
Perfect shuffling with fewer lazy transpositions

Carla Groenland* Tom Johnston�

Jamie Radcliffe� Alex Scott�§

August 13, 2022

Abstract

A lazy transposition (a, b, p) is the random permutation that equals
the identity with probability 1 − p and the transposition (a, b) ∈ Sn
with probability p. How long must a sequence of independent lazy
transpositions be if their composition is uniformly distributed? It is
known that there are sequences of length

(
n
2

)
, but are there shorter

sequences? This was raised by Fitzsimons in 2011, and independently
by Angel and Holroyd in 2018. We answer this question negatively by
giving a construction of length 2

3

(
n
2

)
+ O(n log n), and consider some

related questions.

1 Introduction

Let Sn be the symmetric group on n elements, and write (a, b) ∈ Sn for the
transposition that swaps a and b, and 1 ∈ Sn for the identity permutation.
A lazy transposition T = (a, b, p) is the random permutation

T =

{
(a, b) with probability p,

1 otherwise.

*Utrecht University, Utrecht, The Netherlands, c.e.groenland@uu.nl. Partially sup-
ported by the ERC Horizon 2020 project CRACKNP (grant no. 853234).

�School of Mathematics, University of Bristol, Bristol, BS8 1UG, UK and Heilbronn
Institute for Mathematical Research, Bristol, UK, tom.johnston@bristol.ac.uk.

�University of Nebraska-Lincoln, USA,jamie.radcliffe@unl.edu.
§Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK,

scott@maths.ox.ac.uk. Supported by EPSRC grant EP/V007327/1.

1

mailto:c.e.groenland@uu.nl
mailto:tom.johnston@bristol.ac.uk
mailto:jamie.radcliffe@unl.edu
mailto:scott@maths.ox.ac.uk


The composition of a sequence of lazy transpositions is also a random per-
mutation, and we will be interested in sequences which generate a uniformly
random permutation. Let U(n) denote the minimum length ` for which
there exists a sequence of independent lazy transpositions T1, . . . , T` such
that T1 · · ·T` ∼ Uniform(Sn), the uniform distribution over Sn. We will call
such a sequence a transposition shuffle. These were first discussed on Stack
Exchange in 2011 [3], before being investigated in more depth by Angel and
Holroyd in 2018 [1]. Both give constructions using

(
n
2

)
lazy transpositions

and ask if this is best possible.

Problem 1 (Fitzsimons [3], Angel and Holroyd [1]). Does U(n) =
(
n
2

)
for

all n?

The main result of this paper is a new construction for shuffling with lazy
transpositions which improves the constant in the upper bound of U(n) and
answers Problem 1 in the negative.

Theorem 2. There exists an ε > 0 such that U(n) ≤ (1−ε)
(
n
2

)
for all n ≥ 6.

Moreover,

U(n) ≤ 2

3

(
n

2

)
+O(n log n).

It will often be convenient to think of transpositions as moving n distin-
guishable “counters” across n “positions” which we label 1, . . . , n. A trans-
position (a, b) acts by switching the counters currently in positions a and b,
so a lazy transposition (a, b, p) switches the counters currently in positions a
and b with probability p, and does nothing with probability 1 − p. In this
language a transposition shuffle is a sequence of independent lazy transposi-
tions such that the final order of the counters is uniformly distributed over
all n! orders.

Transposition shuffles are a special case of the more general problem of
shuffling t counters across n positions. We start with counters in positions
1, . . . , t, and leave the other positions empty. A transposition (a, b) switches
any counters in positions a and b (which may include switching a counter with
an empty space). A sequence of lazy transpositions naturally defines a ran-
dom variable by the positions of the counters at the end of sequence, and we
can again ask that this be uniformly distributed over all t!

(
n
t

)
options. If the

output is uniformly distributed, we say the sequence achieves t-uniformity on
n points and call the sequence a (t, n)-shuffle (so a transposition shuffle is an
(n, n)-shuffle). Let Ut(n) denote the minimum number of lazy transpositions
in a (t, n)-shuffle. The special case of shuffling all elements is Un(n) = U(n).
The constructions in Section 2 give an upper bound Ut(n) ≤ tn−

(
t+1
2

)
and,

in light of Problem 1, it is natural to ask the following.

2



Problem 3. Does Ut(n) = tn−
(
t+1
2

)
?

When t = n, this is equivalent to Problem 1, and Theorem 2 shows that
the bound can be improved by a constant factor. But what about other
values of t? The constructions used in the proof of Theorem 2 give (3, n)-
and (4, n)-shuffles which beat the upper bound by a constant factor, and we
obtain the following theorem.

Theorem 4. There exists a constant ε > 0 such that

Ut(n) ≤ (1− ε)
(
tn−

(
t+ 1

2

))
for all 3 ≤ t ≤ n and n ≥ 6. Moreover, for a fixed t = 3`+ r, we have

Ut(n) ≤ (2`+ r)n+O`(log n).

We remark that it is important that the output permutation is exactly
uniform; it was shown by Czumaj [2] that there are sequences of lazy trans-
positions of length O(n log n) which are very close to uniform.

Theorem 5 (Czumaj [2]). Let c be an arbitrary constant. There is a sequence
of O(n log n) independent lazy transpositions T1, . . . , T`, all with probability
1/2, such that the total variation distance between the distribution of T1 · · ·T`
and Uniform(Sn) is O(n−c).

