
Max Cut for random graphs with a planted

partition

B. Bollobás ∗† A.D. Scott ‡

Abstract

We give an algorithm that, with high probability, recovers a planted
k-partition in a random graph, where edges within vertex classes occur
with probability p and edges between vertex classes occur with prob-
ability r ≥ p + c

√

p log n/n. The algorithm can handle vertex classes
of different sizes and, for fixed k, runs in linear time. We also give
variants of the algorithm for partitioning matrices and hypergraphs.

1 Introduction

Graph problems such as Max Cut, Max k-Cut and Min Bisection are well-
known to be NP-hard (see Garey, Johnson and Stockmeyer [17] and Garey
and Johnson [16]); indeed even approximating Max Cut or Max k-Cut to
within an factor (1 + o(1)) is NP-hard, although the approximation com-
plexity of Min Bisection remains open (see Papadimitriou and Yannakakis
[25], H̊astad [18] and Kann, Khanna, Lagergren and Panconesi [23]). For
random graphs G ∈ G(n, p), on the other hand, it is often easy to find an
approximate solution quickly and with high probability: for instance, the
value of Max Cut is, with high probability, np2/4 + O(n3/2 log n), while the
simple greedy algorithm that, one vertex at a time, puts each vertex into a
class maximizing the number of cross-edges will find a cut of size at least
e(G)/2, which is close to optimal provided p is not too small. (For very
sparse random graphs, the results are a little different: see Coppersmith,

∗Trinity College, Cambridge CB2 1TQ and Department of Mathematical Sciences,

University of Memphis, Memphis TN38152; email: bollobas@msci.memphis.edu
†Research supported in part by NSF grant ITR 0225610 and DARPA grant F33615-

01-C-1900
‡Department of Mathematics, University College London, Gower Street, London

WC1E 6BT; email: scott@math.ucl.ac.uk

1

Gamarnik, Hajiaghayi and Sorkin [11]. For random dense graphs, there is
a polynomial time approximation scheme for Max Cut: see Arora, Karger
and Karpinski [3] and Frieze and Kannan [15].)

It is therefore interesting to consider random graphs with parameters
such that there are likely to be cuts that are significantly larger than the
expected value size of a random cut (for graphs with the same density). Two
models of random graphs have frequently been considered in this context.
A random graph G in the G(n, m, b) model is chosen uniformly at random
from all graphs with n vertices, m edges and maximum cut of size b. A
second model, which we shall consider in this paper, involves choosing a
partition in advance, and then adding edges so that, with high probability,
the chosen partition will be a maximum cut. More precisely, if {Vi}k

i=1

is a partition of V (G), a random graph G with planted k-partition V (G) =
⋃k

i=1 Vi and parameters (p, r) is obtained by taking edges within each class Vi

independently with probability p, and edges between classes independently
with probability r. Thus we expect the planted partition to be a good cut
of G, provided r − p is not too small.

In this paper, we shall consider Max Cut and Max k-Cut for random
graphs with planted partitions, where p and r are chosen so that the planted
partition is almost surely the unique optimal cut; in particular, we will have
p < r. Much of the previous literature is concerned with Min Bisection
for graphs with a planted bipartition, and of course p > r. With minor
modifications, our results and proofs transfer easily to that context.

Random graphs with small bisections were considered by Bui, Chaud-
huri, Leighton and Sipser [8], who showed that, for random d-regular graphs
with minimum bisection size b, an optimal bisection can be found in poly-
nomial time with high probability, provided b = o(n1−1/⌊(d+1)/2⌋). Dyer and
Frieze [12] gave an algorithm that finds an optimal bisection of a random
graph G with m edges in expected polynomial time, provided m = Ω(n2)
and the optimal bisection has size at most (1 − ǫ)m/2. Boppana [6] gave a
polynomial-time algorithm that finds an optimal bisection with probability
1 − O(1/n), provided m = Ω(n log n) and G has a bisection of size at most
m/2 − 5

√
mn log n/2.

We now turn to the planted bisection model with parameters (p, r) (see
Condon and Karp [10] for additional discussion). Jerrum and Sorkin inves-
tigated the performance of the Metropolis algorithm on this model in [20],
proving that if p−r ≥ n−1/6+ǫ then the algorithm finds an optimal bisection
in time O(n3), with probability 1−exp(−nΩ(ǫ)). Juels [21] analyzed a simple
hill-climbing algorithm, and showed that if p−r = Ω(1), then the algorithm
find the planted partition with high probability in time O(n2).

2

A number of authors have worked on finding algorithms that allow p− r
to be as small as possible. Kučera [24] showed that if p−r ≥ c

√

log n/n then
it is possible to partition a small set of vertices in time O(n log n) and then
use this partial partition to find the planted partition with high probability.
Carson and Impagliazzo [9] gave an O(n2) algorithm that finds an optimal
bisection with high probability provided p − r = ω((p log2 n/n)1/2). Bop-
pana [6] also gives a (high-degree) polynomial time algorithm that succeeds
almost surely provided p − r ≥ c

√

p log n/n. Finally, Feige and Kilian [13]
also gave a polynomial-time algorithm that finds an optimal bisection with
high probability provided p − r ≥ c

√

p log n/n; in addition, their algorithm
is robust against an adversary who can add edges inside vertex classes and
delete edges between vertex classes. Note that these algorithms are essen-
tially optimal up to the constant: if p− r = o(

√

p log n/n) then the planted
bisection will not in general be the optimal bisection.

Planted partitions with more than two classes were considered by Con-
don and Karp [10], who showed that, if p − r = Ω(n−1/2+ǫ), a planted
partition with a fixed number of classes of equal size can be recovered in
linear time and with probability 1 − exp(−nΘ(ǫ)). Ben-Dor, Shamir and
Yakhini [5] showed that, with k classes of size Ω(n), it is possible to find
the planted partition in time O(n2/ logc n), provided p − r = Ω(1). Shamir
and Tsur [27] gave an O((k/ log n + 1)n2) time algorithm that with high
probability finds a planted partition with k = O(

√
n/ log n) classes of equal

size, provided p − r ≥ k log n/
√

n, and finds a planted partition where each
vertex class has at least

√
n log n/(p − r)1+ǫ vertices in time O(kn2/ log n),

provided p − r ≥ O(n−1/2+ǫ).
In this paper we address a variety of planted partition problems in which

different classes may have different sizes. We give an algorithm that runs
in time O(km + n), and recovers a planted partition in a graph of order n
with high probability provided p−r ≥ c

√

p log n/n, where c depends on the
minimum density |Vi|/n of vertex classes Vi in the partition. Our algorithm
has several advantages over previous algorithms: it is fast (running in time
O(km+n)) and comparatively simple, and does not require the size of vertex
classes to be specified in advance. The algorithm is also easily adapted to
related problems such as partitioning hypergraphs or Boolean matrices with
planted partitions. We remark that we do not know whether the algorithm
works against an adversary who can add edges between vertex classes and
delete edges within classes. We conjecture that our algorithm is robust
against such an adversary.

The algorithm is, as far as we know, novel in several ways. Previous
algorithms have used a variety of techniques, including random walk meth-

3

ods and using a partition of a subgraph to partition the whole graph. Our
algorithm breaks the graph up into a large number (O(

√
log n)) of separate

pieces, and partitions them in what we hope is a successively more accurate
manner, in each case using the previous partition to guide our partition
of the next piece. In order to maximize our use of information, the algo-
rithm revisits and repartitions each piece on a number of occasions: we use
disjoint collections of edges one each occasion, so these separate visits give
‘independent’ partitions. The algorithm is also ‘self-starting’, in that we do
not need a good partition to get it off the ground, but instead just begin
with a random partition.

Our algorithm, and its variants, are given in section 2. In section 3 we
state some useful lemmas, and then in sections 4 and 5 we prove the cor-
rectness of the main algorithm. For simplicity, we ignore floors and ceilings
throughout, as this has no significant affect on our analysis. It seems likely
that the algorithms will work successfully (with high probability) for a much
larger range of parameters than our analysis covers. Thus the algorithm may
well provide an effective practical heuristic for finding large cuts. As most of
the algorithms are variants or applications of the core algorithms Algorithm
A and B, we give detailed proofs for these two algorithms and state the
remaining results without proof.

