
Polynomial bounds for chromatic number
VIII. Excluding a path and a complete multipartite graph

Tung Nguyen1

Princeton University, Princeton, NJ 08544

Alex Scott2

Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK

Paul Seymour3

Princeton University, Princeton, NJ 08544

January 9, 2023; revised December 26, 2023

1Supported by AFOSR grant FA9550-22-1-0234 and NSF grant DMS-2154169.
2Research supported by EPSRC grant EP/X013642/1.
3Supported by AFOSR grant FA9550-22-1-0234 and NSF grant DMS-2154169.



Abstract

We prove that for every path H, and every integer d, there is a polynomial f such that every graph
G with chromatic number greater than f(t) either contains H as an induced subgraph, or contains
as a subgraph the complete d-partite graph with parts of cardinality t. For t = 1 and general d this
is a classical theorem of Gyárfás, and for d = 2 and general t this is a theorem of Bonamy et al.



1 Introduction

A graph is H-free if it contains no induced copy of H. The Gyárfás-Sumner conjecture [6, 20] says:

1.1 Conjecture: For every forest H, and every k, every H-free graph that does not contain a clique
on k vertices has bounded chromatic number.

This is known only for a few special kinds of forest (see [19] for a survey). It is known when H is a
path: this was proved by Gyárfás [6] in the original paper proposing the Gyárfás-Sumner conjecture,
with an elegant proof technique now known as the “Gyárfás path” method. But even when H is a
path, and indeed even when H is the five-vertex path P5, it is not known whether the bound in 1.1
is polynomial in k (the best current bound is that every P5-free graph G which does not contain a
clique on k vertices has chromatic number χ(G) ≤ klog2 k [16]).

There is a stronger conjecture, which has a complicated parentage (it resulted from the joining of
1.1 and an open special case of a false conjecture of Esperet [4]):

1.2 Conjecture: For every forest H, there is a polynomial f(k) such that for every k ≥ 0, every
H-free graph that does not contain a clique on k vertices has chromatic number at most f(k).

So far the conjecture is only known for a few forests H, including all trees that do not contain P5 as
a subgraph (see [14, 15, 3, 12]).

If we exclude a complete bipartite graphKt,t rather than a clique, we can do better: the conjectures
1.1 and 1.2 become theorems. Rödl [9] proved the analogue of 1.1, that:

1.3 Theorem: For every forest H, and every t, every H-free graph that does not contain Kt,t as a
subgraph has bounded chromatic number.

The analogue of 1.2 (that is, 1.3 with polynomial bounds) is also now known. It was proved first for
the case when H is a path by Bonamy et al. [1]. Two of us, with Spirkl [13], subsequently proved it
for all forests:

1.4 Theorem: For every forest H there is a polynomial f(t) such that for every t ≥ 1, every H-free
graph that does not contain Kt,t as a subgraph has chromatic number at most f(t).

What about excluding the tripartite graph Kt,t,t? Or, more generally, excluding as a subgraph
the complete d-partite graph with parts of cardinality t, which we denote by Kd(t)? We will show:

1.5 Theorem: For every path H and all d ≥ 1, there is a polynomial f such that, for all t ≥ 1, if
a graph G is H-free and does not contain Kd(t) as a subgraph, then χ(G) ≤ f(t).

For t = 1 and general d this is Gyárfás’ result for paths, and for d = 2 and general t this is the
theorem of Bonamy et al.

Let us say a graph H is multibounding if for every d ≥ 1, there is a polynomial f(t) such that, for
all t ≥ 1, if a graph G is H-free and does not contain Kd(t) as a subgraph, then χ(G) ≤ f(t). It is
easy to see that every multibounding graph H must be a forest and must satisfy the Gyárfás-Sumner
conjecture (take t = 1), and any forest satisfying 1.2 is multibounding. We propose:

1.6 Conjecture: Every forest is multibounding.

Among all the forests that are known to satisfy 1.1, which can we show are multibounding?

1



• Two of us [17] showed that every tree of radius two is multibounding, strengthening the theorem
of Kierstead and Penrice [8] that every tree H of radius two satisfies 1.1.

• In section 2 of this paper we will show that paths are multibounding, strengthening Gyárfás’
theorem that paths satisfy 1.1.

• A broom is obtained from a path with one end v by adding leaves adjacent to v, and in section
3 we will show that brooms are also multibounding, strengthening a result of Gyárfás that
brooms satisfy 1.1.

• Finally, in section 4 we will show that ifH is a forest and each of its components is multibounding
then H is multibounding.

