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Abstract

We determine to within a constant factor the threshold for the
property that two random k-uniform hypergraphs with edge proba-
bility p have an edge-disjoint packing into the same vertex set. More
generally, we allow the hypergraphs to have different densities. In the
graph case, we prove a stronger result, on packing a random graph
with a fixed graph.

1 Introduction

Let G1 and G2 be two k-uniform hypergraphs of order n. We say that G1

and G2 can be packed if they can be placed onto the same vertex set so that
their edge sets are disjoint.

In the graph case, quite a lot is known. Bollobás and Eldridge [2] and
Catlin [5] independently conjectured that if (∆(G1) + 1)(∆(G2) + 1) ≤ n+ 1
then G1 and G2 can be packed. Sauer and Spencer [12] proved that graphs
G1 and G2 of order n can be packed if ∆(G1)∆(G2) < n/2. Let us note
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that the conjectured bound would be tight: suppose that n = ab− 2, and let
G1 = (b − 1)Ka ∪Ka−2 (the vertex-disjoint union of b − 1 complete graphs
of order a and a complete graph of order a− 2) and G2 = (a− 1)Kb ∪Kb−2.
Then (∆(G1) + 1)(∆(G2) + 1) = n+ 2, but G1 and G2 cannot be packed.

For fixed k ≥ 3, the graph example given above is easy to generalize:
suppose that n = (a − 1)(b − 1)(k − 1) + a + b − 3. Let G1 be the vertex-
disjoint union of b−1 complete k-uniform graphs of order (a−1)(k−1)+1 and
a− 2 isolated vertices; let G2 be the vertex-disjoint union of a− 1 complete
k-uniform graphs of order (b− 1)(k− 1) + 1 and b− 2 isolated vertices. Then
∆(G1)∆(G2) = Θ(ak−1bk−1) = Θ(nk−1), but G1 and G2 cannot be packed.
For another family of examples, choose r < k and fix an r-set A ⊂ [n].
Let G1 have all edges containing A, and G2 be an (n, k, r)-design (these are
now known to exist for suitable n: see Keevash [9]). G1 and G2 cannot be
packed, and we have ∆(G1) = Θ(nk−r) and ∆(G2) = Θ(nr−1), and so again
∆(G1)∆(G2) = Θ(nk−1). On the positive side, much less is known. Teirlinck
[13] (see Alon [1] for further results and discussion) showed that, for n ≥ 7,
any two Steiner triple systems G1, G2 can be packed: note that these satisfy
∆(G1)∆(G2) = Θ(n2). There are also some nice results when one of G1 and
G2 has very small maximal degree: see Rödl, Ruciński and Taraz [11] and
Conlon [6].

In this paper, we consider what happens when G1 and G2 are random
hypergraphs. For integers k, n and p ∈ [0, 1], we write G(n, k, p) for the
random k-uniform hypergraph on n vertices in which each possible edge is
present indepedently with probability p; when k = 2, we write G(n, p) =
G(n, 2, p). In the graph case, with G1 ∈ G(n, p) and G2 ∈ G(n, q), the
extremal results mentioned above suggest that we should expect a condition
of form pqn ≤ c (for suitable c) to be able to pack G1 and G2. More generally,
for k-uniform hypergraphs, we might hope for a condition of form pqnk−1 ≤ c,
as this would give ∆(G1)∆(G2) = O(nk−1) with high probability (i.e. with
probability 1 − o(1) as n → ∞) provided p, q are not extremely small (for
instance min{p, q} � log n/nk−1 is enough). In fact, we shall show here that
it is possible to pack rather denser graphs: if G1 and G2 are both random
then we can allow an additional factor log n in the product pqnk−1, but not
more. (We note that a similar phenomenon occurs when we try to minimize
the overlap of two random hypergraphs: see Bollobás and Scott [3] and Ma,
Naves and Sudakov [10].)

We will prove the following theorem.
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Theorem 1. Let δ ∈ (0, 1). For every k ≥ 2, there exists ε > 0 such that
the following holds. Let p = p(n) and q = q(n) be positive reals such that

• max{p, q} ≤ 1− δ

• pq ≤ ε log n/nk−1.

Let G1 ∈ G(n, k, p) and G2 ∈ G(n, k, q) be random k-uniform hypergraphs of
order n. Then, with high probability, there is a packing of G1 and G2.