It is not hard to see that any transposition shuffle must have length
Ω(n log n). Indeed, suppose T1, . . . , T` is a transposition shuffle, so that the
composition T1 · · ·T` is uniformly distributed over Sn and supported on n!
permutations. Each lazy transposition can at most double the size of the
support, and so T1 · · ·T` is supported on at most 2` permutations. Hence,
` ≥ log2(n!) = Θ(n log n). Despite the fact that this argument relies only on
reaching every state with positive probability, it gives the best known lower
bound for the length of a transposition shuffle.

It is also interesting to consider transposition shuffles in which the trans-
positions are restricted to a special set. Angel and Holroyd [1] studied the
problem of constructing transposition shuffles when all transpositions are of
the form (i, i + 1), and they classified the minimum transposition shuffles
using reduced words. It is easy to see that any transposition shuffle using
transpositions of the form (i, i + 1) requires

(
n
2

)
transpositions just to give

positive probability to the reverse permutation, and they showed that trans-
position shuffles of this length can indeed be achieved.

Here, we consider the problem of transposition shuffles which only use
transpositions of the form (1, ·), which we call star transpositions (as they

3



match the edges of a star graph). This case is similar to the set-up of Problem
1: a minimum star transposition shuffle must use Θ(U(n)) transpositions. In-
deed, by replacing the general transposition (i, j, p) by the star transpositions
(1, i, 1), (1, j, p), (1, i, 1), any transposition shuffle can easily be converted to
one using star transpositions with only triple the number of transpositions.
In particular, showing that the minimum number of transpositions in this
highly restrictive model is Ω(n2) would show that the general case is Ω(n2)
as well.

One might hope that the analogue of Problem 1 is true when restricted
to star transpositions: if all transpositions are of the form (1, ·), does every
transposition shuffle have at least

(
n
2

)
transpositions? The following theorem

shows that this is unfortunately not the case.

Theorem 6. Let t = 4`+ r for some 0 ≤ r < 3. Let Ũt(n) be the minimum
length of a (t, n)-shuffle in which every transposition is a star transposition.
Then

Ũt(n) ≤
(

7`

2
+ r

)
n+O`(log n).

Moreover,

Ũ(n) ≤ 7

8

(
n

2

)
+O(n log n).

The rest of the paper is organised as follows. In Section 2 we recall some
existing constructions which achieve the trivial bound and will be useful
throughout the rest of the paper. We give our new construction (Construc-
tion A) in Section 3 and deduce Theorem 2 and Theorem 4. In Section 4 we
study star transpositions, showing that the answer to Problem 1 is negative
even in this special case (Theorem 6). We finish with some open problems
in Section 5.

2 Preliminaries

In this section we give simple “sweeping” and “divide and conquer” construc-
tions for (t, n)-shuffles, all of which give upper bounds of Ut(n) ≤ tn−

(
t+1
2

)
.

Combining these constructions gives the following lemma mentioned by An-
gel and Holroyd [1] which we prove at the end of this section.

Lemma 7 ([1]). Suppose that U(n0) ≤ (1− ε)
(
n0

2

)
. Then there exists δ > 0

such that

U(n) ≤ (1− δ)
(
n

2

)

4



for all n ≥ n0. Explicitly, we may take

δ =
n0 − 1

4n0

ε.

We start by giving a simple sweeping construction which extends a (t, n−
1)-shuffle to a (t, n)-shuffle by adding t transpositions. Note that there are
other variations of the sweeping construction, and the variation here was
chosen as all transpositions are star transpositions (provided an appropriate
(t, n− 1)-shuffle is chosen).

Lemma 8 ([1, 3]). Let n ≥ t+ 1. Then

Ut(n) ≤ Ut(n− 1) + t.

Sketch proof. The following gives a (t, n)-shuffle.

1. Start with the transpositions (1, 2, 1/2), (1, 3, 1/3), . . . , (1, t, 1/t) and
the transposition (1, n, t/n).

2. Append a (t, n− 1)-shuffle.

Clearly, shuffling n− 1 counters over n positions is the same as shuffling
all n counters, so this construction gives the bound

U(n) = Un−1(n) ≤ n− 1 + Un−1(n− 1). (1)

This alone can be used to show U(n) ≤
(
n
2

)
, and starting with any such

(t, t)-shuffle gives the trivial upper bound

Ut(n) ≤
(
t

2

)
+ t(n− t) = tn−

(
t+ 1

2

)
. (2)

As well as a sweeping construction which introduces extra positions, there
is a simple divide and conquer construction which introduces extra counters.
Substituting in the trivial bound (2) for Ut−m(n − m) and Um(n) in this
construction, gives the trivial bound for Ut(n).

Lemma 9. Let 0 ≤ m ≤ t. Then

Ut(n) ≤ Ut−m(n−m) + Um(n)

Sketch proof. The following gives a (t, n)-shuffle.

1. Shuffle the counters in positions m+ 1, . . . , t across the positions m+
1, . . . , n.

5



2. Shuffle the counters in positions 1, . . . ,m across all n positions 1, . . . , n.

The last construction in this section is another divide and conquer ap-
proach which gives the bound Ut(n) ≤ 2U(t) + t + Ut(n − t). In particular,
combining this with Lemma 9, gives the upper bound

U(n) ≤ 2U(t) + 2U(n− t) + t. (3)

Lemma 10 ([1, 3]). Let t ≤ n/2. Then

Ut(n) ≤ 2U(t) + t+ Ut(n− t).