Finally, we note briefly that another way of looking at the problem is
that we have a partition of G that we wish to hide. We must have |p − r|
sufficiently large so that the partition is almost surely the unique cut (or k-
cut) of maximum size; however, we also want to choose |p− r| small enough
to make the partition hard to detect. Problems of this type when the con-
cealed structure is a large clique have been considered from an algorithmic
perspective by Feige and Krauthgamer [14] and Alon, Krivelevich and Su-
dakov [1], and from a cryptographic viewpoint by Juels and Peinado [22]; a
similar problem for Hamiltonian cycles was considered by Broder, Frieze and
Shamir [7]. The results below suggest that the pair (p, r) must be chosen
with great care for the hidden partition to be both verifiable and secure, ie
the cut must be large enough to be unlikely in a random graph but small
enough that it does not ‘stand out’. Indeed, it is not clear that such a pair
exists.

2 The algorithm, and its variants

The basic idea of the algorithm is as follows. Suppose for simplicity that
we have a planted partition V (G) = V1 ∪ V2, where V1 and V2 have equal

4

size, with internal edges having probability p and cross-edges having prob-
ability r > p. We choose an integer M and divide V (G) randomly into
sets S1, . . . , SM . Let R1 ∪ B1 be a random partition of S1 into two sets
of equal size. The difference |R1 ∩ V1| − |B1 ∩ V1| has standard devi-
ation Θ(

√

n/M), so we are likely to have an imbalance of size at least
Ω(
√

n/M) between |R1 ∩ V1| and |B1 ∩ V1|. Suppose that this occurs and,
say, |R1 ∩ V1| > |B1 ∩ V1|. Now since p < r, it follows that, for v ∈ V1 ∩ S2,
we have E|Γ(v)∩B1| > E|Γ(v)∩R1|, while the vertices in V2∩S2 satisfy the
opposite inequality. We therefore attempt to use our partition S1 = R1∪B1

to generate a more imbalanced partition R2∪B2 of S2: let R2 be the vertices
in S2 with more neighbours in B1 than R1, and let B2 be the vertices in
S2 with more neighbours in R1. Provided the colour imbalance between R1

and B1 is large enough (and |p− r| is not too small), we should expect this
to create a larger colour imbalance between R2 and B2. Thus (after deleting
some vertices to make sure that |R2| = |B2|) we obtain sets R2, B2 of equal
size and with a greater imbalance than R1 ∪ B1. We now use R2 ∪ B2 to
produce a partition R3 ∪B3 of S3, and so on. At each stage, the imbalance
between colours is amplified until, by the time we reach SM , we expect to
be getting the correct partition at each stage. Finally, we use the partition
of SM to partition V (G)\SM , and combine these last two partitions to give
a partition of V (G).

Needless to say, there are several obstacles to making this work as it
stands: for small ∆ = r − p, we have to allow M to grow with n = |G|, and
so the average size of the Si must be o(n). In order to keep the Si as large as
possible, it is helpful to be able to ‘reuse’ the sets: since the edges between
Si and Sj are independent from the edges between other pairs of sets, we
can treat a given set of vertices as ‘independent’ on each visit. Thus, for
instance, we could use S1 to partition S2, then S2 to partition S3, and then
S3 to give a new partition of S1. We maximize the gain from this by reusing
sets as many times as possible. In addition, although sets Si have size o(n),
we use two sets of size Ω(n) at the end: this reduces the probability of
misplacing vertices in the final stages of the algorithm (our final partition
must have no errors, while we are tolerant of a few errors at earlier stages).

We are now ready to state the first algorithm (for Max Cut). Note that,
in order avoid clutter, we omit floors and ceilings throughout the paper
(thus, for instance, we write n/40

√
log n instead of 2⌊n/80

√
log n⌋), and

tacitly assume that n is sufficiently large for our bounds to make sense.
This does not have any significant effect on the analysis.

Algorithm A (Split(α)).

5

Input: A graph G with n vertices and a parameter α.
Output: A bipartition of V (G).

Step 0. Partition V (G) at random into M = 20
√

log n sets T1, . . . , TM of
size n/40

√
log n and two sets TM+1, TM+2 of size n/4.

Let R1 ∪B1 be a random partition of T1 into two sets of equal size.

Step 1. Let v1, . . . , vL be an Euler circuit of the complete graph KM with
vertex set [M] (or KM without a matching if M is even), and define
Si = Tvi for i = 1, . . . , L. Let SL+1 = TM+1, SL+2 = TM+2 and
SL+3 = V (G) \ SL+2.

Step 2. For i = 1, . . . , L+2, we partition Si+1 into Ri+1 and Bi+1 as follows.

If min{|Ri|, |Bi|} < α|Si|/6 then the algorithm halts and reports
failure. Otherwise, we remove randomly chosen vertices from the

larger class until we obtain sets Q
(i)
1 ⊂ Ri and Q

(i)
2 ⊂ Bi with

|Q(i)
1 | = |Q(i)

2 | = min{|Ri|, |Bi|}.
We place v ∈ Si+1 into Bi+1 if |Γ(v) ∩ Q

(i)
1 | > |Γ(v) ∩ Q

(i)
2 |, into

Ri+1 if |Γ(v) ∩ Q
(i)
2 | > |Γ(v) ∩ Q

(i)
1 |, and otherwise assign v with

equal probability to Bi+1 or Ri+1.

Step 3. Output the partition (RL+2 ∪ RL+3, BL+2 ∪ BL+3).

Note that in Steps 1 and 2, each set Tj occurs repeatedly among the Si

and is therefore visited many times; however, Tj is partitioned independently
at each visit.

When applied to a random graph with a planted k-partition (and suitable
parameters), Algorithm A produces (with high probability) a bipartition in
which each vertex class of the output bipartition entirely contains at least
one colour class from the planted partition. Thus two colour classes from
the planted partition have been correctly assigned (one to each side of the
output bipartition), although other colour classes may have vertices on both
sides of the output bipartition.

We shall usually assume that we have a random graph with n vertices
and planted partition V (G) =

⋃k
i=1 Vi, where |Vi| ≥ cn for every i and the

planted partition has parameters (p, r). The parameters p = p(n), r = r(n),

6

∆ = ∆(n) and c = c(n) will satisfy the following inequalities.

p(1 − p) ≥ 8000 log n/c2n (1)

r = p + ∆ ≥ p +
40000

c3

√

p log n

n
(2)

c ≥ 200(log n)−1/8. (3)

The constants in (1)-(3) are far from optimal for the results below; in-
deed, they could be substantially improved at the cost of more detail in the
proofs.

Theorem 1. Let G be a random graph with planted partition satisfying (1)-
(3). Then in time O(e(G) + n) and with probability 1 − O(n−5) Algorithm
A with α = c finds a partition V (G) = W1 ∪ W2 such that W1 and W2 each
contain at least one vertex class Vj from the planted partition.

Here, and in the sequel, a larger value of ∆ will reduce the failure prob-
ability: in particular, increasing the constants increases the power of 1/n in
the bound on failure probability.

A minor modification of Algorithm A allows us to deal with cases when
r < p: we simply exchange Bi+1 and Ri+1 at the end of each iteration of
Step 2. The analysis is then identical to the proof of Theorem 1, except that
the roles of r and p are interchanged. We must therefore replace (1) and (2)
by

r(1 − r) ≥ 8000 log n/c2n (4)

p = r + ∆ ≥ r +
40000

c3

√

r log n

n
. (5)

Similar statements hold for the other results in the paper.
When there are only two colour classes, Algorithm A enables us to re-

cover a planted bipartition, and therefore solve Max Cut with high proba-
bility for random graphs with a planted partition and suitable parameters.

Corollary 2. Let G be a random graph with planted bipartition satisfying
(1)-(3). Then in time O(e(G)+n) and with probability 1−O(n−5) Algorithm
A with α = c recovers the planted bipartition.

In order to deal with more than two colours, we must modify Algorithm
A to obtain a bipartition in which every vertex class in the planted partition
appears only on one side of the final bipartition. The modified algorithm is
the same as Algorithm A, except that we keep track of how many vertices

7

are pushed strongly towards one side of the partition at each stage: when we
come to partition Si+1 in step 2 of Algorithm A, a vertex vertex v ∈ Vj∩Si+1

is likely to have a strong preference towards one side of the partition if
our partition of Vj ∩ Si is very biased. Thus we can recognize (with high
probability) which vertices belong to a colour that is very biased. At an
appropriate stage, we push all vertices that do not have a strong preference
(and consequently most vertices from the corresponding vertex classes) onto
one side of the partition, which creates a strong preference in every colour
class at subsequent stages.