2 The proof of 1.5

The proof uses a new version of the “Gyárfás path” method. The usual Gyárfás path technique goes
by induction on the clique number: the idea (very roughly) is that the inductive hypothesis allows
us to assume that neighbourhoods have small chromatic number, and it is then possible to walk
step-by-step into the graph, always heading towards an unexplored portion of the graph with large
chromatic number. At each step, we have visited only a bounded number of vertices, and so the
portion of the graph in the neighbourhood of the explored set has bounded chromatic number.

This argument does not give polynomial bounds in our setting, as the induction pushes up the
bounds too quickly. Here, we are concerned with complete d-partite graphs Kd(t), and argue by
induction on d. Rather than a simple induction using neighbourhoods, we instead use the fact that
for any t vertices their common neighbourhood does not contain Kd−1(t) and so by induction has
small chromatic number (at most polynomial in t). It follows that, if H is a subgraph with large
chromatic number, then there are at most t − 1 vertices adjacent to almost all (in an appropriate
sense) of H. We now make an argument analogous to the Gyárfás path argument, but rather than
one step at a time, we move in a sequence of short dashes, and need to be more careful about the
parts of the graph that we explore. At each stage, we make sure we are attached to a subgraph H
that is both highly connected and has large chromatic number; we identify the next subgraph H ′ ⊆ H
(again, highly connected and with large chromatic number), and then take a path through H to H ′,
using the connectivity to avoid any (at most t− 1) “dangerous” vertices that can see almost all of H ′.
Iterating the argument gives the required path.

We need a lemma:

2.1 Lemma For all integers t > 0, if G has chromatic number at least 4t, then G has a t-connected
induced subgraph with chromatic number at least χ(G)− 2t.

This is proved in [10], but weaker statements have been proved in several other papers: for instance,
by Girão and Narayanan [5], and by Penev, Thomassé and Trotignon [11], who proved:

2.2 Theorem: For all integers t > 0, if G has chromatic number at least 2(t− 1)2 + 1, then G has
a t-connected induced subgraph with chromatic number at least χ(G)− 2t+ 3.

(Any statement of this form is good enough for the application here, with appropriate adjustment of
the constants.)
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If X ⊆ V (G), we define χ(X) = χ(G[X]). Let X,Y be disjoint subsets of V (G), where |X| = t
and every vertex in Y is adjacent to every vertex in X. We call (X,Y ) a t-biclique, and its value is
χ(Y ). For integers p, t ≥ 1, let us say a (p, t)-balloon (P, Y ) in G consists of an induced path P of G
with vertices v1-v2- · · · -vp in order, and a subset Y ⊆ V (G), with the following properties:

• v1, . . . , vp−1 /∈ Y , vp ∈ Y , none of v1, . . . , vp−2 have a neighbour in Y , and if p ≥ 2 then vp is
the unique neighbour of vp−1 in Y ; and

• G[Y ] is t-connected.

The value of the (p, t)-balloon (P, Y ) is χ(Z), where Z is the set of vertices in Y nonadjacent to vp
(and so vp ∈ Z).

2.3 Lemma: For every graph G, and all integers p, q, s, t ≥ 1, if G contains no (p, t)-balloon of
value at least q, and G contains no t-biclique of value s, then

χ(G) ≤ (1 + t+ · · ·+ tp−1)(s+ t(2t+ 9)) + tpq.

Proof. For integers p, q, s, t ≥ 1, define

k(p, q, s, t) = (1 + t+ · · ·+ tp−1)(s+ t(2t+ 9)) + tpq.

We proceed by induction on p. Suppose first that p = 1, and χ(G) > k(1, q, s, t). We want to find a
(1, t)-balloon of value at least q; that is, a set Y and a vertex v ∈ Y such that G[Y ] is t-connected
and the non-neighbours of v in Y induce a subgraph with chromatic number at least q. By 2.1, since
χ(G) > k(1, q, s, t) ≥ 4t, G has a t-connected induced subgraph G[Z] say with chromatic number
at least χ(G) − 2t. Since χ(G) − 2t ≥ k(1, q, s, t) − 2t ≥ t, there exist t distinct vertices in Z, say
z1, . . . , zt. For each i, let Xi be the set of vertices in Z \ {zi} nonadjacent to zi. Since G[Z] is t-
connected, we may assume thatG[Xi] has chromatic number at most q for 1 ≤ i ≤ t, and hence so does
G[Xi∪{zi}] since q ≥ 1. Thus the union of the sets X1, . . . , Xt and {z1, . . . , zt} has chromatic number
at most tq. Moreover, since G contains no t-biclique of value s, the set of vertices in Z \ {z1, . . . , zt}
adjacent to all of z1, . . . , zt has chromatic number less than s. Consequently χ(Z) ≤ s + tq, and so
χ(G) ≤ s+ t(q + 2) ≤ k(1, q, s, t) and the theorem holds.