Sketch proof. We give a construction with 3 stages.

1. Uniformly shuffle the counters in positions 1, . . . , t.

2. Append the transpositions (1, t+ 1, p1), . . . , (t, 2t, pt) where the proba-
bilities p1, . . . , pt are chosen such that

t∏
i=1

(1 + pix) =
t∑
i=0

(
n−t
i

)(
t
t−i

)(
n
t

) (1 + x)i. (4)

Such probabilities were shown to exist by Hui and Park [5].

3. Uniformly shuffle the positions 1, . . . , t and, separately, uniformly shuf-
fle the positions t+ 1, . . . , 2t into t+ 1, . . . , n.

Using these constructions we now prove Lemma 7.

Proof of Lemma 7. Let n = 2an0 + b where a, b ∈ N and 0 ≤ b < 2an0. Start
with an (n0, n0)-shuffle using U(n0) ≤ (1 − ε)

(
n0

2

)
transpositions and apply

(3) to see that

U(2n0) ≤ 4U(n0) + n0 ≤
(

2n0

2

)
− 4ε

(
n0

2

)
.

Applying (3) a further a− 1 times, we find

U(2an0) ≤
(

2an0

2

)
− 4aε

(
n0

2

)
.

6



Next, apply Lemma 8, the sweeping construction, a total of b times to
get an (n, n)-transposition shuffle using at most(

n

2

)
− 4aε

(
n0

2

)
=

(
1− 4aεn0(n0 − 1)

n(n− 1)

)(
n

2

)
transpositions. For a fixed value of a, the worst constant is obtained when
b = 2an0 − 1 and substituting in n = 2a+1n0 − 1 gives

U(n) ≤
(

1− 4aεn0(n0 − 1)

(2a+1n0 − 1)(2a+1n0 − 2)

)(
n

2

)
.

The result now follows since

4an0(n0 − 1)

(2a+1n0 − 1)(2a+1n0 − 2)
≥ n0 − 1

4n0

for all n0 ≥ 1.

We remark that we have not tried to optimise the constant δ in this
lemma and it may be possible to improve it by combining the constructions
above in a better way. However, any bound from such a lemma will always
be quite crude as it only takes into account a single improved construction
for a single value of n0.

3 A new divide and conquer construction

We start by outlining and verifying a divide and conquer strategy which
produces a (t,mk)-shuffle by splitting the n positions into m groups of k
positions each (where k ≥ t). As in the previous constructions, it does not
specify every transposition and instead focuses on the conditions which need
to be satisfied at the end of each stage. The main results in this paper all
follow from filling in this general construction or slight variations of it, and
then combining the efficient shuffles with the constructions in Section 2.

Construction A is similar to the construction used in the proof of Lemma
10, particularly when m = 2 and t = k. In this case, the main difference is
the introduction of a fourth stage which shuffles counters between the groups.
This final stage allows us to relax condition (4) in the previous construction.
If W is the number of counters that move between the two groups, then
condition (4) is equivalent to

P(W = w) =

(
k
w

)(
k

k−w

)(
2k
k

) .

7



Using Construction A, we can replace (4) by the weaker condition

P(W = w) + P(W = k − w) =
2
(
k
w

)(
k

k−w

)(
2k
k

) ,

at the expense of some extra transpositions later on. When k = 3, 5, 6, the
savings from using this weaker condition outweigh the extra transpositions,
and we obtain shuffles which beat the trivial bounds.

Construction A. Let n = mk for two integers m, k ≥ 2 and fix t ≤ k. The
construction consists of four stages.

1. Uniformly shuffle the t counters in positions 1, . . . , t.

2. Perform any sequence of lazy transpositions which satisfies the following
condition. For i ∈ [m], let Wi be the number of counters in positions
(i− 1)k + 1, . . . , ik at the end of the chosen sequence, and let W =
(W1, . . . ,Wm); then∑

σ∈Sm

P
(
W = (wσ(1), . . . , wσ(m))

)
= m!

∏m
i=1

(
k
wi

)(
n
t

) (5)

for every choice of (w1, . . . , wm) with w1 + · · ·+ wm = t.

3. For each i = 1, . . . ,m, uniformly shuffle the counters in positions
(i− 1)k + 1, (i− 1)k + 2, . . . , ik across those same positions, i.e. over
the positions (i− 1)k + 1, (i− 1)k + 2, . . . , ik.

4. For each j = 1, . . . , k, uniformly shuffle the counters in the positions
j, k + j,. . . , (m− 1)k + j across those same positions, i.e. across the
positions j, k + j, . . . , (m− 1)k + j.

We now show that any sequence of transpositions following this construc-
tion gives a valid (t,mk)-shuffle, and we will fill in the necessary stages for
certain choices of t, m and k in the later sections.

Theorem 11. If a sequence T1, . . . , T` of transpositions satisfies the condi-
tions in Construction A, then the sequence forms a (t,mk)-shuffle.

Proof. After stage 1, we may view the counters as indistinguishable. Indeed,
stage 1 defines a uniformly random permutation σ and stages 2, 3 and 4 define
a (random) injective map F from {1, . . . , t} to {1, . . . , n}. The probability
that the counters end in the ordered positions (v1, . . . , vt) is given by∑

f :Im(f)={v1,...,vt}

P(F = f)P(f−1(vi) = σ(i) for all i),

8



and P(f−1(vi) = σ(i) for all i) = 1/t! as σ is uniformly random. Hence,
the probability only depends on the set {v1, . . . , vt}, and we may view the
counters as indistinguishable.