Note that if pq = ε log n/nk−1 then with high probability G1 and G2

satisfy ∆(G1)∆(G2) = Θ(nk−1 log n).
The bound on pq in Theorem 1 is easily seen to be sharp up to the

constant. Indeed, if G1 ∈ G(n, k, p) and G2 ∈ G(n, k, q) then the probability
that G1 and G2 can be packed is at most the expected number of packings

n!(1− pq)(
n
k) ≤ exp(n log n− (1 + o(1))pqnk/k!)

which is o(1) if pq ≥ α log n/nk−1 for any constant α > k!. In particular, if
we take p = q, then combining this bound with Theorem 1 shows that the
threshold density for two random k-uniform hypergraphs to be unpackable
is Θ(

√
log n/nk−1).

In the case of graphs, we will in fact prove a much stronger result: it
turns out that we can take just one of the two graphs to be random. Indeed,
we prove the following.

Theorem 2. For all γ,K > 0 and δ ∈ (0, 1) there exists ε > 0 such that the
following holds. Let p = p(n) and q = q(n) be positive reals such that

• p ≤ 1− δ

• q ≤ n−γ

• pqn ≤ ε log n.

Let G1 be a graph of order n with maximal degree at most qn and let G2 ∈
G(n, p). Then with failure probability O(n−K) there is a packing of G1 and
G2.

The rest of the paper is organized as follows. In Section 2 we prove
Theorem 2, and in Section 3 we prove the extension to hypergraphs. We
conclude in Section 4 with some open problems.
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2 Packing random graphs

The aim of this section is to prove Theorem 2. We begin by noting a couple
of standard facts.

We will use the following Chernoff-type inequalities. Let X be a sum of
Bernoulli random variables, and let µ = EX. Then for t > 0, we have

P[X ≤ EX − t] ≤ exp(−t2/2µ) (1)

and
P[X ≥ EX + t] ≤ exp(−t2/(2µ+ 2t/3)) (2)

(see, e.g., [8, Theorems 2.1 and 2.8] or [4, Chapter 2]). Inequality (2) is often
called Bernstein’s inequality.

It will also be useful to note a simple (and standard) fact about the
binomial distribution, see e.g., [8, Corollary 2.4].

Proposition 3. For every K > 0 there is δ > 0 such that if x > 0 and X ∼
Bi(n, p) is a binomial random variable with np ≤ δx then P[X ≥ x] ≤ e−Kx.

Proof. This is standard; we include a proof for completeness. We have,
assuming as we may that x is an integer,

P[X ≥ x] ≤
(
n

x

)
px ≤

(enp
x

)x
≤ (eδ)x

where we have used the standard bound
(
n
k

)
≤ (en/k)k in the second line.

The result follows by choosing δ = e−K−1.

Our first lemma is the following, which shows that, if A is a large, sparse
set system then a random set (of suitable size) is quite likely to be disjoint
from some member of A.

Lemma 4. For all δ, γ ∈ (0, 1) there is ε > 0 such that the following holds
for all sufficiently large n. Let d = n1−γ, let X be any set, and let A be a set
sequence in P(X) such that:

• |A| ≥ n

• every element of X belongs to at most d sets from A

• all sets in A have size at most ε log n.
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Let B ⊂ X be a random set where each element of X independently belongs
to B with probability 1 − δ. Then B is disjoint from at least n1−γ/4 sets of
A, with failure probability O(exp(−nγ/3)).

Proof. This can be proved in more than one way (an alternative proof pointed
out by a referee runs an element exposure martingale on X and then applies
the Hoeffding-Azuma inequality).

We may assume that |A| = n. We choose a small ε > 0, and assume that
n is large. We ignore below insignificant roundings to integers.

We begin by partitioning A into sets of pairwise disjoint elements. Let
G be the intersection graph of A: so the vertices of G are the elements of
A, and G has edges AA′ whenever A ∩ A′ is nonempty. Since every vertex
belongs to at most d sets from A, and every set has size at most ε log n,
each set in A meets at most εd log n other sets. Thus G has maximal degree
at most εd log n. It follows by a theorem of Hajnal and Szemerédi [7] that
G has a colouring with at most εd log n + 1 colours in which the sizes of
distinct colour classes differ by at most 1. Thus we may partition G into
independent sets (and so A into collections of pairwise disjoint sets) of size
at least n/(εd log n+ 1) ≥ nγ/2.

