method.

Theorem 5. Almost every G ∈ G(n, 1
2
), for n even, has a good parti-

tion into three sets.

Proof. Let G ∈ G(n, 1
2
) be a random graph with vertex set V = [n].

For A ⊂ V , let XA be the indicator variable of the event

{G[A] has all degrees odd},
and for x, y ∈ V let Exy be the indicator variable of the event {xy ∈
E(G)}. We define

X =
∑′

XAXBXC ,

where the sum is taken over partitions V = A ∪ B ∪ C into three
nonempty sets A, B, C which have even size and satisfy min(A) <
min(B) < min(C). Thus X > 0 implies p(G) ≤ 3.

We first calculate E(X). Let V = A ∪B ∪C with |A|, |B|, |C| even
and non-zero, and pick a ∈ A, b ∈ B and c ∈ C. We condition on
G[V \ {a, b, c}]. Then, for x ∈ A \ {a}, the parity of dG[A](x) depends
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only on Eax, and the events {Eax : x ∈ A\{a}} are independent. Since
|A| is even, we get

P{G[A] has all degrees odd} = 21−|A|.

Similar statements hold for B and C; thus the probability that G[A],
G[B] and G[C] have all degrees odd is

21−|A|21−|B|21−|C| = 23−n

Now letM(n) denote the number of partitions of [n] into three nonempty
sets with even size. We note that m(n) ∼ 3n−1/8, so

EX ∼ 23−n3n−1/8 =

(
3

2

)n

/3.

We now estimate var(X). We claim that if V = V1 ∪ V2 ∪ V3 =
W1 ∪W2 ∪W3 are two partitions of V into nonempty sets with even
size such that |Vi 4 Wj| > 0 for 1 ≤ i, j ≤ 3, then XV1XV2XV3 and
XW1XW2XW3 are independent.

Indeed, for each i, if |Vi ∩ Wj| > 0 for more than one value of j
then let Ei be the edge set of a spanning tree for Vi, every edge of
which joins vertices from different Wj; otherwise, let Ei be the edge
set of any spanning tree. Similarly, for each j, let E ′j be the edge set
of a spanning tree for Wj, with all edges going between different Vi if

possible. We set E0 =
⋃3

i=1Ei ∪
⋃3

i=1E
′
i, and let H be the spanning

subgraph of G with edge set V (2) \E0. Conditioning on H, we see that
there is exactly one subset EH of E0 such that G[Vi] and G[Wi] have
all degrees odd, for i = 1, 2, 3. Indeed, there are 2|Vi|−1 possibilities
for the degree sequence of H[Vi] modulo 2 (ie the sequence of parities),
and similarly for H[Wi]; thus there are at most

∏
i 2|Vi|−12|Wi|−1 = 22n−6

possibilites for the the parities of the vertices in all the subgraphs H[Vi]
and H[Wj]. Now |E0| = 2n − 6, so if every subset of E0 gives a
different set of parities then there is exactly one subset of E0 giving
the required sequence of parities. If there are two such subsets then
their symmetric difference, say E∗, is a nonempty subset of E0 such
that restricting to any Vi or Wj gives a graph with all degrees even;
this is clearly not possible, by definition of E0 (indeed, if Ei has only
edges in a single Wj, then no edges in E ′j lie inside Vi ∩Wj, so since
E∗ restricted to Vi is the edge set of a graph with all degrees even
we deduce that E∗ contains no edges from Ei; arguing similarly for
E ′j, we may assume that E∗ contains no edges that lie inside Vi ∩Wj

for any i, j; considering each Vi and Wj separately, since E∗ restricted
to each of these sets is a forest, we deduce that E∗ must be empty).
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Thus P(XV1XV2XV3XW1XW2XW3 = 1) = 26−2n, and so XV1XV2XV3 and
XW1XW2XW3 are independent.

Therefore, writing XV for XV1XV2XV3 and XW for XW1XW2XW3 ,

var(X) = E

(∑
V

XV

)2

−

(
E
∑
V

XV

)2

≤ EX +
∑′′

XVXW ,

where the sum is over pairs of partitions with one set in common, and
the inequality follows since X2

V = XV and XV and XW are independent
if V and W do not share a set. Now the number of pairs of partitions
with a set of size k in common is at most(

n

k

)
(2n−k)2,

and, for such a pair (V ,W),

P(XVXW = 1) = 21−k(21−(n−k))2 = 4 · 2−k22(k−n),

since, if V1 = W1, but Vi 6= Wj otherwise, then XV2XV3 and XW2XW3

are independent (consider appropriate spanning trees, as above). Thus

var(X) ≤
∑

k even

(
n

k

)
(2n−k)2 · 4 · 2−k22(k−n) + E(X)