We now show that every set of positions appears with equal probability.
Denote the random number of counters in positions j, k + j, . . . , (m− 1)k + j

at the start of stage 4 by W̃j, and let W̃ =
(
W̃1, . . . , W̃k

)
. Since the last step

shuffles the counters across j, k + j, . . . , (m− 1)k + j uniformly for every j,
any two patterns which have the same number of counters in the positions
j, k + j, . . . , (m− 1)k + j for every j, occur with equal probability. Hence,
to ensure that every set of positions appears with equal probability we need

P
(
W̃ = (w̃1, . . . , w̃k)

)
=

∏k
i=1

(
m
w̃i

)(
n
t

)
for all w̃ = (w̃1, . . . , w̃k) such that w̃1 + · · ·+ w̃k = t.

By construction, the distribution of W̃ is entirely determined by the po-
sitions of the counters at the end of stage 2. In fact, by our choice of stage
3, it is determined by the vector W = (W1, . . . ,Wn) where Wi is the number
of counters across the positions (i− 1)k + 1, . . . , ik at the end of stage 2.
Further, due to the symmetry of the m sets of positions, the distribution is
determined by the unordered multiset {Wi : i = 1, . . . ,m}. This means, we

can guarantee that W̃ has the correct distribution, and therefore that ev-
ery set of t positions appears with equal probability, provided the unordered
multiset has the correct distribution. That is, we require

pw := P
(
W ∈ {(wσ(1), . . . , wσ(m)) : σ ∈ Sm}

)
(6)

to have the correct value for all w = (w1, . . . , wm) such that w1 + · · ·wm = t.
We claim that this is implied by the condition (5). To do so we calculate

the correct value for pw by considering the case where we have the stronger
condition that

P(W = (w1, . . . , wm)) =

∏m
i=1

(
k
wi

)(
n
t

)
for every w such that w1 + · · · + wm = t. After shuffling the counters in
stage 3, the counters are uniformly distributed over all n positions. Clearly,
applying any lazy transposition to the uniform distribution also gives the
uniform distribution, and the counters are also uniformly distributed at the
end of stage 4. This implies that we should take

pw =
∣∣{(wσ(1), . . . , wσ(m)) : σ ∈ Sn}

∣∣∏m
i=1

(
k
wi

)(
n
t

) ,

and this is equivalent to the condition (5).

9



Figure 1: A (3, 6)-shuffle with just 11 transpositions constructed as in the
proof of Lemma 12.

3.1 Splitting into two groups

Construction A only gives conditions on the output of each stage and it does
not specify the exact transpositions. In this section we consider the case
where m = 2, and give improved bounds on U3(n) and U4(n), from which
efficient Ut(n) shuffles can be found. Construction A can also be applied when
shuffling 5 and 6 counters for small values of k, but the bounds obtained are
worse than combining the efficient U3(n) shuffles with the constructions in
Section 2.

Throughout this section, we will work with sequences of transpositions
which shuffle indistinguishable counters, and we denote the minimum num-
ber of transpositions needed to shuffle t indistinguishable counters over n
positions by Ût(n). This is useful when considering Construction A in the
case where k > t. At the end of stage 2, the positions 1, . . . , k fall into 3 cate-
gories: some positions must contain a counter, some positions cannot contain
a counter and some positions may or may not contain a counter. Since the
counters are made indistinguishable by stage 1, the positions which definitely
must contain are equivalent and we do not need to shuffle the counters in
these positions together. By working with Ût(n) instead of Ut(n), we can
exploit this to save transpositions.

On the other hand, it is easy to create a (t, n)-shuffle from a shuffle which
only shuffles t indistinguishable counters over n positions by first shuffling
the t counters amongst themselves. Hence, we get the bound

Ut(n) ≤ U(t) + Ût(n),

and efficient shuffles for indistinguishable counters immediately lead to effi-
cient shuffles for distinguishable counters.

Lemma 12. If k ≥ 3, then

Û3(2k) ≤ 2k + 2 + Û3(k),

10



Figure 2: A (3, 12)-shuffle using just 25 transpositions constructed as in
Lemma 12.

and if k ≥ 4,

Û4(2k) ≤ 3k + 4 + Û4(k).

Proof. We use Construction A in the case where m = 2 except, since we are
starting with indistinguishable counters, stage 1 is unnecessary and we start
with stage 2. We only give a proof for the case where t = 4 since the case
t = 3 is similar, although slightly easier.

Start stage 2 with the transpositions (1, k + 1, p1) and (2, k + 2, p2). The
condition (5) becomes

P(W2 = w) + P(W2 = t− w) =
2
(
k
w

)(
k

t−w

)(
2k
t

)
for w = 0, 1, 2, and this can be further simplified to

P(W2 = w) =



2
(
k
w

)(
k

t−w

)(
2k
t

) w 6= 2,

(
k
w

)2(
2k
t

) w = 2.

(7)

To compute the values of p1 and p2, we use the approach of Hui and Park
in [5] and consider the generating function E

[
(1 + x)W2

]
. As the sum of

independent Bernoulli random variables we have

E
[
(1 + x)W2

]
= (1 + p1x)(1 + p2x).