Let A′ be one of these collections of pairwise disjoint sets, and set m =
|A′| ≥ nγ/2. The random set B is disjoint from each member of A′ inde-
pendently with probability at least δε logn = n−ε log(1/δ) > n−0.01γ provided we
have chosen a sufficiently small ε; it follows that the probability that B is
disjoint from fewer than m/nγ/4 sets in A′ is at most(

m

m/nγ/4

)
(1− n−0.01γ)m−m/nγ/4 ≤

(
em

m/nγ/4

)m/nγ/4
exp(−n−0.01γm/2)

< em logn/nγ/4e−n
−0.01γm/2

< e−n
−0.01γm/4,

provided n is sufficiently large. There are εd log n + 1 = o(n) colour classes,

so with failure probability o(ne−n
−0.01γnγ/2/4) = O(e−n

γ/3
), B is disjoint from

at least a fraction n−γ/4 of the sets in each colour class, and hence is disjoint
from at least n1−γ/4 sets in A.

For positive integers m,n, and p ∈ [0, 1] we write S(n,m, p) for a ran-
dom sequence (Si)

m
i=1 of m subsets of [n], where the subsets are independent

and each set independently contains each element of [n] with probability p.
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Equivalently, we could consider a random m × n matrix with entries 0 and
1, where each element independently takes value 1 with probability p. We
shall refer to S ∈ S(n,m, p) as a random set sequence.

Given two random set sequences A ∈ S(m,n, p) and A′ ∈ S(m,n, q),
where m ≤ n, it will be useful to pair up the sets from A and A′ so that
each pair is disjoint. For A ∈ A and A′ ∈ A′, the probability that A and A′

are disjoint is (1− pq)n ≤ exp(−npq), so if pq > 2 log n/n it is likely that we
do not have any disjoint pairs at all. However, if pq < c log n/n, for small
enough c, we will show that such a pairing is possible. In fact we will prove a
much stronger result: we can take just one of the set systems to be random,
provided the other satisfies certain sparsity conditions.

Lemma 5. For all K > 0 and η, γ, δ ∈ (0, 1) there is ε > 0 such that the
following holds for all sufficiently large n. Suppose that p = p(n), q = q(n) ∈
[0, 1] satisfy 0 ≤ p < 1− δ and pq < ε log n/n. Let m ∈ [nη, n] be an integer
and set d = m1−γ, and suppose that A = (Ai)

m
i=1 is a sequence of subsets of

[n] such that

• every i ∈ [n] belongs to at most d sets from A

• maxA∈A |A| ≤ qn.

Let B = (Bi)
m
i=1 ∈ S(n,m, p) be a random set sequence, and let H be the

bipartite graph with vertex classes A and B, where we join Ai to Bj if Ai ∩
Bj = ∅. Then, with failure probability O(n−K), H has minimal degree at
least m1−γ/4; furthermore, H has a perfect matching.

Proof. Let ε, ε′ > 0 be fixed, small quantities (with ε � ε′) that we shall
choose later. We generate B in two steps: we first choose a random set
sequence B′ = (B′i)

m
i=1 ∈ S(n,m, (1 + δ)p), and then obtain B from B′ by

deleting each element from each set B′i independently with probability δ′ =
δ/(1 + δ).

Note first that for any i, j, the distribution of the intersection |Ai∩B′j| is
stochastically dominated by a binomial Bi(nq, p(1 + δ)). So for fixed ε′ > 0,
it follows from Proposition 3 that we have |Ai ∩ B′j| < ε′ logm for all i and
j, with failure probability O(n−K), provided ε is small enough in terms of ε′.
We may therefore assume from now on that this event occurs, and condition
on the choice of B′ (so B′ is fixed and B is still random).

Now consider the bipartite graph H. We need to prove that H has a
perfect matching. We shall apply Hall’s condition to B, so it is enough to
show that for every subset S ⊂ B we have |ΓH(S)| ≥ |S|.
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Consider B′i ∈ B′, and let A′i = (Aj ∩B′i)mj=1 be the restriction of A to B′i.
Then every vertex belongs to at most d sets from A′i and maxj |Aj ∩ B′i| <
ε′ logm, so provided ε′ is sufficiently small we can apply Lemma 4 to deduce
that with failure probability O(e−m

γ/3
) the set Bi is disjoint from at least

m1−γ/4 sets from A′i. This occurs independently for each i (recall that we are

conditioning on B′), so with failure probability O(me−m
γ/3

) = O(n−K) every
vertex in B has degree at least m1−γ/4 in H, and so Hall’s condition holds
for every S ⊂ B with |S| < m1−γ/4.