One difficulty here is to pick the appropriate stage. We want to push
vertices across at a stage when every colour class is either strongly biased,
or is fairly evenly split: vertices in classes of the first type are in general not
moved (and are mostly on one side in any case), while vertices in classes of
the second type are mostly pushed onto one side. We must therefore pick
a stage at which there are no colour classes with ‘moderate bias’. We can
do this by looking one stage into the future: with high probability, colour
classes that are strongly biased at stage i will remain strongly biased at
stage i + 1, while colour classes that are moderately biased at stage i will
become strongly biased at stage i + 1. Thus if there is a moderately biased
colour class at stage i, the proportion of vertices seeing a large imbalance
at stage i + 1 among their neighbours in Si will increase significantly. The
algorithm checks for this by looking ahead, and then steps a stage back to
push vertices across.

Algorithm B (Perfectsplit(α)).

Input: A graph G with n vertices and a parameter α.
Output: A bipartition of V (G).

Step 0. Set I = ⌊L − log n⌋. Run Algorithm A, proceeding as far as i = I
in Step 2.

Step 1. For each v ∈ SI , calculate

Dv := |Γ(v) ∩ Q
(I)
1 | − |Γ(v) ∩ Q

(I)
2 |.

Order the vertices in decreasing order of |Dv|, and let D∗ be the
value of |Dv| for the (α|SI |/2)-th vertex. Let

∆∗ =
D∗

|Q(I)
1 |

be the difference in densities from v to Q
(I)
i and Q

(I)
2 .

8

Step 2. We now continue running Step 2 of Algorithm A, for i > I, with an
additional calculation for each i: we say that a vertex v ∈ Si+1 has
large imbalance at stage i if

Dv ≥ ∆∗|Q(i)
1 |

(log n)1/20
.

We let Li+1 be the set of vertices in Si+1 with large imbalance after
stage i, set Hi = Si+1 \ Li+1, and define

li+1 =
|Li+1|
|Si+1|

.

Step 3. Let i∗ be the first value of i > I with li+1 < li−1 + α/2 (if no such i
is found, the algorithm halts and reports failure). We backtrack one
step and replace Ri∗ and Bi∗ by

R′
i∗ = Ri∗ ∩ Li∗

and
B′

i∗ = Bi∗ ∪ Hi∗ = Si∗ \ Ri∗ .

Step 4. We then run the remainder of Algorithm A, starting with the bipar-
tition R′

i∗ ∪ B′
i∗ in place of Ri∗ ∪ Bi∗.

We have the following result.

Theorem 3. Let G be a random graph with planted partition satisfying (1)-
(3). Then in time O(e(G) + n) and with probability 1 − O(n−5) Algorithm
B with α = c finds a nontrivial partition of V (G) into two unions of vertex
classes from the planted partition.

Applying Theorem 3 recursively gives the following algorithm for Max
k-Cut.

Algorithm C (Partition(α)).

Input: A graph G with n vertices and a parameter α.
Output: A partition of V (G).

Step 0. Run Algorithm B to obtain a bipartition W1 ∪ W2.

9

Step 1. Recursively run Algorithm B on each Wi, omitting step 1 (and keep-
ing the same value of ∆∗ from the first iteration). If there is no li
with li > α/6 then output Wi as a colour class; otherwise, Wi is
partitioned as Wi = X1 ∪ X2, and we repeat this step on each Xi.

This algorithm determines the original planted partition with high prob-
ability.

Theorem 4. Let G be a random graph with planted partition satisfying (1)-
(3). Then in time O(e(G)k + n) and with probability 1−O(n−4) Algorithm
C with α = c finds the planted partition.

Proof. Note that successive iterations of the algorithm cannot quite be
treated as independent: the partition of V1∪V2 determines which collections
of colour classes the algorithm is applied to in the next iteration. However,
it is sufficient if the algorithm works on all 2k subsets of the colour classes,
which is true with probability at least 1 − O(n−4) since 2k = o(n).

A related problem was given by Condon and Karp [10], who raised the
question of recovering planted Boolean matrix partitions. Let R1 ∪R2 be a
partition of [m] and C1 ∪C2 be a partition of [n]. A planted Boolean matrix
with partition (R1, R2; C1, C2) and parameters (p, r) is a random m × n
matrix with 0-1 entries chosen independently, where P(M [i, j] = 1) = p if
(i, j) ∈ (R1 × C1) ∪ (R2 × C2) and P(M [i, j] = 1) = r otherwise. A small
modification of Algorithm A works in this context.

Algorithm D (Matrixsplit(α)).

Input: A Boolean matrix with m rows and n columns, and a parameter α.
Output: A bipartition of [m] and a bipartition of [n].

Step 0. Let M = 20
√

log n, and let [m] =
⋃M+1

i=1 Ti and [n] =
⋃M+1

i=1 Ui

be two random partitions such that |T1| = m/40
√

log n for i =
1, . . . , M , Ui = n/40

√
log n for i = 1, . . . , M , |TM+1| = m/2 and

|UM+1| = n/2.

Let R1 ∪B1 be a random partition of T1 into two sets of equal size.

Step 1. Let v1, . . . , vL be an Euler circuit of KM,M (we may assume that M
is even), and define Si = Tvi for i odd and Si = Uvi for i even. Let
SL+1 = UM+1, SL+2 = [m] and SL+3 = [n].

Step 2. Now run Step 1 of Algorithm A as before.

10

Step 3. Output the partition (RL+2, BL+2; RL+3, BL+3).

Providing r − p is sufficiently large, Algorithm D recovers the planted
matrix partition with high probability.

Theorem 5. Let M be a random m × n Boolean matrix with planted par-
tition (R1, R2; C1, C2) such that min{|R1|, |R2|, |C1|, |C2|} ≥ c max{m, n}.
Suppose that m ≥ n and that (1)-(3) hold. Let t be the number of non-zero
entries in M . Then in time O(m + n + t) and with probability 1 − O(n−5)
Algorithm D with α = c recovers the planted partition.

The theorem follows by trivial modifications of the proof of Theorem 1.
A more general problem, where there are more than two classes, can be dealt
with in the same way as for graphs, by modifying the algorithm analogously
to Algorithms B and C.

For hypergraphs, a minor modification to Algorithms A and B allows us
to produce results similar to Theorems 1 and 3. There are several variants
of the problem, but for simplicity let us consider the following: we have a
random l-uniform hypergraph H with planted partition V1 ∪ V2, where an
edge e is present with probability p if all its vertices belong to the same
class Vi, and with probability r > p otherwise. For x ∈ V (H), and a set
S ⊂ V (H) \ x, we define the degree d(x, S) of x into S by

d(x, S) = |{e ∈ E(H) : x ∈ e, e ⊂ {x} ∪ S}|.

We modify Algorithm A as follows.

Algorithm E (Hypersplit(c)).

Input: An l-uniform hypergraph G with n vertices and a parameter α.
Output: A bipartition of V (G).

Step 0. Run steps 0 and 1 as in Algorithm A.

Step 1. We run step 2 as before, except that we place v ∈ Si+1 into Bi+1 if

d(v, Q
(i)
1) > d(v, Q

(i)
2), into Ri+1 if d(v, Qi

1) < d(v, Qi
2), and other-

wise assign v with equal probability to Bi+1 or Ri+1.

Step 2. Output the partition (RL+2 ∪ RL+3, BL+2 ∪ BL+3) as before.

We have the following result.

11

Theorem 6. Let H be a random l-uniform hypergraph with planted partition
V1 ∪ V2. Suppose that |G| = n and mini=1,2 |Vi| ≥ cn, where c satisfies (3).
Then there is a constant K = K(l) such that if

r = p + ∆ ≥ p +
K

c3

√

p log n

nl−1
,

and p(1 − p) ≥ K log n/c2n, then in time O(e(G) + n) and with failure
probability O(n−5) Algorithm E with α = c finds the planted partition.

3 Lemmas

We gather here a few basic inequalities that we shall use in the next section.
We use the following version of Chernoff’s inequality (see [19]). Let X

be the sum of an independent set of 0-1 Bernoulli random variables with
parameters p1, . . . , pn, and let µ =

∑n
i=1 pi. Then

P(X ≤ µ − t) ≤ e−t2/2µ (6)

and

P(X ≥ µ + t) ≤ exp

(

− t2

2(µ + t/3)

)

. (7)

We shall also use (see, for instance, [2]) the fact that

P(X ≥ EX + t) ≤ exp(−2t2/n) (8)

and
P(X ≤ EX − t) ≤ exp(−2t2/n). (9)

We will also need the Berry-Esseen inequality (see Petrov [26], pages
111, 128).