= 4
∑

k even

(
n

k

)
2−k + E(X)

≤ 4

(
3

2

)n

+ E(X)

= o(E(X)2),

and so, by Chebyshev’s inequality, P(X = 0)→ 0 as n→∞. �

It follows immediately from Theorem 6 that almost every graph G ∈
G(n, 1

2
), for n even, satisfies p(G) = 2 or p(G) = 3. Let X(G) be

the number of good partitions of G into two sets. An easy calculation
gives EX = 1 and E(X2) = 2 − 22−n. The Chebyshev inequality
does not tell us anything here, so we use a slightly more specific sieve
inequality: Theorem I.16 from [4] asserts that a non-negative integer-
valued random variable Y with E(Y ) ≤ E(Y 2) ≤ 2E(Y ) ≤ 2 satisfies

P(Y = 0) ≤ 1− (3E(Y )− E(Y 2))/2.
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Since X satisfies the required inequalities, it follows that P(X = 0) ≤
1
2

+ o(1). It would be interesting to know the probability that a graph

G ∈ G(n, 1
2
) satisfies p(G) = 2.

Problem 6. For a random graph G ∈ G(n, 1
2
), where n is even, what

is P(p(G) = 2)?

Let us remark that if we impose only a slightly weaker condition on
our graphs, then we can almost always find a partition into two sets.

Theorem 7. For odd n, almost every G ∈ G(n, 1
2
) has a vertex parti-

tion V (G) = V1 ∪ V2 such that G[V1] has all degrees odd and G[V2] has
exactly one vertex with even degree.

Proof. (Sketch.) Let X(G) denote the number of vertex partitions
of this type. Then an easy calculation shows that E(X) ∼ n

2
, and

var(X) ∼ E(X) = o(E(X)2), since the events that given partitions
work are pairwise independent. The result follows by Chebyshev’s in-
equality. �

Finally, we remark that for the covering problem, Theorem 6 gives
t(G) ≤ 3 for almost every G ∈ G(n, 1

2
). We conjecture that t(G) = 2

for almost every graph.

5. Residues modulo k

We now turn to the consideration of residues modulo k rather than
modulo 2. This problem was considered by Caro Krasikov and Roditty
[6], Caro [5] and Berman, Radcliffe, Scott, Wang and Wargo [2]. We
define fk(G) to be the maximum order of an induced subgraph of G
with all degrees congruent to 1 modulo k and

fk(n) = min{fk(G) : δ(G) ≥ 1 and |G| = n}.
Thus the conjecture concerning odd subgraphs asserts that there is
some constant c > 0 such that f2(n) ≥ cn for all n ≥ 2. Perhaps
fk(n) ≥ ckn for all n, where ck is a constant dependent only on k. If
this were so, then we would have ck ≤ 1/k for all k, as can be seen by
considering Kk,k.

We begin by giving a bound on fk(G) when G is bipartite.

Lemma 8. Let k ≥ 2 be an integer. There exists c(k) > 0 such that for
every bipartite graph G with δ(G) ≥ 1 there is a set W ⊂ V (G) such
that |W | ≥ c(k)|G| and G[W ] has all degrees congruent to 1 modulo k.

Proof. Let c(k) = 1/(2k+k+1). LetG be a bipartite graph on n vertices
with vertex classes V1 and V2, where |V1| ≥ |V2|, and δ(G) ≥ 1. Let
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W1 = {w1, . . . , wp} ⊂ V2 be a minimal set such that |Γ(v) ∩W1| > 0
for all v ∈ V1. For each wi ∈ W1 we can find vi ∈ V1 such that
Γ(vi) ∩ W1 = {wi}. Let S1 = {v1, . . . , vp}. Then |S1| = |W1|, and
G[S1 ∪W1] is a matching and so has all degrees equal to 1. Therefore,
if |W1| > c(k)n/2 we are done.

Otherwise, we define inductively sets S2, . . . , Sk−1 and W2, . . . ,Wk−1.
Suppose we have defined S1, . . . , Si−1 and W1, . . . ,Wi−1. Let Wi be a
minimal subset of Wi−1 such that |Γ(v)∩Wi| > 0 for all v ∈ V1\

⋃i−1
j=1 Sj.

We can, as before, find Si ⊂ V1 \
⋃i−1

j=1 Sj such that |Si| = |Wi| and

G[Si ∪Wi] is a matching.

Let T = V1 \
⋃k−1

i=1 Si. Then

|T | = |V2| −
k−1∑
i=1

|Si|

= |V2| −
k−1∑
i=1

|Wi|

≥ |V2| − (k − 1)|W1|

≥
(

1− (k − 1)c(k)

2

)
n.