Thus we may assume that p ≥ 2, and theorem holds for p − 1 (and all values of q, s, t). Let
q′ = s + t(2t + 9) + tq. In particular, we may assume that G contains a (p − 1, t)-balloon of value
q′, since k(p − 1, q′, s, t) = k(p, q, s, t). We assume for a contradiction that χ(G) > k(p, q, s, t). Let
(P ′, Y ′) be a (p−1, t)-balloon of value q′, where P ′ has vertices v1- · · · -vp−1. Let Z ′ be the set of ver-
tices in Y ′ nonadjacent to vp−1; thus, χ(Z ′) ≥ q′. Since q′ ≥ 12t, 2.1 implies that there exists Y ⊆ Z ′
such that G[Y ] is 3t-connected and χ(G[Y ]) ≥ q′ − 6t. Let X be the set of all vertices v ∈ Y ′ such
that the set of vertices in Y different from and nonadjacent to v has chromatic number less than q+2t.

(1) |X| < t.

Suppose that |X| ≥ t, and choose X ′ ⊆ X with |X ′| = t. Since G contains no t-biclique of value s,
the set of vertices in Y \X ′ that are adjacent to every vertex in X ′ has chromatic number less than
s. But for each v ∈ X ′, the set of vertices in Y different from and nonadjacent to v has chromatic
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number less than q+2t, and hence so does the union of this set and {v}. But Y is the union of these
subsets; so χ(Y ) < s+ t(q + 2t) ≤ q′ − 6t ≤ χ(Y ), a contradiction. This proves (1).

Since G[Y ′] is t-connected, and vp−1 /∈ X, and Y 6⊆ X (because G[Y ] is 3t-connected and hence
|Y | ≥ 3t + 1 ≥ t), there is an induced path Q of G[Y ′] between vp−1 and Y with no vertex in
X. Choose Q minimal, and let its vertices be vp−1 = u1- · · · -uk in order, where uk ∈ Y . Hence
k ≥ 3, since u1 = vp−1 has no neighbour in Y . From the minimality of Q, none of u1, . . . , uk−1
belong to Y , and none of u1, . . . , uk−2 have a neighbour in Y \X. Let R be the path with vertices
v1- · · · -vp−1-u2- · · · -uk−1-uk. Now there are two cases.

First, suppose that uk−1 has at least t neighbours in Y \X. Let R′ be a subpath of R \ {uk} with
p vertices and one end uk−1. Since G[(Y \X)∪{uk−1}] is t-connected (because G[Y ] is 3t-connected,
and |X| < t, and uk−1 has at least t neighbours in Y \ X), and the set of non-neighbours of uk−1
in Y \ X has chromatic number at least q + t ≥ q (because uk−1 /∈ X and |X| < t) it follows that
(R′, (Y \X) ∪ {uk−1}) is a (p, t)-balloon of value at least q, a contradiction.

Now suppose that uk−1 has fewer than t neighbours in Y \X. The vertex uk is one such neighbour;
let N be the set of the neighbours of uk−1 in Y \X different from uk. Let R′ be a subpath of R with
p vertices and one end uk. Since G[Y \ (X ∪ N)] is t-connected (because G[Y ] is 3t-connected and
|X ∪N | ≤ 2t), and the set of non-neighbours of uk in Y \ (X ∪N) has chromatic number at least q
(because uk /∈ X and |X ∪ N | < 2t) it follows that (R′, Y \ (X ∪ N)) is a (p, t)-balloon of value at
least q, a contradiction. This proves 2.3.

Let us deduce that all paths are multibounding, that is, 1.5, which we restate:

2.4 Theorem: For all d ≥ 1 and every path H, there is a polynomial f such that, for all t ≥ 1, if
a graph G is H-free and does not contain Kd(t) as a subgraph, then χ(G) ≤ f(t).

Proof. Let H have p vertices. H-free graphs contain no (p, t)-balloon of value 1, so by 2.3, there
exist integers b, c ≥ 1 such that for all integers s, t ≥ 1, and every graph G, if G is H-free and contains
no t-biclique of value s, then χ(G) ≤ btcs.