Now consider an element Ai ∈ A. Each B′j meets Ai in at most ε′ logm
vertices, and so each Bj independently is disjoint from Ai with probability at
least (δ′)ε

′ logm > m−γ/6, provided ε′ is sufficiently small. The number of Bj

disjoint from Ai is thus a binomial with expectation at least m1−γ/6 and so,
by (1), is at least m1−γ/6/2 > m1−γ/4, with failure probability O(e−m

1−γ/6/8).

So with failure probability O(me−m
1−γ/6/8) = O(n−K) every vertex in A has

degree at least m1−γ/4 in H, and so Hall’s condition holds for every S ⊂ B
with |S| > m−m1−γ/4.

We have now shown that H has minimal degree at least m1−γ/4. All
that remains is to verify Hall’s condition for sets S ⊂ B of size between
m1−γ/4 and m −m1−γ/4. Let t ∈ [m1−γ/4,m −m1−γ/4]: we shall bound the
probability that there is any subset of B of size t with t or fewer neighbours
in A. Suppose that S ⊂ B has size t and T ⊂ A has size m− t. For any fixed
B′i ∈ S, the set sequence A′ = (A ∩ B′i)A∈T has maxA′∈A′ |A′| ≤ ε′ logm and
every vertex belongs to at most d sets from A′, where d = m1−γ ≤ |A′|1−γ/4.
So by Lemma 4, the probability that Bi intersects every set in T is at most
exp(−(m − t)γ/12). Thus the probability that (in the graph H) S has no
neighbours in T is at most exp(−t · (m − t)γ/12). Since there are at most
n2t = exp(2t log n) choices for the pair (S, T ), we deduce that the probability
that there is any set S of size t with at most t neighbours is bounded by
exp(2t log n) exp(−t · (m − t)γ/12) = O(n−(K+1)), uniformly in t. Summing
over t, we see that Hall’s condition holds with failure probability O(n−K).

We conclude by noting that we can choose first ε′ and then ε sufficiently
small for the estimates above to hold.

We are now ready to prove Theorem 2.

Proof of Theorem 2. Let η = γ/2, t = d(K + 2)/ηe, and let G1 have vertex
set V and G2 have vertex set W . We begin by finding a partition of V into
sets V1, V2, . . . of size Θ(nη) such that:
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• Vi is an independent set in G1 for every i,

• Every vertex in V has fewer than t neighbours in each set Vj.

Indeed, we first colour V randomly with n1−η colours, giving each vertex
a colour selected uniformly at random and independently. It follows from
(1) and (2) that, with failure probability O(n−K), every colour class has size
(1+o(1))nη. Consider a vertex v ∈ V , say with degree d. Then by assumption
d ≤ qn ≤ n1−γ. So the probability that v has a set of t neighbours, all with
the same colour, is at most(

d

t

)
(1/n1−η)t−1 ≤ dtnηt−t+1 ≤ n1+tη−tγ = n1−tη = O(n−(K+1)).

It follows that, with failure probability O(n−K), no vertex has t neighbours
of the same colour. Each colour class now induces a subgraph with maximum
degree less than t, so we can apply the Hajnal-Szemerédi Theorem [7] to each
class, splitting it into O(t) independent sets of (almost) the same size. The
vertex classes are now independent, have size Θ(nη), and no vertex has t
neighbours in any other class.

Reordering if necessary, we may assume that |V1| ≥ |V2| ≥ · · · . Now let
W = W1 ∪W2 ∪ · · · be an arbitrary partition of W (chosen before revealing
G2) such that |Wi| = |Vi| for every i. We construct a bijection between V
and W that defines a packing (i.e., does not map any edge of G1 to an edge
of G2) by constructing suitable bijections between Vi and Wi for i = 1, 2, . . . .