Now let U be a random subset of Wk−1, where each w ∈ Wk−1 is
chosen independently with probability 1/2. Let

TU = {t ∈ T : |Γ(t) ∩ U | ≡ 1 mod k}.
For t ∈ T , we have P(t ∈ TU) ≥ 21−k (if |Wk−1| ≤ k this is clear; other-
wise, run through the vertices one at a time: there is some assignment
of the last k that puts t ∈ U), so E(|TU |) ≥ 21−k|T |. Thus, for some
U0 ⊂ Wk−1, we get |TU0| ≥ 21−k|T |. Now consider the graph H induced

by U0 ∪ TU0 ∪ S, where S is chosen from
⋃k−1

i=1 Si so that each w ∈ U0

has dH(w) ≡ 1 mod k. Then

|H| ≥ 21−k|T | ≥ 21−k
(

1− (k − 1)c(k)

2

)
n = c(k)n.

�

It would be interesting to know the best possible constant c(k) in
Lemma 8. Our best upper bound for c(k) is 1/k, as noted above. A
more careful version of the argument above yields c(k) with 1/c(k) =
O(k2 log k); an important step here is bounding P(t ∈ TU) from below,
which can be done using arguments from [9]. However, it seems more
likely that 1/c(k) is O(k).
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As a consequence of Lemma 8, we get a bound on fk(G) in terms of
χ(G).

Theorem 9. Let k ≥ 2 be an integer. There exists a constant c(k) > 0
such that, for every graph G without isolated vertices,

fk(G) ≥ 2c(k)|G|/χ(G).

Proof. By Corollary 4 from [12], there exists an induced bipartite sub-
graph H of G with |H| ≥ 2|G|/χ(G) and δ(H) ≥ 1. The result then
follows from Lemma 8. �

What conditions (other than low chromatic number) can we put on
G to ensure that fk(G) is large? We say that a graph G is claw-free
if it contains no induced copy of K1,3. Caro [5] proved that if G is a
claw-free, connected graph on n vertices then

fk(G) ≥ ck(n log n)1/3,

where ck depends only on k. We give an improvement on this.

Theorem 10. Let k ≥ 2 be a fixed integer. Let G be a claw-free graph
without isolated vertices with order n. Then

fk(G) ≥ (1 + o(1))
√
n/12.

Proof. Let G be a claw-free of order n without isolated vertices. We
shall prove that, for any ε > 0, we have fk(G) ≥ (1 − ε)

√
n/12, for

large enough n.
Let c =

√
4/27 − (ε

√
3). Let I be an independent set of maximal

size in G. Since G has no isolated vertices, |Γ(x) ∩ I| ≤ 2 for x 6∈ I
(because G is claw-free) and so |I| ≤ 2n/3. Let W = V (G) \ I, so
|W | ≥ n/3.

If ind(G[W ]) ≥ c
√
n then let I ′ be an independent set in G[W ] and

consider the bipartite graph induced by S = I ′ ∪ {v ∈ I : |Γ(v) ∩ I ′| >
0}. Since G[S] is claw-free, bipartite and has no isolated vertices, it
must consist of paths and even cycles, and |S| ≥ 3|I ′|/2 ≥ 3c

√
n/2. It

is easily verified that fk(Pm) ≥ m/2 and fk(C2m) ≥ m for all m, so

fk(G) ≥ fk(G[S]) ≥ |S|/2 ≥ 3c
√
n/4 > (1− ε)

√
n/12.

Thus we may assume that ind(G[W ]) < c
√
n. For S ⊂ V (G) and

v ∈ S, we write dS(v) = dG[S](v) = |Γ(v)∩ S|. Suppose first that there

is some v ∈ W with dW (v) <
√

3n/4. We define vertices v1, . . . , vk as

follows. Let v1 = v, where dW (v) <
√

3n/4. Now suppose we have

defined v1, . . . , vi. Let Wi = W \ (
⋃i

j=1 Γ(vj) ∪ {vj}). If there exists

v ∈ Wi such that dWi
(v) <

√
3n/4, then set vi+1 = v. Otherwise, let

k = i and we are finished.
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Now v1, . . . , vk is an independent set in G[W ], so k < c
√
n. Therefore

|Wk| >
n

3
− c
√
n(

√
3n

4
+ 1) =

ε
√

3

2
n+O(

√
n),

and δ(G[Wk]) ≥
√

3n/4. Let H = G[Wk], so |H| > (1 + o(1))(ε
√

3/2)n

and δ(H) ≥
√

3n/4. Suppose that there is xy ∈ E(H) with

|ΓH(x) ∩ ΓH(y)| < 2

3
max{dH(x), dH(y)},

say |ΓH(x) ∩ ΓH(y)| < 2
3
dH(x). Then let X = Γ(x) \ (Γ(y) ∪ {y}).