We prove by induction on d that if G is H-free and does not contain Kd(t) as a subgraph, then
χ(G) ≤ (btc)d. If d = 1, graphs not containing Kd(t) as a subgraph have fewer than t vertices, and
so have chromatic number less than t ≤ btc (since b, c ≥ 1) and the claim holds. Thus we assume
that d > 1 and the claim holds for d− 1. Let G be H-free, with chromatic number more than (btc)d;
we will show that G contains Kd(t) as a subgraph. Since χ(G) > (btc)d, we deduce from the choice
of b, c (taking s = (bct)d−1) that G contains a t-biclique (X,Y ) of value (bct)d−1. From the inductive
hypothesis applied to G[Y ], G[Y ] contains Kd−1(t) as a subgraph. But then, adding X, we find that
G contains Kd(t) as a subgraph. This proves 1.5.

The proof we just gave is redundant, because 1.5 follows from the analogous theorem 3.2 for
brooms which we will prove later, but the proof above is a little simpler than the proof of 3.2.

3 Brooms

A broom is obtained from a path with one end v by adding leaves adjacent to v. In this section we
deduce from 2.3 that brooms are multibounding. Essentially the proof of 1.5 still works. For k ≥ 1,
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let Sk be the star with k+1 vertices: that is, a tree in which some vertex is incident with every edge.
Let ω(G) denote the size of the largest clique of G. We need the following lemma, due to Gyárfás [7]:

3.1 Lemma: If G is Sk-free, then χ(G) ≤ ω(G)k.

We deduce that brooms are multibounding, that is:

3.2 Theorem: For all d ≥ 1 and every broom H, there is a polynomial f such that, for all t ≥ 1,
if a graph G is H-free and does not contain Kd(t) as a subgraph, then χ(G) ≤ f(t).

Proof. Let H be obtained from a p-vertex path by adding r new vertices each adjacent to one (and
the same) end of the path. We prove the result by induction on d.

If d = 1 then the result holds trivially, because graphs without K1(t) as a subgraph have fewer
than t vertices. So we assume that d > 1 and the result holds for d−1. Let g(t) be the corresponding
polynomial. Define

f(t) = (1 + t+ · · ·+ tp−1)(g(t) + 1 + t(2t+ 9)) + tp(dt)2r.

Now let G be an H-free graph that does not contain Kd(t) as a subgraph; we will show that
χ(G) ≤ f(t).

(1) G contains no (p, t)-balloon of value (dt)2r.

Suppose that (P, Y ) is such a (p, t)-balloon, where P has vertices v1- · · · -vp in order. Since G does
not contain Kd(t) as a subgraph, it follows that ω(G) < dt, and so χ(Y ) > ω(G)2r, and therefore
G[Y ] contains an induced copy of S2r by 3.1. Let a ∈ Y , and let {b1, . . . , b2r} ⊆ Y \ {a} be a
stable set of neighbours of a. Since G[Y ] is connected, there is an induced path Q from vp to a,
say with vertices vp = q1- · · · -qn = a. Choose i ∈ {1, . . . , n} minimum such that qi belongs to or
is adjacent to a vertex in {a, b1, . . . , b2r}. If qi ∈ {a, b1, . . . , b2r}, then i = 1 from the minimality of
i, and the subgraph induced on {v1, . . . , vp, a, b1, . . . , b2r} contains a copy of H, a contradiction. So
qi 6= {a, b1, . . . , b2r}. Let N be the set of neighbours in {a, b1, . . . , b2r} of qi. If N contains at least
r of {b1, . . . , b2r}, then the subgraph induced on {v1, . . . , vp, q1, . . . , qi} ∪ N contains a copy of H,
a contradiction. So we may assume that b1, . . . , br /∈ N . If a ∈ N then the subgraph induced on
{v1, . . . , vp, q1, . . . , qi, a, b1, . . . , br} contains a copy of H, a contradiction. If a /∈ N , we may assume
that br+1 ∈ N , and then the subgraph induced on {v1, . . . , vp, q1, . . . , qi, a, b1, . . . , br, br+1} contains a
copy of H, a contradiction. This proves (1).

(2) G contains no t-biclique of value g(t) + 1.

If (X,Y ) is such a t-biclique, from the inductive hypothesis G[Y ] contains Kd−1(t) as a subgraph,
and hence G contains Kd(t) as a subgraph, a contradiction. This proves (2).

From (1), (2) and 2.3,

χ(G) ≤ (1 + t+ · · ·+ tp−1)(g(t) + 1 + t(2t+ 9)) + tp(dt)2r = f(t).