For i = 1, we choose an arbitrary bijection between V1 and W1. (Recall
that V1 is independent.) For i > 1, we set Si =

⋃
j<i Vj and Ti =

⋃
j<iWj, and

suppose that we have found a bijection ϕi : Si → Ti. The neighbourhoods
of vertices in Vi and Wi define set sequences A = (Γ(v) ∩ Si)v∈Vi in Si and
B = (Γ(v)∩Ti)v∈Wi

in Ti, and the bijection ϕi allows us to identify Si and Ti.
We now check that these two set sequences satisfy the conditions of Lemma
5, which we will then apply to obtain a bijection between Vi and Wi. Let

ñ = |Si| = |Ti| = Θ(inη),

m̃ = |Vi| = |Wi| = Θ(nη),

and note that |A| = |B| = m̃ and m̃ ∈ [ñη/2, ñ]. By construction of the
partition (Vj)j≥1, no vertex belongs to t sets from A, as each vertex in Si
has fewer than t neighbours in Vi. Let q̃ = maxA∈A |A|/ñ. Each set in A
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has size at most qn and so q̃ ≤ qn/ñ = O(qn1−η/i). The set sequence B is
random with B ∈ S(ñ, m̃, p), and depends only on the edges between Wi and
Ti. Furthermore,

pq̃ñ ≤ p · (qn/ñ) · ñ = pqn ≤ ε log n = O(ε log ñ).

We can therefore apply Lemma 5, to deduce that if ε is sufficiently small
then with failure probability O(n−(K+1)) there is a bijection between the two
set sequences for which the corresponding pairs are disjoint; this corresponds
to a bijection between Vi and Wi so that there are no common edges in the
bipartite graphs between (Vi, Si) and (Wi, Ti) where Si and Ti are identified by
ϕi. Extending ϕi with this bijection, we obtain a bijection ϕi+1 : Si+1 → Ti+1.

It follows that, with failure probability O(n−K), we succeed at every step
and construct the desired bijection.

Finally in this section, we note that Theorem 2 can be used to pack several
random graphs.

Corollary 6. Let γ,K > 0, let δ ∈ (0, 1), and let t be a positive integer.
Then there exists ε > 0 such that the following holds. Let p0(n), . . . , pt(n)
satisfy

• maxi pi ≤ 1− δ

• p0 ≤ n−γ

• maxi<j pipjn ≤ ε log n.

Let G0 be a graph of order n with maximal degree at most p0n and, for
i = 2, . . . , t, let Gi ∈ G(n, pi). Then with failure probability O(n−K) there is
a packing of G0, . . . , Gt.

Proof. We may assume that p1 ≤ · · · ≤ pt. Thus, by the second and third
conditions above, we have

∑t−1
i=0 pi = O(n−min{γ,1/3}). We first pack G0 and

G1, then add in the remaining graphs one at a time, applying Theorem 2
at each stage. Thus at the ith stage we have packed G0, . . . , Gi to obtain
a graph Hi: it follows easily from Proposition 3 that with high probabil-
ity the maximum degree condition of Theorem 2 is satisfied by Hi (with a
slightly smaller γ). Provided ε is sufficiently small, we get that with failure
probability O(n−K) we can pack Hi with Gi+1.
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3 Packing hypergraphs

In this section, we will prove Theorem 1.

Proof of Theorem 1. Note that the case k = 2 follows immediately from
Theorem 2, so we can assume k ≥ 3. Let η = 1/5, t = 15k, and let ε, ε′ > 0
be small constants and K,K ′ large constants; we will choose ε, ε′ and K,K ′

later. (In fact, we will first choose ε′; K ′ will be determined by ε′; we then
choose K and finally ε.) We may assume that q ≤ p, and so in particular
q = O(

√
log n/nk−1) < n−1/2 (for large n). We may also assume that q ≥

ε log n/nk−1 , or increase to this value.
Our argument will follow a similar strategy to Theorem 2, but there are

some additional complications. It will be helpful to reveal the edges of G1

and G2 in several steps. This time we let V be the vertex set of G2 and W
the vertex set of G1.

We first generate a partition of V into sets V1, V2, . . . by colouring V
randomly with n1−η colours, giving each vertex a colour selected uniformly
at random and independently. It follows from (1) and (2) that, with failure
probability o(1), every colour class Vi has size (1+o(1))nη, so we may assume
that this holds. Reordering if necessary, we may assume that |V1| ≥ |V2| ≥
· · · . Let W = W1∪W2∪· · · be a random partition of W such that |Wi| = |Vi|
for every i. For i ≥ 1, we set Si =

⋃
j<i Vj and Ti =

⋃
j<iWj (note that

S1 = T1 = ∅; also SL = V and TL = W , where L = n1−η + 1).
As before, we will construct a bijection between V and W by constructing

bijections between Vi and Wi for i = 1, 2, . . . . However, we need to be a little
more careful than in the graph case, as there are more ways for edges to
intersect the classes Vi and Wi. For j = 1, . . . , k, and any i, we say that
an edge is of type j for Vi or Wi if it has j vertices in Vi or Wi, and the
remaining k − j vertices in Si or Ti.