Lemma 7. Let X1, . . . , Xn be independent random variables that satisfy
EXi = 0 and E|Xi|3 < ∞ for i = 1, . . . , n. Let B =

∑n
i=1 EX2

i and L =
B−3/2

∑n
i=1 E|Xi|3. Then, for x ∈ R,

P

(

n
∑

i=1

Xi < x
√

B

)

= Φ(x) + O(L). (10)

Furthermore, the O(L) term has absolute value at most 0.8L.

12

We shall apply this to the special case when X1, . . . , Xn are independent
Bernoulli random variables with parameters p1, . . . , pn. Taking Yi = Xi−pi,
we have EYi = 0, EY 2

i = pi(1 − pi) and

E|Y 3
i | = (1 − pi)p

3
i + pi(1 − pi)

3 = pi(1 − pi)(p
2
i + (1 − pi)

2) ≤ pi(1 − pi),

so in this case,
∑n

i=1 E|Yi|3 ≤ ∑n
i=1 EY 2

i . We therefore have B = σ2 =
∑n

i=1 EY 2
i =

∑n
i=1 pi(1−pi) and L = B−3/2

∑n
i=1 E|Yi|3 ≤ B−3/2 ·B = 1/σ,

and so Lemma 7 implies the following.

Lemma 8. Let X1, . . . , Xn be independent Bernoulli random variables with
parameters p1, . . . , pn and let σ2 =

∑n
i=1 pi(1 − pi). Then, for x ∈ R,

∣

∣

∣

∣

∣

P

(

n
∑

i=1

Xi <

n
∑

i=1

pi + xσ

)

− Φ(x)

∣

∣

∣

∣

∣

≤ 0.8

σ
. (11)

Lemma 8 will usually suffice to control the distributions in which we
are interested. However, we shall sometimes need to deal with very small
deviations, when the O(1/σ) error term is larger than the deviation we wish
to estimate. In this situation, we shall need Corollary 10 below.

First we state a standard fact.

Lemma 9. The sum of two bounded, centrally symmetric, integer-valued
unimodal random variables is centrally symmetric and unimodal.

Proof. Let f, g : Z → R≥0 be the densities (with respect to counting mea-
sure) of two centrally symmetric and unimodal random variables X and Y .
If f and g are characteristic functions of intervals [−a, a] and [−b, b] then the
density of X+Y is the convolution f ⋆g, which is clearly centrally symmetric
and unimodal. More generally, we can write f =

∑

λiχi and g =
∑

λ′
jχ

′
j

as positive linear combinations of indicator functions of centrally symmetric
intervals (in Z): then f ⋆ g =

∑

i,j λiλ
′
jχi ⋆ χ′

j is a positive linear combi-
nation of centrally symmetric unimodal functions and is therefore centrally
symmetric and unimodal.

Corollary 10. Suppose p1, . . . , pn are reals in [0, 1], and

X =

n
∑

i=1

(B(pi) − B′(pi)),

where B(pi) and B′(pi), 1 ≤ i ≤ n, are 2n independent Bernoulli random
variables. Let σ2 = 2

∑n
i=1 pi(1 − pi). Then, for 0 ≤ λ ≤ 4σ,

P(X ≤ λ) ≥ 1

2
+

1

2
P(X = 0) +

⌊λ⌋
9σ

− ⌊λ⌋
2σ2

.

13

Proof. For p ∈ [0, 1], B(p) − B′(p) is centrally symmetric and unimodal,
since p2 + (1 − p)2 ≥ 2p(1 − p); by Lemma 9, X is also centrally symmetric
and is unimodal (and EX = 0). Since X + n has distribution

∑n
i=1(B(pi)+

B(1 − pi)) and variance σ2, it follows from (11) that

P(0 < X ≤ 4σ) = P (E(X + n) < X + n ≤ E(X + n) + 4σ)

− P(X + n ≤ E(X + n) + 4σ) − P(X + n ≤ E(X + n))

≥
(

Φ(4) − 0.8

σ

)

−
(

Φ(0) − 0.8

σ

)

>
4

9
− 1.6

σ
. (12)

Since X is symmetric and unimodal with mean 0, we deduce that, for 0 ≤
λ ≤ 4σ,

P(X ≤ λ) ≥ P(X ≤ 0) + P(0 < X ≤ λ)

≥
(

1

2
+

1

2
P(X = 0)

)

+
⌊λ⌋
4σ

P(0 < X ≤ 4σ),

and the result now follows from (12)

4 Proof of Theorem 1

Our aim in this section is to prove Theorem 1.
We break up the analysis of Algorithm A into a number of lemmas and

claims. We remark that the constants in the statements of our claims are
by no means best possible.

Let us first state a little notation.
For disjoint sets X, Y ⊂ V (G), and v 6∈ X ∪ Y , let

λ(v, X, Y) = |Γ(v) ∩ X| − |Γ(v) ∩ Y |.

We shall often refer to vertex classes Vj in the planted partition as colour
classes. We define the bias in colour j of (X, Y) by

µj(X, Y) = |Vj ∩ X| − |Vj ∩ Y |,

and the imbalance at stage i by

Mi = max
j

|µj(Q
(i)
1 , Q

(i)
2)|.

14

Our argument proceeds by examining the sequence M1, M2, . . . of imbal-
ances, and showing that these eventually become large.

Note that since |Q(i)
1 | = |Q(i)

2 |, we have
∑k

j=1 µj(Q
(i)
1 , Q

(i)
2) = 0. So if

µj(Q
(i)
1 , Q

(i)
2) > 0 then there is a colour j′ such that we have µj′(Q

(i)
2 , Q

(i)
1) ≥

cµj(Q
(i)
1 , Q

(i)
2). It follows that there are colours j, j′ with

min{µj(Q
(i)
1 , Q

(i)
2), µj′(Q

(i)
2 , Q

(i)
1)} ≥ cMi. (13)

Before stating our main sequence of claims, we give the following simple
fact. We omit the proof.

Proposition 11. With probability 1−O(exp(−cn/400
√

log n)) we have, for
every i and j,

|Si ∩ Vj | ≥ c
|Si|
2

. (14)

Our proof uses a sequence of four claims, which we now state. We then
prove that the theorem follows from these claims, before returning to prove
the claims.

For the remainder of the proof, we shall assume that (14) holds, so
that we are conditioning on this event. More precisely, we condition on the
specific values of Si ∩ Vj for all i and j: thus for any collection of values
|Si ∩ Vj | satsfying (14), we show that the claims below hold.

The first claim states that all sets Ri and Bi have a reasonable number of
vertices (and therefore the algorithm does not fail in step 2); since |Q(i)

1 | =

|Q(i)
2 | = min{|Ri|, |Bi|}, the same therefore holds for Q

(i)
1 and Q

(i)
2 . In

addition, Q
(i)
1 ∪Q

(i)
2 contains a reasonable number of vertices from each Vj .

More specifically, we will show that, with high probability, for every h
we have

min{|Rh|, |Bh|} > c|Sh|/6 (15)

and
min

j
|(Q(h)

1 ∪ Q
(h)
2) ∩ Vj | > c2|Sh|/14. (16)

Claim 1. Suppose that (15) is satisfied for h = i. Then with probability
1 − O(exp(−c4n/40000

√
log n)) (15) and (16) are satisfied for h = i + 1.

The next few claims concern the partition of Si+1, which occurs in the
iteration of Step 2 after we have partitioned Si.

We note first that, for each i, Mi is with constant probability Ω(
√

c|Si|):
the algorithm needs an imbalance of this size to get off the ground.

15

Claim 2. Suppose that (15) holds for h = i. Then

P(Mi+1 >
√

c|Si+1|/10) ≥ 1/9.

If Mi is not too small, then we hope that the imbalance increases at the
next stage, so that Mi+1 ≫ Mi. The next claim bounds the probability that
this fails to happen.

Claim 3. If µj(Q
(i)
1 , Q

(i)
2) = µ > 0 then the probability that

µj(Ri+1, Bi+1) < 3 min

(

(log n)1/4µ,
|Vj ∩ Si+1|

4

)

is at most

max{e−2(log n)1/2µ2/|Si|, exp(−cn/12800
√

log n)}.