This proves 3.2.
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For every forest H that is known to satisfy the Gyárfás-Sumner conjecture 1.1, one might hope
to show that H is multibounding. So far, we know that trees of radius two, and brooms, are multi-
bounding. What is the next simplest forest we could try? There are several candidates for this:
disjoint unions of trees that are known to be multibounding? Subdivisions of a star, or of a claw?
Double brooms?

We have answered the first of these, as we shall explain in the next section, and made some
progress on the third, as we explain now. A double broom is a tree obtained from a path by adding
new vertices each adjacent to an end of the path, but not necessarily all to the same end. It was
proved in [18] that double brooms satisfy 1.1.

Let B(p, r, s) be the double broom obtained from a p-vertex path by adding r leaves at one end
and s at the other. We have not been able to show that double brooms are multibounding, but we
proved the following:

3.3 Theorem: For all d, p, r, s, t ≥ 1, there is a polynomial f(t), such that if a graph G does not
contain Kd(t), and its chromatic number is more than f(t), then G contains a double broom B(p′, r, s)
for some p′ ≥ p.

The proof is a modification of the proof of 2.3, beginning with a large star induced subgraph and
growing a balloon tethered to this star. Here is a sketch. We may assume that r = s, and that
G has chromatic number at least some large polynomial in t, and G does not contain a t-biclique
with large value (again, value at least a large polynomial in t, but not so large). We may assume
that G is t-connected, by 2.1. For each v ∈ V (G), N(v) and M(v) denote its set of neighbours and
non-neighbours. Since there is no t-biclique with large value, there are fewer than t vertices v for
which χ(M(v)) is small. So there exists v with |N(v)| and χ(M(v)) large. Choose N ⊆ N(v) with
cardinality equal to a large polynomial in t.

Suppose there is a stable subset S ⊆ N with |S| = 3s such that the set X of vertices in M(v)
with no neighbour in S has large chromatic number. Apply 2.1 to obtain a t-connected subset Y of
X, still with large χ. Fewer than t vertices in V (G) \ Y are adjacent to almost all of Y , so there is
a path from v to Y avoiding such vertices. Let v, v1, v2 be the first three vertices of this path (we
may assume that no other vertices of the path have neighbours in S). Every vertex in S is either
adjacent to neither of v1, v2, or adjacent to v1 and not to v2, or adjacent to v2; and since |S| = 3s, at
least s vertices in S behave the same. In each case, we have half the double broom, and now use the
argument of 3.2 to obtain the other half.

If there is no such S, then since there are only polynomially many choices of stable sets in N with
size 3s (because |N | is a polynomial in t), the set of all vertices u ∈ M(v) such that N(v) ∩M(u)
contains a stable set of size 3s has small chromatic number; and so the set Z of u ∈M(v) such that
N(v) ∩M(u) contains no such stable set has large chromatic number. But if N(v) ∩M(u) contains
no stable set of size 3s, then its cardinality is at most a polynomial in t (by Ramsey’s theorem,
since ω(G) ≤ td). So every vertex in Z is adjacent to almost all of N(v). Inductively, G[Z] contains
Kd−1(t) as a subgraph (K say), and each vertex of K has only a few non-neighbours in N(v); so K
has at least t common neighbours in N(t), giving a copy of Kd(t), a contradiction. This ends the
sketch of the proof of 3.3.
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4 Disjoint unions

In this section we show that:

4.1 Theorem: If every component of H is multibounding, then H is multibounding.

We will deduce this by applying a strengthened version of a theorem from [2]. It turns out that a
modification of the proof in [2] gives a stronger result than was noticed at the time. We say J is the
complete join of J1, J2 if the complement of J is the disjoint union of the complements of J1 and J2.

The theorem from [2] says that if H is the disjoint union of H1, H2, and J is the complete join
J1 and J2, and G is both H- and J-free, then V (G) can be partitioned into a bounded number of
parts such that for each part X, G[X] is either H1-free or H2-free or J1-free or J2-free (unless all of
H1, H2, J1, J2 have only one vertex, when the statement is false). We need to improve this in two
ways. First, we want to tighten the bound on the number of parts, which turns out only to depend
on |H1| and |J1|, and is polynomial in |J1|; and second, we want to apply it to 4.1, taking J to be
Kd(t). This presents a difficulty, because in 4.1, we are working with containing Kd(t) as a subgraph,
not as an induced subgraph, and we need to work around this somehow. The easiest fix seems to
be to work with excluding sets of graphs rather than single graphs: because excluding, say, Kt,t as
a subgraph is equivalent to excluding as induced subgraphs all graphs with 2t vertices in which half
the vertices are adjacent to the other half.