We now reveal all type 1 edges in G2. For a (k − 1)-set A ⊂ Si, the
probability that Vi contains t vertices v such that A ∪ {v} is an edge of G2

is at most (
2nη

t

)
qt = O(nηt−t/2) = o(n−k).

It follows that, with high probability, for every integer i and every (k−1)-set
A ⊂ Si, Vi contains fewer than t vertices that can be added to A to obtain
an edge of G2. In other words, each (k − 1)-set in Si is contained in fewer
than t type 1 edges for Vi.
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For each vertex v ∈ Vi, we define the type 1 neighbourhood of v to be the
(k − 1)-uniform hypergraph on Si with edge set

{A ⊂ Si : A ∪ {v} is a type 1 edge for Vi};

similarly, for vertices in Wi, the type 1 neighbourhood is a (k − 1)-uniform
hypergraph on Ti.

At the first step of the partitioning process, we take a random bijection
between V1 and W1. The expected number of common edges is at most
pqnkη = o(1), and so with high probability there are no common edges.

Now consider a later stage of the partitioning process: suppose we have
constructed a bijection ϕi : Si → Ti and wish to extend this to a bijection
ϕi : Si+1 → Ti+1. In constructing our bijection, we will only consider edges
of type 1 and 2; we will consider edges of type 3 at the end of the argument.

We first consider type 1 edges in Vi and Wi. For each v ∈ Vi, we consider
the type 1 neighbourhood of v as a subset of S

(k−1)
i (rather than as a k-

uniform hypergraph on Si+1). The collection of type 1 neighbourhoods of

vertices in Vi then defines a set sequence A of subsets of S
(k−1)
i ; similarly, the

collection of type 1 neighbourhoods of vertices in Wi defines a set sequence
B of subsets of T

(k−1)
i ; and the bijection ϕi allows us to identify S

(k−1)
i and

T
(k−1)
i . As in the proof of Theorem 2, we wish to apply Lemma 5, so we need

to check that its conditions are satisfied.
Let

ñ = |S(k−1)
i | = |T (k−1)

i | = Θ(ik−1nη(k−1)),

m̃ = |Vi| = |Wi| = (1 + o(1))nη,

and note that |A| = |B| = m̃ and m̃ ∈ [ñη/k, ñ].

By construction of the partition (Vj)j≥1, no element of S
(k−1)
i is contained

in t sets from A, as each (k − 1)-set A ⊂ Si is contained in fewer than
t type 1 edges for Vi. The size of each set in A has distribution Bi(ñ, q).
Choose a small ε′ > 0, let K ′ = 2/(ηε′), and then choose a large K. Let
q̃ = max{Kq, ε′(log ñ)/ñ}. It follows from Proposition 3 that, provided K
is large enough (depending on K ′), every set in A has size at most ñq̃, with
failure probability at most

m̃e−K
′ñq̃ ≤ ne−K

′ε′ log ñ ≤ n1−K′ε′η = o(1/n).
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Furthermore, since ñ ≤ nk−1, by choosing ε small enough we get

pKq ≤ Kε
log nk−1

nk−1
≤ ε′

log ñ

ñ

and hence pq̃ ≤ ε′(log ñ)/ñ. We can therefore apply Lemma 5, to deduce
that if ε′ is sufficiently small then with failure probability O(n−2) we get the
following:

• a bijection ϕ∗ : Vi → Wi such that the corresponding pairs in the two
set sequences are disjoint. This corresponds to a bijection between Vi
and Wi so that there are no collisions between type 1 edges for Vi and
Wi. Also:

• for all distinct u, v ∈ Vi and x, y ∈ Wi, a bijection

ϕ∗∗ : Vi \ {u, v} → Wi \ {x, y}

such that there are no collisions of type 1 edges for Vi and Wi, except
possibly for edges containing u, v, x or y.