Finally, if Mi is large then Mi+1 is large (with high probability); while
if Mi is sufficiently large then (with high probability) all vertices of some
colour are forced on to the same side of the partition.

Claim 4. If µj(Q
(i)
1 , Q

(i)
2) ≥ c2|Si|/32 then, for v ∈ Vj ∩ Sj+1, we have

P(v 6∈ Ri+1) = O(exp(−
√

log n/2)), (17)

and

P

(

µj(Q
(i+1)
1 , Q

(i+1)
2) ≥ c2|Si+1|/32

)

≥ 1 − O(e−c2n/10240
√

log n).

If, in addition, |Si| ≥ n/4 then, for v ∈ Vj ∩ Si+1, we have

P(v 6∈ Ri+1) = O(n−6),

and
P(Vj ∩ Si+1 ⊂ Ri+1) = 1 − O(n−5).

Similar statements to Claim 2, Claim 3 and 4 hold with the two sides of
the partition exchanged.

Provided the claims above are correct we finish the proof as follows.

Proof of Theorem 1. Proposition 11 implies that (14) has failure probabil-
ity at most O(exp(−cn/400

√
log n)). We therefore assume that (14) holds

throughout the proof.

16

Note that if, for some j and j′, we have

µj(Q
(i)
1 , Q

(i)
2) ≥ c2|Si|/32 (18)

and
µj′(Q

(i)
2 , Q

(i)
1) ≥ c2|Si|/32 (19)

then the same holds for all i′ > i, by Claim 4, with failure probability at
most O(exp(−c2n/10240

√
log n)). Furthermore, the second part of Claim 4

then implies that Vj is entirely contained in one side of the final partition and
Vj′ is entirely contained in the other side, with failure probability at most
O(n−5). Thus if (18) and (19) both hold for some i, the algorithm finishes
correctly with probability at least 1 − O(n−5). It is therefore sufficient to
show that (18) and (19) are true for some i ≤ 190 log n.

We now run through the algorithm stage by stage. We say that Pi =

(Q
(i)
i , Q

(i)
2) is successful if one of the following two conditions is satisfied.

• Pi satisfies the inequality in Claim 2 for some colour j and either i = 1
or Pi−1 was unsuccessful.

• Pi−1 was successful and

Mi ≥ min{c(log n)1/4Mi−1/4, c|Vj ∩ Si+1|/8}.

Suppose that the algorithm is successful at log n consecutive stages. It
follows that at the end of the run, we have Mi ≥ c|Vj ∩ Si+1|/32, and
therefore that there are colours j, j′ with

min{µj(Q
(i)
i , Q

(i)
2), µj′(Q

(i)
2 , Q

(i)
1 } ≥ c2|Vj ∩ Si+1|/32.

(We use here the fact that if some colour has imbalance µ in one direc-
tion, then some other colour has imbalance at least cµ in the other di-
rection.) It follows from Claim 4 and (14) that with failure probability
O(exp(−c2n/6400

√
log n))

min{µj(Ri+1, Bi+1), µj′(Bi+1, Ri+1)} ≥ c|Si|/8,

and so Mi+1 ≥ c|Si|/8, since we obtain Q
(i+1)
i and Q

(i+1)
2 by deleting vertices

from one of Ri+1 and Bi+1; thus (18) and (19) hold at the next stage .
It therefore suffices to show that, with failure probability at most O(n−5),

there are log n consecutive successful stages among the first 190 log n.
We shall divide the stages into runs as follows. The first run begins at

i = 1, and each subsequent run begins at the stage after the previous run

17

ends. A run terminates with the first unsuccessful stage (in which case it is
an unsuccessful run), or else after log n successful stages (in which case it is
a successful run).

Now at the first stage of a run (with i = 1 or where i−1 was unsuccessful),
we are successful with probability at least 1/9. If we have been successful
at t + 1 consecutive stages, then

Mi ≥ min

{

√

c|Si|
10

(

c(log n)1/4

4

)t

,
c|Vj ∩ Si+1|

8

}

≥ min

{

20t(log n)(t−1)/8
√

|Si|,
c|Vj ∩ Si+1|

8

}

.

Now there are colours j, j′ such that min{µj(Q
(i)
1 , Q

(i)
2), µj′(Q

(i)
2 , Q

(i)
1)} ≥

cMi. Since Mi+1 ≥ min{µj(Ri+1, Bi+1), µj′(Bi+1, Ri+1)}, it follows from
Claims 3 and 4 that we are successful at the (i + 1)-st stage with failure
probability at most

max{exp(−(log n)1/4202t(log n)t/4c2), exp(−cn/12800
√

log n)}
≤ max{exp(−400t(log n)t/4), n−6}.

Now with probability O(n−5), we are never unsuccessful after we first reach
t = 5, so it is sufficient to show that, with failure probability O(n−5), some
run reaches this point.

Now if we make it past the first stage, it follows from the argument
above that the probability of failure in one of the next four stages is at most
4 exp(−400(log n)1/4): the probability that this happens on log n consecu-
tive occasions is at most O(n−5). Since each such attempt uses at most five
steps of the algorithm, these unsuccessful runs use at most 5 log n steps. On
the other hand, it follows from (6) that the probability we are successful on
the first stage on fewer than log n out of our first 90 log n runs is O(n−5).
Furthermore, the unsuccessful runs use at most 89 log n steps of the algo-
rithm. Thus with failure probability at most O(n−5) we reach a point in the
first 94 log n steps where we are successful at the fifth stage, and we carry
on to have a successful run with failure probability at most O(n−5).

The remainder of this section is devoted to proving the claims above.
Note first that

∆ ≥ 40000

c3

√

p log n

n
≥ 3200000 log n

c4n
. (20)

18

Note also that, for every i, |Si| ≥ n/40
√

log n.
All that remains is to prove the claims.

Proof of Claim 1. We begin with the first inequality. For i = 1 this is
immediate. Now suppose i > 1 and min{|Ri|, |Bi|} > c|Si|/6. We show that

P (min{|Ri+1|, |Bi+1|} < c|Si+1|/6) < exp(−cn/3000
√

log n).

Since |Q(i)
1 | = |Q(i)

2 | there is a colour j such that |Vj ∩ Q
(i)
1 | ≥ |Vj ∩ Q

(i)
2 | for

some j. Then for v ∈ Si+1 ∩ Vj , we have P(v ∈ Ri+1) ≥ 1/2 in Step 2; since
(14) holds, we have |Vj ∩Si+1| ≥ c|Si+1|/2, and so E|Vj ∩Ri+1| ≥ c|Si+1|/4.
Then Chernoff’s inequality (6) applied to any c|Si+1|/2 vertices of Vj ∩Si+1

implies that

P(|Vj ∩ Ri+1| ≤ c|Si|/6) ≤ exp
(

2 (c|Si|/24)2 /(c|Si|/2)
)

= exp(−c|Si|/144)

= O(exp(−cn/6000
√

log n)).

Since the same inequality holds for every Ri and Bi, this implies the first
inequality in the claim.

For the second inequality, note that we obtain Q
(i+1)
1 and Q

(i+1)
2 by

deleting vertices from at most one of Ri+1 and Bi+1. Thus provided (15)
holds, every vertex is kept with probability at least c/6. It follows from (14)
that

E(|(Q(i+1)
1 ∪ Q

(i+1)
2) ∩ Vj |) ≥ c2|Si|/12,

and so by Chernoff’s inequality we get (16) with failure probability at most

exp
(

−2(c2|Si|/84)2/|Si|
)

≤ exp
(

−c4|Si|/8000
)

≤ exp
(

−c4n/40000
√

log n
)

.

Proof of Claim 2. For i = 0 this follows easily from Lemma 8. For i ≥ 1,

note that since |Q(i)
1 | = |Q(i)

2 | there must be distinct j, j′ such that |Vj ∩
Q

(i)
1 | ≥ |Vj ∩Q

(i)
2 | and |Vj′ ∩Q

(i)
1 | ≤ |Vj′ ∩Q

(i)
2 |. Then for v ∈ Si+1 ∩ Vj and

w ∈ Si+1 ∩ Vj , we have P(v ∈ Ri+1) ≥ 1/2 and P(w ∈ Bi+1) ≥ 1/2 in Step
2. It follows from (14) and Lemma 7 that with probability at least 1/9 we
have µj(Ri+1, Bi+1) ≥

√

c|Si+1|/10 and µj′(Ri+1, Bi+1) ≤ −
√

c|Si+1|/10.
Deleting vertices from (one of) Ri+1 and Bi+1, we decrease at most one of the

two imbalances. Thus we must have either µj(Q
(i+1)
1 , Q

(i+1)
2) ≥

√

c|Si+1|/10

or µj′(Q
(i+1)
1 , Q

(i+1)
2) ≤ −

√

c|Si+1|/10, which implies Mi+1 ≥
√

c|Si+1|/10.