Let H be a nonempty class of graphs. A graph is H-free if it is H-free for each H ∈ H. The
max-size of H is the maximum number of vertices of members of H, if this maximum exists, and
∞ otherwise; and the min-size is the minimum number of vertices of members of H. If H1,H2 are
classes of graphs, we denote by H1]H2 the class of all graphs that are the disjoint union of a member
of H1 and a member of H2; and H1 ∗ H2 is the class of all graphs that are the complete join of a
member of H1 and a member of H2.

We will show:

4.2 Lemma: Let H1,H2,J1,J2 be nonempty classes of non-null graphs, and let k ≥ 0 be an integer
such that H1 and J1 both have max-size at most k−2. Let at least one of H1,H2,J1,J2 have min-size
at least two. Let S ∈ H1, let s = |S|, and let n = sks +3. If G is H1 ]H2-free and J1 ∗J2-free, then
V (G) can be partitioned into n sets X1, . . . , Xn, such that for 1 ≤ i ≤ n, G[Xi] is either H1-free or
H2-free or J1-free or J2-free.

Proof. Let us say a subset X ⊆ V (G) is good if G[X] is either H1-free or H2-free or J1-free or
J2-free. For X ⊆ V (G), let µ(X) be the minimum t such that there is a partition of X into t good
sets. (This exists, since at least one of the four classes has min-size at least two, and so all one-vertex
sets are good.) We call µ(X) the measure of X. Let V (S) = {h1, . . . , hs}, and let us add a new
vertex h0 to S, with no neighbours, forming a graph S+.

Now let 1 ≤ q ≤ s, and assume that φ is an isomorphism from S[{hq, . . . , hs}] to some induced
subgraph F of G. We call φ a q-map, and we say that φ is t-general if for 0 ≤ p < q there is a subset
Yp of V (G) \ V (F ) with the following properties:

• the sets Y0, . . . , Yq−1 are pairwise disjoint, and all have measure at least t;

• for q ≤ r ≤ s, and 0 ≤ p < q, if hr, hp are adjacent in S+ then φ(hr) is adjacent to every vertex
of Yp in G, and if hr, hp are nonadjacent in S+ then φ(hr) is nonadjacent to every vertex of Yp
in G.
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We call the list of sets Y0, . . . , Yp−1 a choice of t-minions for φ, and F the image of φ. We deduce:

(1) No 1-map is 2-general.

Suppose that φ is a 2-general 1-map, and let Y0 be a choice of the (single) t-minion. Since µ(Y0) > 1,
G[Y0] is not H2-free; but there are no edges between Y0 and V (F ), and F is isomorphic to S, contra-
dicting that G is H1 ]H2-free. This proves (1).

(2) For 1 ≤ q < s and t ≥ 2, if no q-map is t-general then no (q + 1)-map is t′-general, where
t′ = 2 + (t− 1)(k − 2). Consequently no s-map is ks−1-general.

Suppose that φ is a t′-general (q + 1)-map, let Y0, . . . , Yq be some choice of t-minions for φ, and
let F be its image. Let v ∈ Yq. If we extend φ by mapping hq to v, we obtain a q-map, which
therefore is not t-general. Consequently, either:

• for some p ∈ {0, . . . , q − 1}, hp, hq are adjacent in S+, and the set of vertices in Yq adjacent to
v in G has measure at most t− 1; or

• for some p ∈ {0, . . . , q−1}, hp, hq are nonadjacent in S+, and the set of vertices in Yq nonadjacent
to v in G has measure at most t− 1.

In either case we say p is a problem for v. For 0 ≤ p < q, let Vp be the set of v ∈ Yq such that p is a
problem for v. Thus V0 ∪ · · · ∪ Vq−1 = Yq, and since

µ(Yq) ≥ t′ ≥ (t− 1)|S| ≥ |S| = s > q,

it follows that µ(Vp) > 1 for some p ∈ {0, . . . , q − 1}.
Suppose that hp, hq are adjacent in S+. Since µ(Vp) > 1, G[Vp] contains a copy F of some member

H1 ∈ H1. For each v ∈ V (F ), the set of vertices in Yq adjacent to v has measure at most t− 1, and
so the set of vertices in Yq with a neighbour in V (F ) has measure at most |F |(t− 1) = |H1|(t− 1) ≤
(k − 2)(t − 1). Since µ(Yq) ≥ t′, the set of vertices X in V (F1) with no neighbour in V (F1) has
measure at least t′ − (k − 2)(t− 1) = 2 and so contains a copy of some member of H2, contradicting
that G is H1 ]H2-free.