11



We may also write

E
[
(1 + x)W2

]
=

2∑
w=0

P(W2 = w)(1 + x)w,

where the probabilities are as given in (7), and we can compare the roots of
these polynomials to find the values of pi. We have

E
[
(1 + x)W2

]
= 1 +

k(5k − 7)

(2k − 1)(2k − 3)
x+

3k(k − 1)

2(2k − 1)(2k − 3)
x2,

which has determinant

k(k − 2)(k2 + 4k − 9)

(2k − 3)2(2k − 1)2
.

This is positive for all k > 2, and hence, the polynomial has 2 roots. If the two
roots are r1 and r2, take p1 = −1/r1 and p2 = −1/r2. Since the polynomial
is clearly positive for all x ≥ −1, both p1 and p2 are valid probabilities.

In stage 3, first shuffle the positions 1 and 2 into the positions 1, 2, 3, 4
using U2(4) = 5 transpositions. Given there are w counters left in the posi-
tions 1, 2, 3, 4, they are in a uniformly random order and in uniformly random
positions. Hence, we can view the positions as containing 4 indistinguishable
counters and shuffle the counters across the positions 1, 2, . . . , k using Û4(k)
transpositions. Shuffle any counters in positions k + 1 and k + 2 across the
positions k + 1, . . . , 2k using U2(k) transpositions.

Finally, we end with the k transpositions (k, k+1, 1/2), . . . , (1, 2k, 1/2) in
stage 4. This shuffles 4 indistinguishable counters across 2k positions using

7 + Û4(k) + U2(k) + k

transpositions, and the bound follows using U2(k) ≤ 2k − 3.

Since Û3(3) = 0, this construction gives a (3,6)-shuffle which uses 11
transpositions and beats the the trivial bound, and this can be used to prove
the first part of Theorem 2. Applying Lemma 9 gives the upper bound
U(6) ≤ 14, and Lemma 7 shows that there is some ε > 0 such that U(n) ≤
(1− ε)

(
n
2

)
for all n ≥ 6.

If we do not worry about the small savings obtained by noting that some
positions with counters are already indistinguishable, we can replace stage 3
with a (t, k)-shuffle and a (bt/2c, k)-shuffle. This gives the simple bounds,

U3(2k) ≤ 2k + 3 + U3(k),

U4(2k) ≤ 3k + 5 + U4(k).

12



Substituting in the trivial bounds for U3(k) and U4(k) gives the following.

U3(2k) ≤ 5k − 3,

U4(2k) ≤ 7k − 5.

Although these bounds can be improved by repeated applications of the con-
struction, they already guarantee a constant-factor improvement whenever n
is even, which is a remarkably weak condition.

Corollary 13. We have

Û3(n) ≤ 2n+ 5 log2(n),

Û4(n) ≤ 3n+ 8 log2(n).

Therefore,

U3(n) ≤ 2n+ 5 log2(n) + 3,

U4(n) ≤ 3n+ 8 log2(n) + 6.

Since we are primarily interested in the asymptotics of Ut(n) as n tends
to infinity, we have not attempted to optimise the lower order terms. In fact,
the bounds are quite weak for small n and start off considerably worse than
the trivial bounds.

Proof. We first prove Û3(n) ≤ 2n+5 log2(n). The bound is true for n ≤ 34 as

2n+ 5 log2(n) ≥ 3n− 9, the trivial upper bound for Û3(n). If n is odd, start
with the transpositions (1, n, 3/n), followed by the transpositions (1, 2, 1/3)
and (1, 3, 1/2). The latter transpositions shuffle the position 1 into positions
1, 2, 3, making the positions again indistinguishable. It is now sufficient to
distribute the three indistinguishable positions 1, 2, 3 over 1, 2, . . . , n−1. Let
k = bn/2c so that n = 2k + x for some 0 ≤ x < 2. Then, by induction,

Û3(n) ≤ 3 + Û3(2k)

≤ 3 + 2k + 2 + Û3(k)

≤ 4k + 5 log2(k) + 5

= 4k + 5 log2(2k)

≤ 2n+ 5 log2(n).

The inequality for Û4(n) is shown in a similar fashion. The bound is true for
n ≤ 64 as 3n+ 8 log2(n) ≥ 4n− 16 and, following the steps for the bound on

Û3(n), we obtain the recurrence

Û4(n) ≤ 4 + Û4(2k) ≤ 8 + 3k + Û4(k),

13



and the result follows.
The second part of the theorem follows immediately from the bound

Ut(n) ≤ U(t) + Ût(n) and the trivial bound U(t) ≤
(
t
2

)
.

We are now armed with the results needed to prove the second part of
Theorem 2, which we do by repeatedly shuffling in 3 counters at a time.

Proof of Theorem 2. The first part of the theorem follows from the case k = 3
in Lemma 12 and results from Section 2.

To prove the second part, we first bound U3`(n). Applying Lemma 9 and
Corollary 13 we find

U3`(n) ≤ U3(n− 3(`− 1)) + U3(`−1)(n)

≤ 2(n− 3(`− 1)) + 5 log2(n) + 3 + U3(`−1)(n).

Solving this recursion relation we find

U3`(n) ≤ 2`n+ 5` log2(n) + 6`− 3`2.