Since H is claw-free, H[X ∪{x}] must be complete, since if x1, x2 ∈ X
and x1x2 6∈ E(H), then H[{x, x1, x2, y}] = K1,3. But |X ∪ {x}| ≥
dH(x)/3 ≥

√
n/12. Deleting at most k − 1 vertices from X, we get a

complete graph with all degrees congruent to 1 modulo k, with order
at least

√
n/12− (k − 1) > (1− ε)

√
n/12, for large n.

Otherwise, we may suppose that δ(H) > 2 and

(2) |ΓH(x) ∩ ΓH(y)| ≥ 2

3
max{dH(x), dH(y)}

for every xy ∈ E(H). Therefore, as in the proof of Lemma 8 in [12],
we have ∆(H) ≥ 1

2
|H| (suppose x has degree ∆ = ∆(H): then, using

(2), we see that d(y, x) ≤ 2 for every y ∈ V (H), every v ∈ Γ(x) has
at least 2∆/3 neighbours in Γ(x), every y 6∈ {x} ∪ Γ(x) has more than
∆/3 neighbours in Γ(x), and hence that if ∆ < |H|/2 then some vertex
in Γ(x) has degree more than ∆). Let x ∈ V (H) be a vertex of degree
∆(H) and let Y = ΓH(x). Then, since H is claw-free, Y does not
contain three independent vertices. Therefore, by the result of Ajtai,
Komlós and Szemerédi [1] that every triangle-free graph of order n has
an independent set of size at least c(n log n)1/2, we deduce that

cl(G[Y ]) ≥ c(|Y | log |Y |)1/2

= c

(
|H|
2

log(
|H|
2

)

)1/2

≥ (1 + o(1))c

(
ε
√

3

4
n log(

ε
√

3

4
n)

)1/2

= ω(n)
√
n

where ω(n) → ∞ as n → ∞. Thus fk(G) ≥ ω(n)
√
n − (k − 1) >

(1− ε)
√
n/12, for large n. �
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It seems likely that this bound is too low, and we conjecture that
every claw-free graph G without isolated vertices satisfies fk(G) ≥
ck|G|, where ck is a constant depending only on k.

6. Open problems

There are many interesting open questions concerning induced sub-
graphs with all degrees odd. The main problem is the conjecture that
f(n) ≥ cn for some positive constant c. If this were true then c would
be at most 2/7, which can be seen from an example of Caro: consider
the graph with vertex set Z7, and edges between i and i ± 1, i ± 2
(mod7), for i = 0, . . . , 6.

There are various ways of ensuring that f(G) is large. It was con-
jectured in [12] that f(G) ≥ |G|/χ(G), and proved that f(G) ≥
|G|/2χ(G); it was shown that it would be enough to prove this for
bipartite graphs. It would be interesting to find other conditions under
which f(G) is large: for instance, can we prove f(G) ≥ c|G| when G is
triangle-free?

It would also be interesting to narrow the gap between the upper and
lower bounds for p(n) and t(n). As remarked in §2, the upper bound
for p(n) given in Theorem 4 is fairly weak, and it should be possible
to improve it. Indeed, we expect that p(n) = (1 + o(1))c

√
n; perhaps

this could be proved for the special case of bipartite graphs. It would
also be interesting to know, for G ∈ G(n, 1/2), the probability that G
satisfies p(G) = 2.

All these questions can be asked again modulo k. We proved above
(Theorem 10) that fk(n) ≥ (1 + o(1))

√
n/12 for claw-free graphs; it

should be possible to improve this result. Perhaps fk(n) ≥ ckn for
some constant c and all n ≥ 2. However, it would also be interesting
to find sufficient conditions for this to hold.

Caro, Krasikov and Roditty [7] asked whether, for every integer k,
there is a constant c(k) such that every graph has a vertex partition into
c(k) sets, each of which induces a subgraph with all degrees divisible
by k. It should be possible to prove a partition result of this type for
random graphs: for k > 1 and i ≤ k, there exists c(k) such that almost
every G ∈ G(n, p) has a vertex partition into c(k) classes such that the
degrees in each class are congruent to i mod k.

Finally, it would be interesting to prove results about induced sub-
graphs with many edges rather than many vertices. Given a graph with
m edges, can we find an induced subgraph of with all degrees odd and
at least cm edges? How many induced subgraphs with all degrees odd
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do we need to cover the edges of the graph? These questions are also
open for induced subgraphs with all degrees even.
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