19

Before proving Claim 3, let us analyze how strongly vertices are pushed
towards one or the other side of the partition at the ith step.

For i ≥ 1 and v ∈ Si+1 ∩ Vj , and h = 1, 2, we have

E|Γ(v) ∩ Q
(i)
h | = p|Vj ∩ Q

(i)
h | + (p + ∆)|Q(i)

h \ Vj | = p|Q(i)
h | + ∆|Q(i)

h \ Vj |

and so, since |Q(i)
1 | = |Q(i)

2 |,

Eλ(v, Q
(i)
1 , Q

(i)
2) = ∆(|Q(i)

1 \ Vj | − |Q(i)
2 \ Vj |)

= ∆(|Vj ∩ Q
(i)
2 | − |Vj ∩ Q

(i)
1 |)

= −∆µj(Q
(i)
1 , Q

(i)
2). (21)

Now, since Q
(i)
1 ∪ Q

(i)
2 ⊂ Si, we have

varλ(v, Q
(i)
1 , Q

(i)
2) ≤ p(1 − p)|Si ∩ Vj | + (p + ∆)(1 − p − ∆)|Si \ Vj |

≤ (p + ∆)|Si| (22)

while, by (1) and (16),

varλ(v, Q
(i)
1 , Q

(i)
2) ≥ p(1 − p)|(Q(i)

1 ∪ Q
(i)
2) ∩ Vj |

≥ 8000 log n

c2n

c2n

5600
√

log n

≥
√

log n. (23)

Thus writing σ for the standard deviation of λ(v, Q
(i)
1 , Q

(i)
2), we have σ ≤

√

(p + ∆)|Si| and σ → ∞ as n → ∞ in (11).
It follows from (21) and (11) that, for v ∈ Si+1 ∩ Vj , we have

P(v ∈ Ri+1) ≥ Φ

(

∆µj(Q
(i)
1 , Q

(i)
2)

σ

)

− 1

σ
(24)

Proof of Claim 3. Let µ = µj(Q
(i)
1 , Q

(i)
2). It follows from (21) that for v ∈

Vj ∩ Si+1 we have

Eλ(v, Q
(i)
1 , Q

(i)
2) = −∆µ.

We split the proof of Claim 3 into three cases, depending on the size of ∆µ.
The first two cases deal with the situation when ∆µ is smaller than 2σ.
If ∆µ is not too small then (24) gives a sufficiently good bound for us to
control the distribution of µj(Ri+1, Bi+1. If ∆µ is very small, however, the

20

O(1/σ) error term may overwhelm our estimate, so we use a slightly more

careful estimate of the distribution of λ(v, Q
(i)
1 , Q

(i)
2) near its mean. Finally,

if ∆µ is more than 2σ, we simply use Chebyshev’s inequality.
Note that Φ(t) ≥ 1/2 + t/18 for 0 ≤ t ≤ 4; it follows from (23) that

σ > 9, provided n is sufficiently large.

Case 1: 18 ≤ ∆µ ≤ 2σ

If v ∈ Si+1 ∩ Vj then it follows from (24) that

P(v ∈ Ri+1) ≥ Φ

(

∆µ

σ

)

− 1

σ

≥ 1

2
+

∆µ

9σ
− 1

σ

≥ 1

2
+

∆µ

18σ
.

Thus

E(|Vj ∩ Ri+1|) ≥ |Vj ∩ Si+1|
(

1

2
+

∆µ

18σ

)

. (25)

Now by (22) and (14), since |Si+1| ≥ |Si| for every i,

∆µ

18σ
|Vj ∩ Si+1| ≥ ∆µc|Si|/2

18
√

(p + ∆)|Si+1|

≥ c∆µ

36

√

|Si+1|
p + ∆

≥ c∆µ

36
min

{

√

|Si+1|
2p

,

√

|Si+1|
2∆

}

=
cµ

36

√

|Si+1|
2

min

{

∆√
p
,
√

∆

}

≥ cµ

36

√

|Si+1|
2

min

{

40000

c3

√

log n

n
,
1789

c2

√

8000 log n

n

}

≥ 5(log n)1/4µ. (26)

It follows from (25) that

E(|Ri+1 ∩ Vj | − |Bi+1 ∩ Vj |) ≥ 5(log n)1/4µ,

21

and so, by (9), the probability that |Ri+1 ∩ Vj | − |Bi+1 ∩ Vj | ≤ 3(log n)1/4µ
is at most

P(|Ri+1 ∩ Vj | ≤ E|Ri+1 ∩ Vj | − (log n)1/4µ) ≤ e−2(log n)1/2µ2/|Si|. (27)

Case 2: ∆µ ≤ 18

For v ∈ Si+1 ∩ Vj , we analyze the random variable λ(v, Q
(i)
1 , Q

(i)
2) as

follows. We begin by picking as many pairs of vertices of the same ‘type’ as

possible from Q
(i)
1 and Q

(i)
2 : let U be a maximal subset of Q

(i)
1 ∪ Q

(i)
2 such

that
|U ∩ Q

(i)
1 ∩ Vj | = |U ∩ Q

(i)
2 ∩ Vj | (28)

and
|U ∩ Q

(i)
1 ∩ V \ Vj | = |U ∩ Q

(i)
2 ∩ V \ Vj |. (29)

Thus U contains the same number of vertices from Vj and V \ Vj in each

class Q
(i)
h , and hence

λ(v, U ∩ Q
(i)
1 , U ∩ Q

(i)
2)

is symmetric. Furthermore, since µ > 0, the remaining vertices in Pi :=

Q
(i)
1 \ U are all from Vj and the remaining vertices in Qi := Q

(i)
2 \ U are all

from V \ Vj . Then |Pi| = |Qi| = µ, and

λ(v, Q
(i)
1 , Q

(i)
2) = λ(v, U ∩ Q

(i)
1 , U ∩ Q

(i)
2) + λ(v, Pi, Qi).

We decompose λ(v, Pi, Qi) as
∑µ

i=1 λ(v, xi, yi), where Pi = {xi, . . . , xµ},
Qi = {yi, . . . , yµ}. Note that

P(vxi is an edge) = p

and
P(vyi is an edge) = p + ∆.

We generate the random variables λ(v, xi, yi) in two steps. Let Z1, . . . , Zµ

be random variables with

P(Zi = 1) = P(Zi = −1) = p(1 − ∆ − p)/(1 − ∆) < p(1 − p) ≤ 1/4 (30)

and Zi = 0 otherwise, and let Y1, . . . , Yµ be Bernoulli random variables with

P(Yi = 1) = 1 − P(Yi = 0) = ∆ (31)

22

We set λ(v, xi, yi) = −1 if Yi = 1 and otherwise set λ(v, xi, yi) = Zi. Thus

λ(v, xi, yi) = −Yi + (1 − Yi)Zi. (32)

Note that

P(λ(v, xi, yi) = −1) = P(Yi = 1) + P(Yi = 0)P(Zi = 1)

= ∆ + p(1 − ∆ − p)

= (1 − p)(∆ + p)

and

P(λ(v, xi, yi) = 1) = P(Yi = 0)P(Zi = −1)

= p(1 − ∆ − p).

Thus λ(v, xi, yi) has the correct distribution. Furthermore, since P(Zi =
1) = P(Zi = −1) ≤ 1/4, Zi can be written as the difference of two Bernoulli
random variables as in Corollary 10; in particular, Zi is unimodal.

Now let X1 = {i : Yi = 1} and X0 = {i : Yi = 0}, so

λ(v, Q
(i)
1 , Q

(i)
2) = λ(v, Q

(i)
1 ∩ U, Q

(i)
2 ∩ U) +

∑

i∈X0

λ(v, xi, yi) − |X1|.