Let ` = bn/3c and write n = 3`+ r where 0 ≤ r < 3. Then

U(n) ≤ Ur(r) + U3`(n)

≤ 1 + 2`n+ 5` log2(n) + 6`− 3`2

≤ n2

3
+

5n log2(n)

3
+ 2n+ 1

=
2

3

(
n

2

)
+O(n log(n)).

The second part of Theorem 4 will be shown in a similar way. We could
prove the first part using the results in this section, but instead we use the
efficient (3, 3k)-shuffle given in the next section. Although the shuffle is less
efficient than the shuffles in this section, it makes the proof marginally easier
as the parity modulo 3 is preserved throughout the proof.

3.2 Splitting into three or more groups

In this section we consider Construction A in the case where m ≥ 3 and give
efficient (3, n)- and (4, n)-shuffles. Although the construction in Lemma 12
leads to more efficient shuffles in general, both of these constructions will
be useful: the efficient (3, 3k)-shuffles given in Lemma 14 will be used in
the proof of Theorem 4, and the efficient (4, 3k)-shuffles given in Lemma 15
will be used in Section 4 to give efficient shuffles consisting entirely of star
transpositions. Examples of the shuffles are given in Figure 3 and Figure 4
respectively.

14



Figure 3: A (3, 15)-shuffle constructed as in the proof of Lemma 14 in the
case m = 3 and k = 5. This uses 37 transpositions, beating the trivial upper
bound of 39.

Lemma 14. Let m, k ≥ 3. Then

U3(mk) ≤ 2k + 3 + U3(k) + kU3(m),

and in particular,
U3(3k) ≤ 5k + 3 + U3(k).

Proof of Lemma 14. We use Construction A in the case where t = 3. Start
by shuffling the 3 counters using 3 transpositions. In stage 2 we use the
transpositions (1, k+1, x) and (2, 2k+1, y). There are only 3 possible options
for the unordered multisets of the Wi, namely {3, 0, . . . , 0}, {2, 1, 0, . . . , 0}
and {1, 1, 1, 0, . . . , 0}. Consider the first case, where w1 = 3 and w2 = · · · =
wm = 0. Then∑

σ∈Sm

P
(
W = (wσ(1), . . . , wσ(m))

)
=
∑
σ∈Sm
σ(1)=1

P(W1 = 3)

= (m− 1)! · P(W1 = 3)

= (m− 1)! · (1− x)(1− y).

The other cases are similar, and the condition (5) becomes the following.

(1− x)(1− y) =
m
(
k
3

)(
mk
3

) , (8)

x(1− y) + (1− x)y =
m(m− 1)

(
k
2

)(
k
1

)(
mk
3

) , (9)

xy =

(
m
3

)
k3(

mk
3

) . (10)

15



This reduces to a quadratic and can be solved explicitly. Since 1 > xy > 0
and 1 > (1− x)(1− y) > 0, we necessarily have 0 < x, y < 1 for any solution
and x and y will be valid choices for a probability. Since both sides sum to
1, one of the conditions is redundant, say (9). Rearranging (10) gives

y =
k2(m− 2)(m− 1)

(km− 2)(km− 1)x
.

Substituting this into (8) and rearranging shows

(km− 1)(km− 2)x2 + k(3km+m− k − 3)x− k2(m− 1)(m− 2) = 0.

The determinant of this quadratic is

(k − 1)k2(m− 1)(5km− k −m− 7)

which is positive for k,m ≥ 3. Hence, there are always two roots and there
is a suitable choice for x. In fact, y satisfies the same equation and will be
the other root.

In stage 3, we use U3(k) transpositions to shuffle the positions 1, 2, 3 across
the positions 1, . . . , k. We use k−1 transpositions to shuffle the position k+1
into the positions k + 1, . . . , 2k and another k − 1 transpositions to shuffle
the position 2k + 1 into 2k + 1, . . . , 3k. Since the counters can only be in
positions 1, . . . , 3k, stage 4 can be completed using k copies of a (3,m)-shuffle.
Explicitly, shuffle i, k + i and 2k + i into i, k + i, . . . , (m − 1)k + i for every
1 ≤ i ≤ k.

We can also use Construction A to construct efficient shuffles when t = 4,
but only in the special case m = 3. When m = 3, there are only four
different unordered multisets for the Wi, namely {4, 0, 0}, {3, 1, 0}, {2, 2, 0}
and {2, 1, 1}. In particular, we avoid the multiset of {1, 1, 1, 1, 0 . . . 0} which
appears to clash with {2, 2, 0, . . . , 0} when using the simplest constructions
for stage 2. We give the details below.

Lemma 15. Let k ≥ 4. Then

U4(3k) ≤ 4k + 8 + U4(k) + U2(k).

Proof. We apply Construction A when t = 4 and m = 3. Start by shuffling
the counters using 6 transpositions, before using the transpositions (1, k +

16



Figure 4: A (4, 12)-shuffle using just 35 transpositions constructed as in the
proof of Lemma 15.

1, x), (2, k + 2, y) and (3, 2k + 1, z). Condition (5) becomes

3
(
k
4

)(
3k
4

) = (1− x)(1− y)(1− z),

6k
(
k
3

)(
3k
4

) = x(1− y)(1− z) + y(1− x)(1− z) + z(1− x)(1− y),

3
(
k
2

)2(
3k
4

) = xy(1− z),

3k2
(
k
2

)(
3k
4

) = x(1− y)z + (1− x)yz + xyz.

which has solutions for k ≥ 4. This can be seen by substituting in the value

z =
19k2 − 11k − k

√
37k2 − 94k + 49

27k2 − 27k + 6

and proceeding as in the proof of Lemma 14.
In stage 4 shuffle the first four positions into the first k positions using

U4(k) transpositions. Then shuffle k + 1 and k + 2 into k + 1, . . . , 2k using
U2(k) transpositions and 2k+1 into 2k+1, . . . , 3k using k−1 transpositions.
Finally, end by shuffling the positions i, k+ i, 2k+ i for every 1 ≤ i ≤ k.