Now suppose that hp, hq are nonadjacent in S+. Since µ(Vp) > 1, G[Vp] contains a copy F of
some member J1 ∈ J1. For each v ∈ V (F ), the set of vertices in Yq nonadjacent to v has measure
at most t − 1, and so the set of vertices in Yq with a nonneighbour in V (F1) has measure at most
|F |(t− 1) ≤ (k− 2)(t− 1). Since µ(Yq) ≥ t′, the set of vertices X in V (F1) that are adjacent to every
vertex in V (F1) has measure at least t′ − (k − 2)(t− 1) ≥ 2 and so contains a copy of some member
of J2, contradicting that G is J1 ∗ J2-free. This proves the first assertion.

For the second assertion, (1) and the first assertion imply that no 2-map is k-general. Also the
first assertion implies that for 1 ≤ q < s and t ≥ 1, if no q-map is t-general then no (q + 1)-map
is kt-general. From (1), it follows that for 1 ≤ q ≤ s and t ≥ 1, no q-map is kq−1-general, and in
particular, no s-map is ks−1-general. This proves (2).

For each v ∈ V (G), let N(v) be the set of neighbours of v in G, and let M(v) be the set of its
non-neighbours; so M(v), N(v) have union V (G) \ {v}.
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(3) For every vertex v ∈ V (G), either µ(N(v)) < sks−1 or µ(M(v)) < sks−1.

Let hs have a neighbours and b non-neighbours in S+. Thus a ≤ s − 1 and b ≤ s. Let φ be
the function mapping hs to v. Thus φ is an s-map, and so is not ks−1-general. Consequently, either
N(v) cannot be partitioned into a sets each with measure at least ks−1, orM(v) cannot be partitioned
into b sets each with measure at least ks−1. But a minimal subset of N(v) with measure at least ks−1

has measure ks−1 (since singleton sets are good); and so, by successively extracting minimal sets with
measure at least ks−1, we deduce that either µ(N(v)) < aks−1 , or µ(M(v)) < bks−1. In particular,
one of N(v),M(v) has measure less than sks−1. This proves (3).

Let A be the set of v ∈ V (G) such that N(v) has measure at most sks−1, and let B be the set
of v ∈ V (G) such that M(v) has measure at most sks−1. If µ(A) > 1, then G[A] contains a copy
F of some member of H1, and the set of vertices of G with a neighbour in V (F ) has measure at
most sks−1|F | ≤ sks; and since the set of vertices with no neighbours in V (F ) has measure at most
1 (because it induces an H2-free subgraph) and V (F ) has measure at most 2, it follows that V (G)
has measure at most sks + 3. If µ(B) > 1, then G[B] contains a copy of some member of J1, and it
follows similarly that µ(V (G)) ≤ sks + 3. If neither of these, then µ(V (G)) ≤ µ(A) + µ(B) ≤ 2. In
each case the theorem holds. This proves 4.2.

Let us deduce 4.1, which is implied by the following:

4.3 Theorem: Let H be the disjoint union of H1, H2, and suppose that H1, H2 are both multibound-
ing. Then H is multibounding.

Proof. We need to show that for every d ≥ 1, there is a polynomial fd(t) such that, for all t ≥ 1,
if a graph G is H-free and does not contain Kd(t) as a subgraph, then χ(G) ≤ fd(t). We show this
by induction on d. If d = 1, the statement is trivial, taking f1(t) = t, so we may assume that d > 1,
and the statement holds for all d′ < d. For i = 1, 2, since Hi is multibounding, there is a polynomial
gi(t) such that for all t ≥ 1, if a graph G is Hi-free and does not contain Kd(t) as a subgraph, then
χ(G) ≤ gi(t). Let g(t) be a polynomial such that g1(t), g2(t) ≤ g(t), and fd′(t) ≤ g(t) for all d′ with
1 ≤ d′ < d.

Let k = 2 + |H1| + d1t, and s = |H1|, and let fd(t) = (sks + 3)g(t). We will show that for all
t ≥ 1, if a graph G is H-free and does not contain Kd(t) as a subgraph, then χ(G) ≤ fd(t).