Note that E|X1| = ∆µ and, by Lemma 9,

Z = λ(v, Q
(i)
1 ∩ U, Q

(i)
2 ∩ U) +

∑

i∈X0

λ(v, xi, yi) (33)

is a symmetric, unimodal random variable for any choice of X0.
Let us condition on the value of |X1|. Provided |X1| < 2σ, Corollary 10

implies that, since |X1| is an integer,

P(v ∈ Ri+1) = P

(

µ(v, Q
(i)
1 , Q

(i)
2) < 0

)

+
1

2
P

(

µ(v, Q
(i)
1 , Q

(i)
2) = 0

)

= P(Z < X1) +
1

2
P(Z = X1)

= P(Z ≤ X1) −
1

2
P(Z = X1)

≥ 1

2
+

|X1|
9σ

− |X1|
2σ2

≥ 1

2
+

|X1|
12σ

,

23

since σ ≥ 18. Here we have used the fact that P(Z = X1) ≤ P(Z = 0),
which follows from the symmetry and unimodality of Z.

Let X = min{|X1|, 4σ}. Then, since P(v ∈ Ri+1) clearly increases as
|X1| increases, we have

P(v ∈ Ri+1) ≥
1

2
+

|X|
12σ

and so

E(|Ri+1 ∩ Vj | − |Bi+1 ∩ Vj |) ≥
|Si+1 ∩ Vj |

6σ
EX. (34)

We estimate EX as follows. Clearly, P(Xi = i) =
(

µ
i

)

∆i(1 − ∆)µ−i. Let
sr = r

(

µ
r

)

∆r(1 − ∆)µ−r, so EX1 =
∑µ

r=1 sr and EX ≥ ∑

r≤4σ sr. For
r ≥ 3∆µ we have

sr+1

sr
=

r + 1

r

µ − r

r + 1

∆

1 − ∆
=

∆(µ − r)

(1 − ∆)r
≤ ∆µ

r
≤ 1

3
.

It follows that, as 4σ ≥ 54 ≥ 3∆µ,

∆µ = E|X1| =
n
∑

r=1

sr ≤ 3

2

∑

r≤4σ

sr ≤ 3

2
EX.

Therefore, by (34) and the same calculations as in (26),

E(|Ri+1 ∩ Vj | − |Bi+1 ∩ Vj |) ≥ ∆µ|Si+1 ∩ Vj |
9σ

≥ 5(log n)1/4µ.

As in Case 1, Chernoff’s inequality implies that (27) holds.

Case 3: ∆µ > 2σ

If ∆µ > 2σ then we use Chebyshev: for v ∈ Si+1 ∩ Vj we have

P(v ∈ Ri+1) ≥ 3/4

Thus

E(|Ri+1 ∩ Vj | − |Bi+1 ∩ Vj |) ≥
1

2
|Vj ∩ Si+1|.

So by (8) and (14) we have |Ri+1 ∩ Vj | − |Bi+1 ∩ Vj | > |Vj ∩ Si+1|/4, and so
|Ri+1 ∩ Vj | ≤ E|Ri+1 ∩ Vj | − |Vj ∩ Si+1|/8, with failure probability at most

exp
(

−2 (|Vj ∩ Si+1|/8)2 /|Vj ∩ Si+1|
)

≤ exp(−c|Si|/32)

≤ exp(−cn/12800
√

log n).

24

Proof of Claim 4. Let µ = µj(Q
(i)
1 , Q

(i)
2). For v ∈ Vj ∩ Si+1, we decompose

λ(v, Q
(i)
1 , Q

(i)
2) as in (30)-(33). We get

λ(v, Q
(i)
1 , Q

(i)
2) = Y + Z,

where Y is the sum of µ independent 0-1 Bernoulli random variables with
parameter ∆ and Z is the sum of at most |Si|/2 symmetric random variables
Zi with values in {−1, 0, 1} and probability at most 2(p+∆) of being nonzero
(note that the number of Zi depends on Y , but the Zi are then independent).

Now EY ≥ ∆µ, so (6) and (20) imply that

P (Y ≤ ∆µ/2) ≤ P(Y ≤ EY − ∆µ/2)

≤ exp(−∆µ/8)

≤ exp
(

−c2∆|Si|/256
)

≤ exp(−2000|Si| log n/c2n). (35)

Let N be the number of Zi taking nonzero values (conditioning on the
value for Y). Then EN ≤ 2(p + ∆)|Si|, and (7) implies that

P(N ≥ 4(p + ∆)|Si|) ≤ exp

(

−(2(p + ∆)|Si|)2/
16

3
(p + ∆)|Si|

)

= exp(−3(p + ∆)|Si|/8)

≤ exp(−2000|Si| log n/c4n). (36)

If N ≤ 4(p+∆)|Si| then, since Z is the sum of N independent ±1 Bernoulli
random variables with parameter 1/2, Chernoff’s inequality (9) implies that

P (Z ≤ −∆µ/2) ≤ exp(−2(∆µ/4)2/2N) ≤ exp(−∆2µ2/64(p + ∆)|Si|).

Now, by (20),

∆2

p + ∆
≥ ∆2

max{2p, 2∆} ≥ min

{

∆2

2p
,
∆

2

}

≥ 1600000 log n

c4n
, (37)

and so

P

(

Z ≤ −∆µ

2

)

≤ exp

(

−25000 log n

c4n

µ2

|Si|

)

≤ exp (−24|Si| log n/n) (38)

The bounds (36), (38) and (35) together imply the first inequality in the
theorem, since |Si| ≥ n/40

√
log n for every i, and the third inequality when

|Si| ≥ n/4.

25

For the second inequality, note that the first inequality and (7) imply
that

P(|Vj ∩ Bi+1| > c|Vj ∩ Si+1|/16) ≤ exp(−(c|Vj ∩ Si+1|/32)/4)

≤ exp(−c|Si+1|/256)

On the other hand, (15), (35) and (6) imply that

P

(

|Vj ∩ Q
(i+1)
1 | < c|Vj ∩ Si+1|/8

)

≤ exp(−c|Vj ∩ Bi|/40)

≤ exp(−c2|Si+1|/80).

It then follows from (14) that

P(µj(Q
i+1
i , Qi+1

2) < c2|Si+1|/32) = O(exp(−c2n/10240
√

log n).

Finally, the fourth inequality follows directly from the third.

5 Proof of Theorem 3

In this section we complete the proof of Theorem 3. We divide the proof into
four claims. In each claim, we assume that the inequalities in the previous
claims hold, including the claims in the proof of Theorem 1.

Claim 5. With failure probability O(n−5),

c2∆

64
≤ ∆∗ ≤ 2∆.

Proof. We know from the proof of Theorem 1 that, with failure probability
at most O(n−5), for each i ≥ L − log n there is some colour class Vj such

that µj(Q
(i)
1 , Q

(i)
2) ≥ c2|Si|/32. Thus, with i = L − log n, if v ∈ Vj ∩ Si+1

then Eλ(v, Q
(i)
2 , Q

(i)
1) ≥ c2∆|Si|/32. It follows by Chernoff’s inequality that

P

(

λ(v, Q
(i)
2 , Q

(i)
1) < c2∆/64

)

< 1/4, and so (8) implies that with probability

at least 1−O(n−5) we have, for every i ≥ L− log n, at least c|Si|/2 vertices

v ∈ Vj ∩ Si+1 with λ(v, Q
(i)
2 , Q

(i)
1) ≥ c2∆|Si|/64.

On the other hand, every vertex v ∈ Si+1 has |Eλ(v, Q
(i)
1 , Q

(i)
2)| ≤ ∆|Si|,

and so by (7) we have

P

(

|λ(v, Q
(i)
1 , Q

(i)
2)| > 2∆|Si|

)

< exp(−∆|Si|) = O(n−5).

It follows that with probability 1 − O(n−5), we have, for all i ≥ L − log n,

fewer than c|Si+1|/2 vertices v ∈ Si+1 with |λ(v, Q
(i)
1 , Q

(i)
2)| ≥ 2∆|Si|.

The inequality now follows immediately.

26

The next claim shows that, at each stage of Algorithm A, if the bias

|µj(Q
(i)
1 , Q

(i)
2)| is not very small then either it is very large (so colour j is

very biased), or it becomes very large at the next stage, pushing up the
number of vertices with large imbalance at the stage after. (Note that once
a colour class becomes very imbalanced, this persists by Claim 4.)