We end this section by proving Theorem 4 using the constructions from
Section 3.1 and Section 2 as well as Lemma 14.

Proof of Theorem 4. We use the simple bound U3(3k) ≤ 8k − 3 for k ≥ 3
which follows from combining the trivial bound U3(k) ≤ 3k− 6 with Lemma

17



14. Lemma 9 gives

U3`(3k) ≤ U3(3k − 3(`− 1)) + U3(`−1)(3k)

≤ 8(k − `+ 1)− 3 + U3(`−1)(3k).

In particular, if we denote U3`(3k) = 9k`−
(
3`+1
2

)
− a`, we get the recursion

relation
a` ≥ (k − `+ 1)− 3 + a`−1,

with the initial condition a1 = k − 3. Hence,

a` ≥
1

2
`(2k − `− 5).

Now let n = 3k + r for 0 ≤ r < 3, let t = 3` + s for 0 ≤ s < 3 and suppose
n ≥ 9. Using Lemma 8 and Lemma 9, we have

Ut(n) ≤ tn−
(
t+ 1

2

)
− 1

2
`(2k − `− 5).

In particular, Ut(n) ≤ (1− δ)
(
tn−

(
t+1
2

))
for all

δ ≤ `(2k − `− 5)

2
(
(3`+ 2)(3k + 2)−

(
3`+2
2

)) .
This is an increasing function of k so the worst case is when k = ` where it
takes the value

(`− 5)`

9`2 + 9`+ 2
.

This is greater than 3/190 for all ` ≥ 6. The cases where ` ≤ 5 follow from
the second part of the theorem. Indeed, the second part of the theorem guar-
antees the existence of a constant δt such that Ut(n) ≤ (1 − δt)

(
tn−

(
t+1
2

))
for large enough n, and we already know that we can beat the bound by an
additive factor for all t ≥ 3 and n ≥ 6.

The second part of the theorem follows almost immediately from the proof
of Theorem 2 where we proved the following bound.

U3`(n) ≤ 2`n+ 5` log2 n+ 6`− 3`2.

If t = 3`+ r for some 0 ≤ r < 2, we have

U3`+r(n) ≤ Ur(n− 3`) + U3`(n)

≤ r(n− 3`)−
(
r + 1

2

)
+ U3`(n)

≤ (2`+ r)n+ 5` log2 n+ (6− 3r)`− 3`2 −
(
r + 1

2

)
= (2`+ r)n+O`(log n).

18



4 Star transposition shuffles

We now consider the problem of generating efficient shuffles which only use
star transpositions. Although star transpositions are much more restrictive,
any transposition shuffle can be converted to a shuffle which only uses star
transpositions by replacing the lazy transposition (a, b, p) with the transposi-
tions (1, a, 1)(1, b, p)(1, a, 1). This means that all the constructions above can
be converted to ones using only star transpositions, but it turns out only the
construction from Lemma 15 leads to an efficient shuffle. All of the efficient
constructions we have given make use of several “subshuffles” which shuffle
certain positions together, and these can be taken to use transpositions of the
form (x, ·) for some suitable value of x. We can “switch” the central position
of the star to position x using the transposition (1, x, 1), use the subshuffle
with x replaced by 1 and then use (1, x, 1) again to switch the central position
back to 1. If we carefully keep track of which positions have been switched,
we can often do better and avoid switching the central position back to 1
the majority of the time. Although the construction in Lemma 15 is not the
most efficient for general transpositions, it uses relatively few “subshuffles”
and we only need to switch the central position relatively few times.

Let Ũt(n) be the minimum number of lazy transpositions in a (t, n)-shuffle
where all transpositions are star transpositions. Lemma 8 shows that the
trivial upper bound of tn−

(
t+1
2

)
holds for Ũt(n), but the following theorem

shows it is again possible to beat the upper bound by a constant factor when
t = 4 and n is large enough. By repeatedly shuffling in 4 counters at a time,
we can construct efficient shuffles for all t ≥ 4.

Lemma 16. For every k ≥ 3, we have

Ũ4(3k) ≤ 5k + 10 + Ũ2(k) + Ũ4(k).

In particular,
Ũ4(3k) ≤ 11k − 3.

Proof. We follow the construction given in the proof of Lemma 15 but with
some additional transpositions which always fire. Start by shuffling the 4
counters using 6 star transpositions. In order to minimise the number of times
we use deterministic transpositions to “switch” the central position, we will
interleave parts of stages 2 and 3. Begin with the transpositions (1, k+ 2, x),
(1, k+1, 1) and (1, 2, y) where x and y are as given in the proof of Lemma 15.
Shuffle the positions 1 and k+2 over the positions 1, k+2, k+3, . . . , 2k using
Ũ2(k) star transpositions. Next, use the transposition (1, 2k + 1, 1) followed
by (1, 3, z) where z is also as in the proof of Lemma 15. Shuffle the position

19



Figure 5: A (4, 12)-shuffle constructed as in the proof of Lemma 16. The red
transpositions indicate the additional transpositions inserted to “switch” the
central position and ensure all transpositions are of the form (1, ·). These fire
with probability 1. Note that for this small value of k, this shuffle is worse
than the trivial upper bound.