The mapping ϕ∗ deals with collisions between type 1 edges. However, we
must also consider type 2 edges for Vi and Wi. We do not reveal type 2 edges
at this stage, but only the number of collisions between type 2 edges created
by the mapping ϕ∗. There are at most nk−2+2η type 2 edges for Vi and Wi,
and so the probability that ϕ∗ maps any type 2 edge for Vi in G2 to a type 2
edge in G1 is at most pqnk−2+2η ≤ log n/n1−2η; the probability that there are
at least two collisions is O(log2 n/n2−2η) = o(1/n) (which is small enough to
ignore). If there are no collisions, then we use ϕ∗ to extend ϕi.

This leaves the case when there is one collision between type 2 edges. We
reveal the edge where this occurs: say A ∪ {u, v} maps to A ∪ {x, y} under
ϕ∗. We thus condition on the existence of these two edges in G2 and G1,
and on this being the only collision. We shall show the existence of another
mapping ϕ∗∗ from Vi to Wi that avoids collisions for both type 1 and type 2
edges with probability at least 1 − O(log n/

√
n). Then the probability that

we get collisions for both ϕ∗ and ϕ∗∗ is O((log n/n1−2η) · log n/
√
n), which is

o(1/n).
Let D = d6(log ñ)/δe. We choose distinct vertices x1, . . . , xD, y1 . . . , yD

in Wi such that the type 1 neighbourhood of u is edge-disjoint from the type
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1 neighbourhoods of x1, . . . , xD, and the type 1 neighbourhood of v is edge-
disjoint from the type 1 neighbourhoods of y1, . . . , yD (the existence of these
vertices follows from the minimal degree condition on H in Lemma 5).

We reveal the edges A∪{x`, y`} for each ` ≤ D: since p ≤ 1−δ, it follows
that with probability 1− o(1/n) there is some ` such that A∪ {x`, y`} is not
present in G1. We then use the appropriate mapping ϕ∗∗ from Vi \ {u, v}
to Wi \ {x`, y`} that we found above, and extend it by setting ϕ∗∗(u) = x`
and ϕ∗∗(v) = y` so that we have a mapping from Vi to Wi. The mapping
ϕ∗∗ does not cause any collision of type 1 edges. Finally, we reexamine
the type 2 edges for collisions. We have ensured that A ∪ {u, v} does not
collide with anything; the probability of a collision involving any edge of form
A ∪ {xj, yj} is at most qD = O(log n/

√
n); and the probability of any other

collision is at most log n/n1−2η = O(1/
√
n), as before. (More formally: we

have conditioned on the edges A ∪ {xj, yj}, on the event that a particular
pair of type 2 edges collide, and the event that no other collisions occur. If
we resample all type 2 edges that are not in the colliding pair or of form
A∪ {xj, yj}, the number of collisions under ϕ∗∗ stochastically dominates the
number before resampling, giving the same bound.) So the probability that
ϕ∗∗ yields a collision is O(log n/

√
n), as required.

It follows that, with probability 1 − o(1/n), we are able to find a good
bijection between Vi and Wi, and extend ϕi to ϕi+1. Continuing in this way,
we find a bijection from V to W in which there are no collisions between
type 1 or 2 edges for any Vi, Wi.

Finally, we reveal all edges of type 3 or more. There are at most nk−2+2η

possible edges of type 3 or more, and so the probability that any of these
is an edge in both hypergraphs is at most pqnk−2+2η = o(1). The algorithm
therefore succeeds with probability 1− o(1).

4 Conclusion

We conclude by mentioning a few open questions.

• The bound in Theorem 1 is sharp to within a constant factor. It is
natural to expect that there is some c = c(k) > 0 such that almost
surely a pair of random k-uniform hypergraphs G1, G2 ∈ G(n, k, p)
are packable if p < (c − ε)

√
log n/nk−1 and are unpackable if p >

(c+ ε)
√

log n/nk−1. Is this correct? If so, what is the value of c?
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• What happens with the results above if we take G1 = G2? We would
expect this to make no difference.

• All our examples of unpackable k-uniform hypergraphs G1, G2 have
∆(G1)∆(G2) = Ω(nk−1). What is the correct bound here?
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York, 2000.

[9] P. Keevash, The existence of designs, preprint, 2014, arXiv:1401.3665.

[10] J. Ma, H. Naves and B. Sudakov, Discrepancy of random graphs and
hypergraphs, preprint, 2013, arXiv:1302.3507.

14
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