Claim 6. Consider Algorithm A. With probability 1 − O(n−6), for i < L
and each colour j, if

|µj(Q
(i)
1 , Q

(i)
2)| ≥ c2|Q(i)

1 |/(log n)1/10

then
|µj(Q

(i+1)
i , Q

(i+1)
2)| ≥ c2|Q(i+1)

1 |/32.

Proof. If µj(Q
(i)
1 , Q

(i)
2) ≥ c2|Q(i)

1 |/(log n)1/10 then we argue as in the proof
of Claim 4, except that the inequality µ ≥ c2|Si|/32 is replaced by µ ≥
c2|Q(i)

1 |/(log n)1/10, which by (15) is at least c3|Si|/6(log n)1/10. Modifying
(35)-(36) accordingly, we see that vertices in Vj ∩ Si+1 are pushed towards
Ri+1 with failure probability

exp(−c2(log n)3/10) ≤ exp(−100(log n)1/20).

Now (7) and (14) imply that

P(|Vj ∩ Bi+1| > c3|Si|/1000) = O(n−6).

It follows from (15) and (16) that µj(Q
(i+1)
1 , Q

(i+1)
2) ≥ c2|Q(i+1)

1 |/32.

A symmetric argument deals with the case when µj(Q
(i)
1 , Q

(i)
2) is nega-

tive.

Claim 7. Let i = i∗. With probability 1 − O(n−4), after the backtracking
step we have

|µj(Q
(i)
1 , Q

(i)
2)| ≥ c2|Si|/32

for every colour j.

Proof. Note first that the algorithm cannot report failure in Step 3, by our
choice of c, so i∗ is well-defined. Now suppose we have just modified R′

i∗ and

B′
i∗ to obtain Q

(i)
1 and Q

(i)
2 . We show that with failure probability O(n−5)

we have |µj(Q
(i)
1 , Q

(i)
2)| > c2|Si|/32 for each colour class.

Given j, we may assume that µj(Q
(i−1)
1 , Q

(i−1)
2) ≥ 0. (The negative case

is identical.)

27

If µj(Q
(i−1)
1 , Q

(i−1)
2) > c2|Q(i−1)

1 |/32 then, for v ∈ Si∩Vj , modifying (35)
to bound P(Y ≤ 3∆µ/5), it follows from the proof of Claim 4 that (17)
also holds for P(v 6∈ Ri+1 or v has small imbalance), and hence the second
inequality in Clam 4 still holds.

On the other hand, if µj(Q
(i−1)
1 , Q

(i−1)
2) < c2|Q(i−1)

1 |/(log n)1/10 then, for
v ∈ Si ∩ Vj ,

Eλ(v, Q
(i−1)
1 , Q

(i−1)
2) ≤ c2∆|Q(i−1)

1 |/(log n)1/10 ≤ 64∆∗|Q(i−1)
1 |/(log n)1/10.

It follows from Chernoff’s inequality and (37) that, with failure probability
O(n−6), at most c3|Si|/32 vertices in |Vj ∩ Si| have strong imbalance, and

(16) still holds for the modified sets Q
(i)
l , so |µj(Q

(i)
1 , Q

(i)
2)| ≥ c3|Si|/32.

Finally, if µj(Q
(i−1)
1 , Q

(i−1)
2) does not satisfy either of the inequalities

in Claim 6, it follows from Claim 4, Claim 6 and Chernoff’s inequality
that, with failure probability O(n−6), li∗+1 ≥ li∗−1 + c/2 in step 3, which
contradicts our choice of i∗.

Claim 8. With probability 1 − O(n−5) we end up with a perfect split.

Proof. This follows easily from the preceding claims together with Claim
4.

Acknowledgements. We would like to thank Svante Janson and an anony-
mous referee for their very helpful suggestions.

References

[1] N. Alon, M. Krivelevich and B. Sudakov, Finding a large hidden clique
in a random graph, in Proc. SODA ’98—Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, San Francisco CA, January 25–27,
1998

[2] N. Alon and J. Spencer, The probabilistic method, Second edition, John
Wiley and Sons, New York, 2000, xviii+301 pp.

[3] S. Arora, D. Karger, and M Karpinski, Polynomial time approximation
schemes for dense instances of NP-hard problems, in 27th STOC, pages
284–293, 1995

[4] P. van Beck, Z. Wahr. verw. Geb. 23 (1972), 187–196

28

[5] A. Ben-Dor, R. Shamir, and Z. Yakhini, Clustering gene expression
patterns, Journal of Computational Biology 6 (1999), 281–297

[6] R. B. Boppana. Eigenvalues and graph bisection: An average case anal-
ysis, in IEEE Symp. on Foundations of Computer Science, 280–285,
1987

[7] A. Broder, A.M. Frieze and E. Shamir, Finding hidden Hamiltonian
cycles, in Proc. 23rd ACM Symp. on Theory of Computing, 1991, 182–
189.

[8] T. N. Bui, S. Chaudhuri, F. T. Leighton, and M. Sipser, Graph Bisec-
tion Algorithms with Good Average Case Behavior, Combinatorica 7

(1987), 841–855

[9] T. Carson and R. Impagliazzo, Hill-climbing finds random planted bi-
sections, in Symposium on Discrete Algorithms, 2001, 903–909

[10] A. Condon and R. M. Karp, Algorithms for graph partitioning on the
planted partition model, Random Structures and Algorithms 18 (2001),
no. 2, 116–140

[11] D. Coppersmith, D. Gamarnik,M. Hajiaghayi and G. B. Sorkin, Ran-
dom MAX SAT, Random MAX CUT, and Their Phase Transitions,
Random Structures and Algorithms, to appear

[12] M. Dyer and A. M. Frieze, The solution of some random NP-hard prob-
lems in polynomial expected time, J. Algorithms 10 (1989), 451–489

[13] U. Feige and J. Kilian, Heuristics for semirandom graph problems. Spe-
cial issue on FOCS 98 (Palo Alto, CA), J. Comput. System Sci. 63

(2001), 639–671

[14] U. Feige and R. Krauthgamer, Finding and certifying a large hidden
clique in a semi-random graph, Random Structures and Algorithms 16

(2000), 195–208

[15] A. Frieze and R. Kannan, The regularity lemma and approximation
scheme for dense problems, in Proceedings of the 37th Annual IEEE
Symposium on Foundations of Computer Science, 1996, 12–20

[16] M.R. Garey, and D.S. Johnson, Computers and Intractability, W. H.
Freeman and Company, New York, 1979

29

[17] M. R. Garey, D.S. Johnson and L. Stockmeyer, Some simplified NP-
complete graph problems, Theoretical Comp. Science 1 (1976), 237–267

[18] J. H̊astad, Some optimal inapproximability results, in STOC ’97 (El
Paso, TX), ACM, New York, 1–10

[19] S. Janson, On concentration of probability, in Contemporary Combina-
torics, ed. B. Bollobás, Bolyai Society Mathematical Studies 10, János
Bolyai Mathematical Society, Budapest and Springer, Berlin, 2002,
289–301

[20] M. Jerrum and G. B. Sorkin, The Metropolis algorithm for graph bi-
section, Discrete Appl. Math. 82 (1998), 155–175

[21] A. Juels,Topics in Black-box Combinatorial Function Optimization,
U.C. Berkeley Ph.D. Thesis Dissertation, 1996.

[22] A. Juels and M. Peinado, Hiding Cliques for Cryptographic Security, in
Proceedings of the ninth annual ACM-SIAM Symposium on Discrete
Algorithms, ACM Press, 1998

[23] V. Kann, S. Khanna, J. Lagergren and A. Panconesi, On the hardness
of approximating Max k-Cut and its dual, Chicago J. Theoret. Comput.
Sci. 1997, Article 2, 18 pp. (electronic)

[24] L. Kučera, Expected complexity of graph partitioning problems, Dis-
crete Applied Mathematics 57 (1995), 193–212

[25] C.H. Papadimitriou and M. Yannakakis, Optimization, approximation,
and complexity classes, J. Comput. System Sci. 43 (1991), 425–440

[26] V. V. Petrov, Sums of independent random variables, Translated from
the Russian by A. A. Brown, Ergebnisse der Mathematik und ihrer
Grenzgebiete, Band 82, Springer-Verlag, New York-Heidelberg, 1975,
x+346pp.

[27] R. Shamir and D. Tsur, Improved algorithms for the random cluster
model, SWAT 2002, Lecture Notes in Computer Science 2368 (2002),
230–239

30