1 over 1, 2k + 2, . . . , 3k using k − 1 star transpositions. To finish stages 2
and 3, use the transposition (1, k + 1, 1) to return the centre to its original
position and shuffle the positions 1, 2, 3, 4 over the positions 1, 2, . . . , k. Note
that while the centre is back in its original positions, the positions k+ 1 and
2k + 1 have “swapped”, but this does not matter for stage 4.

Begin stage 4 by shuffling the positions 1, k + 1 and 2k + 1. For each
2 ≤ i ≤ k, use the transposition (1, i, 1) and then the transpositions (1, k+i),
(1, 2k + i) and (1, k + i) to shuffle the positions 1, k + i and 2k + i.

To prove Theorem 6, we can mimic the proofs used for general transposi-
tions for which we only need versions of Lemma 8 and Lemma 9. The former
extends immediately to give

Ũt(n) ≤ t+ Ũt(n− 1),

but the latter does not immediately extend. Instead, we need to add a single
transposition to switch the centre, and we get the bound

Ũt(n) ≤ Ũt−m(n−m) + Ũm(n) + 1.

The proof of Theorem 6 is now very similar to the proofs of Theorem 2 and
Theorem 4 given in the general case, and is omitted.

5 Open problems

While we have given constructions which show that the upper bound for
U(n) can be improved by a constant factor, the new upper bounds are still

20



a long way from the best known lower bound. The biggest open problem
is to determine the correct asymptotic for U(n), and we conjecture that
U(n) = o(n2).

Problem 17. What is the correct asymptotic for U(n)? Is it true that
U(n) = o(n2)?

A natural candidate for the correct asymptotic behaviour is U(n) =
Θ(n log n) and it would already be very interesting to establish that this
is not the case (i.e. to show that U(n) = ω(n log n)).

We also considered constructing transposition shuffles where all trans-
positions are of the form (1, ·). The minimum number of transpositions in
such a shuffle is between U(n) and 3U(n), but the restrictive nature of the
transpositions might make this variant of the problem more tractable.

Problem 18. What is the minimum number of lazy transpositions in a trans-
position shuffle if all transpositions are of the form (1, ·)?

We introduced the study of (t, n)-shuffles and showed that the trivial
upper bound can be improved by a constant factor for all t ≥ 3 and n ≥ 6.
However, we have been unable to find any (2, n)-shuffles using fewer than
2n− 3 transpositions, and in [4] we conjectured that this is optimal:

Conjecture 19. For n ≥ 2, U2(n) = 2n− 3.

We remark that, if this were true, it would match nicely with selection
networks (see [6] for a discussion of selection and sorting networks). As a
first case, it would be interesting to close the gap when restricting to star
transpositions and confirm the conjecture in this case.

References

[1] O. Angel and A. E. Holroyd. Perfect shuffling by lazy swaps. Electronic
Communications in Probability, 23, 2018.

[2] A. Czumaj. Random permutations using switching networks. In Proceed-
ings of the Forty-Seventh Annual ACM Symposium on Theory of Com-
puting, STOC ’15, pages 703–712. Association for Computing Machinery,
2015.

[3] J. Fitzsimons. What is the most efficient way to gener-
ate a random permutation from probabilistic pairwise swaps?
https://cstheory.stackexchange.com/questions/5321/what-is-the-most-
efficient-way-to-generate-a-random-permutation-from-probabilist, 2011.
[Accessed 2020-06-16.].

21



[4] C. Groenland, T. Johnston, J. Radcliffe and A. Scott. Reachability ques-
tions for transposition sequences. In preparation, 2022.

[5] S. Hui and C. Park. The representation of hypergeometric random vari-
ables using independent Bernoulli random variables. Communications in
Statistics-Theory and Methods, 43(19):4103–4108, 2014.

[6] D. E. Knuth. The Art of Computer Programming, volume 3. Pearson
Education, 1997.

A Best known upper bounds

22



n
(
n
2

) Upper
bound

Proportion
of
(
n
2

)
2 1 1 1.000
3 3 3 1.000
4 6 6 1.000
5 10 10 1.000
6 15 14 0.933
7 21 20 0.952
8 28 26 0.929
9 36 33 0.917

10 45 41 0.911
11 55 50 0.909
12 66 58 0.879
13 78 69 0.885
14 91 80 0.879
15 105 91 0.867
16 120 103 0.858
17 136 117 0.860
18 153 130 0.850
19 171 145 0.848
20 190 160 0.842
21 210 176 0.838
22 231 193 0.835
23 253 211 0.834
24 276 227 0.822
25 300 247 0.823
26 325 267 0.822
27 351 286 0.815
28 378 307 0.812
29 406 330 0.813
30 435 351 0.807
31 465 375 0.806
32 496 398 0.802

Table 1: The best known upper bounds for U(n). The upper bound is known
to be correct for n = 2, 3, 4 and computer experiments suggest it holds for
n = 5 as well [1].

23


	Introduction
	Preliminaries
	A new divide and conquer construction
	Splitting into two groups
	Splitting into three or more groups

	Star transposition shuffles
	Open problems
	Best known upper bounds