We may assume that at least one of H1, H2 has more than one vertex. Let Hi = {Hi} for i = 1, 2.
Thus G is H1 ] H2-free. Choose integers d1, d2 > 0 with d1 + d2 = d. For i = 1, 2, let Ji be the
class of all graphs with exactly dit vertices that have Kdi(t) as a subgraph. Since G does not contain
Kd(t) as a subgraph, it is J1 ∗ J2-free, and so we can apply 4.2. By 4.2, it follows that V (G) can
be partitioned into n = sks + 3 sets X1, . . . , Xn, such that for 1 ≤ i ≤ n, G[Xi] is either H1-free or
H2-free or J1-free or J2-free. If G[Xi] is H1-free, then χ(G[Xi]) ≤ g1(t) ≤ g(t), and similarly if G[Xi]
is H2-free, then χ(G[Xi]) ≤ g(t). If G[Xi] is J1-free, then it does not contain Kd1(t) as a subgraph,
and so χ(G[Xi]) ≤ fd1(t) ≤ g(t), and similarly if G[Xi] is J2-free, then χ(G[Xi]) ≤ g(t). So in each
case, χ(G[Xi]) ≤ g(t), and hence χ(G) ≤ ng(t) = fd(t). This proves 4.1.

While we are on the subject, let us give another nice application of 4.2. It is known that if every
component of a forest H satisfies the Gyárfás-Sumner conjecture 1.1 then H also satisfies it. It is not
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known whether, if every component of a forest H satisfies 1.2, then H necessarily satisfies 1.2 (see [3]);
but this is true for a related property. Let us say a graph H is near-Esperet if there exists c > 0 such
that for all d > 0, every H-free graph G with ω(G) < d satisfies χ(G) ≤ dc log d. (Logarithms are to
base two throughout.) For instance, the theorem of [17] says that the five-vertex path is near-Esperet.
Here, we prove that if every component of H is near-Esperet then H is near-Esperet, because of the
following:

4.4 Theorem: Let H be the disjoint union of H1, H2, and let H1, H2 be near-Esperet. Then H is
near-Esperet.

Proof. For i = 1, 2 we know that Hi is near-Esperet, so there exists ci > 0 such that for all d > 0,
every {Hi,Kd}-free graph G satisfies χ(G) ≤ dci log d. Let c0 = max(c1, c2). Choose b ≥ 0 such that
|H1|(2 + d + |H1|)|H1| + 3 ≤ db for all d ≥ 2. Define c = max(b + c0, b/ log(3/2)). We will show by
induction on d that for all d ≥ 0, every {H,Kd}-free graph G satisfies χ(G) ≤ dc log d. If d ≤ 2 then
every Kd-free graph G satisfies χ(G) ≤ 1, and the claim holds since c ≥ 0; so we may assume that
d ≥ 2, and the claim holds for all d′ < d. (In fact we could start the induction at any convenient
value of d, since we know that H1 ∪H2 satisfies 1.1.) We may assume that at least one of H1, H2 has
more than one vertex. Choose integers d1, d2 ≤ 2d/3 with d1 + d2 = d, and let Ji be the complete
graph with di vertices for i = 1, 2.

Now let G be H-free, with clique number less than d. Then G does not contain the complete join
of J1, J2, so by 4.2, taking Hi = {Hi} and Ji = {Ji} for i = 1, 2, there is a partition of V (G) into n
sets X1, . . . , Xn, where k = 2 +max(d1, |H1|) and n = |H1|k|H1| + 3, such that for 1 ≤ i ≤ n, G[Xi]
is either H1-free or H2-free or J1-free or J2-free. If G[Xi] is H1-free then χ(Xi) ≤ dc1 log d ≤ dc0 log d,
and similarly if G[Xi] is H2-free then χ(Xi) ≤ dc0 log d. If G[Xi] is J1-free then from the inductive
hypothesis,

χ(Xi) ≤ dc log d11 ≤ (2d/3)c log(2d/3),

and similarly if G[Xi] is J2-free then χ(Xi) ≤ (2d/3)c log(2d/3). Since n ≤ db, it follows that

χ(G) ≤ dbmax
(
dc0 log d, (2d/3)c log(2d/3)

)
.

Thus, to show that χ(G) ≤ dc log d, it suffices to check that

dc log d ≥ dbdc0 log d

and
dc log d ≥ db(2d/3)c log(2d/3).

The first says (taking logarithms)

c(log d)2 ≥ b log d+ c0(log d)
2,

and this is true since b log d ≤ b(log d)2 and c ≥ b+ c0. The second says (taking logarithms)

c(log d)2 ≥ b log d+ c(log(2d/3))2.

Let us write log d = x and log(3/2) = ε; then we need to show that

cx2 ≥ bx+ c(x− ε)2,

that is, 2cεx ≥ bx + cε2. But this is true since cεx ≥ bx and cεx ≥ cε2 (because d > 3/2). This
proves 4.4.
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It is proved in [16] that the five-vertex path P5 is near-Esperet; so an application of 4.4 yields
that every forest that is the disjoint union of copies of P5 is also near-Esperet.
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