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Abstract

Let V be a set of n points on the real line. Suppose that each pairwise distance is
known independently with probability p. How much of V can be reconstructed up
to isometry?

We prove that p = (log n)/n is a sharp threshold for reconstructing all of V
which improves a result of Benjamini and Tzalik. This follows from a hitting time
result for the random process where the pairwise distances are revealed one-by-one
uniformly at random. We also show that 1/n is a weak threshold for reconstructing
a linear proportion of V.

1 Introduction

Let V ⊂ R1 be a finite set of points on the real line and suppose that all we know
about the points are the distances between some pairs P ⊂ (V

2) of them. More precisely,
labelling the points v1, . . . , vn, if the pair vivj ∈ P , then the distance between vi and
vj is given1. How much of V can be reconstructed? Can all of V be reconstructed?
Reconstructing a set U ⊆ V means deducing the positions of the labelled points in U
up to isometry or, equivalently, deducing all pairwise distances of points in U. In this
paper we consider the case where each pairwise distance is known independently with
probability p, that is, (V,P) is distributed as the Erdős-Renyi binomial random graph
G(n, p).

Benjamini and Tzalik [BT22] recently proved the following result.

Theorem 1.1 (Benjamini and Tzalik [BT22]). Let V be a set of n points on the real line. There
is a sufficiently large constant C such that if the graph G of known pairwise distances (V,P) is
distributed as G(n, p) where p = C log(n)/n, then the whole of V can be reconstructed with
high probability (whp).
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We strengthen this result. Our first result identifies two important landmarks in the
evolution of the largest reconstructible set as p increases. We improve on Theorem 1.1 by
proving a sharp threshold result for reconstructing the whole of V, as well as identifying
the threshold for reconstructing a positive fraction of V.

Theorem 1.2. Let V be a set of n points on the real line. Suppose the graph G of known pairwise
distances (V,P) is distributed as G(n, p). Then the following hold whp.

a. If p ⩾ 42/n, then there is a reconstructible set of size Ω(n).
b. If pn → ∞, then there is a reconstructible set of size (1 − o(1))n.

c. If p ⩽ log n+log log n−ω(1)
n , then it is not possible to reconstruct the whole of V.

d. If p ⩾ log n+log log n+ω(1)
n , then the whole of V can be reconstructed.

These results are best possible up to the constant factor in part a2. Indeed, when p = c/n
for constant c < 1, the largest connected component in G has size O(log n). When
p = c/n for constant c > 1, whp the largest component of G is a giant component of
size at most dn for some constant d < 1.

The final two parts of Theorem 1.2 follow from a stronger hitting time result. Suppose
that the pairwise distances are revealed one-by-one in a random order: in other words,
the graph of known pairwise distances follows the random graph process (Gt : 0 ⩽ t ⩽
(n

2)). We will prove that whp V is reconstructible when Gt has minimum degree at least
two. However, V may also be reconstructible slightly before this. If some point u is
incident to exactly one revealed distance, then u has two possible positions relative
to its neighbour but it may be the case that one of these possible positions is already
occupied and so in fact u can be reconstructed. To this end, we say an ordered pair of
distinct points (u, v) is secure if w = 2v − u, the reflection of u over v, is also in V.

Theorem 1.3. Let V be a set of n points on the real line. Suppose the distances between pairs of
points in V are revealed one-by-one in a uniformly random order. Then whp V is reconstructible
exactly at the first time that both the following hold.

• Every point is incident to at least one revealed distance.
• If a point u is incident to exactly one revealed distance, which is to point v, then (u, v) is

secure.

It follows that if every point is incident to at least two revealed distances, then whp
the whole of V is reconstructible. In fact, this moment is whp the hitting time for full
reconstructibility if and only if there are o(n2) secure pairs in V. This is because the
unique distance incident to the final point with only one revealed distance is uniformly
random amongst (V

2). An example of a set with Ω(n2) secure pairs is V = {1, 2, . . . , n}.
In the other direction, we will show (Theorem 3.4) that if there are ω(1) points incident
to only one revealed distance, then whp the whole of V is not reconstructible.

It is also possible to obtain an algorithmic hitting time result that does not need knowl-
edge of the underlying point set V to determine the point at which the entirety of V is
reconstructible.

Theorem 1.4. There is an online algorithm with polynomial expected running time in n

2We have not optimised the value 42 in part a: a short calculation shows the best our methods could
give is 9, while we believe the correct threshold is 1 + ε (see Section 4 for further discussion).
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that takes the revealed distances one-by-one and whp recognises the first time at which V is
reconstructible and reconstructs it.

Reconstructibility is strongly related to graph rigidity, which is concerned with generic
embeddings of graphs in Rd. An embedding of a set of vertices V in Rd is generic
if the set of d|V| coordinates of the vertices is algebraically independent over the
rationals. A graph is globally rigid in Rd if it has some generic embedding in Rd which is
reconstructible from its edge lengths. In fact, a graph is globally rigid if and only if all
of its generic embeddings are reconstructible from their edge lengths [Con05, GHT10].

The (global) rigidity of the random graph in Rd has been extensively studied with work
both on when the whole graph is (globally) rigid [JSS07, KT13, JT22] and when it has a
linear sized rigid component [KMT11, BLM18]. Lew, Nevo, Peled, and Raz [LNPR22]
recently gave a hitting time result: the random graph process in Rd becomes globally
rigid at exactly the moment it has minimum degree d + 1. This implies Theorem 1.3 for
generic embeddings since there are no secure pairs in generic embeddings. However,
the restriction to generic embeddings in the definition of global rigidity is a significant
weakening. For example, it is folklore (see [JW17, Thm. 63.2.7]) that a graph is globally
rigid in R if and only if it is 2-connected, while for reconstructing arbitrary point sets,
the situation is rather different. Indeed, we show that there are graphs with arbitrarily
high connectivity which can be embedded in R so that their vertex sets cannot be
reconstructed from their edge lengths. This disproves a conjecture of Benjamini and
Tzalik [BT22].

Theorem 1.5. Let k be a positive integer. There are k-connected graphs on arbitrarily many
vertices which can be embedded in the real line in such a way that the largest reconstructible
subset of vertices has size k.

Proof. Fix a positive integer k and let n = ℓk be any multiple of k. Let C1, . . . , Cℓ be
ℓ disjoint k-cliques. Write Ci = {a(i)1 , . . . , a(i)k }. Let G be the graph obtained from the

union of C1, . . . , Cℓ by adding matchings {a(i)1 a(i+1)
1 , a(i)2 a(i+1)

2 , . . . , a(i)k a(i+1)
k } between Ci

and Ci+1 for each i = 1, . . . , ℓ− 1. Note that G is the Cartesian product of Kk and Pℓ and
is certainly k-connected.

Embed the Ci so that a(i)1 , . . . , a(i)k are k consecutive integers (in that order), that is,

|a(i)s − a(i)t | = |s − t|. We specify that the length of each edge a(i)s a(i+1)
s is ki. Certainly

such an embedding is possible by placing each a(i)s at ki−1 + ki−2 + · · ·+ k + s. Further,
having placed C1, . . . , Ci at these points, there are multiple options for where to place
Ci+1, . . . , Cℓ: either to the right of Ci or to the left of C1. In particular, any vertex subset
of size at least k + 1 contains vertices from at least two distinct Ci and is thus not
reconstructible.

The rest of the paper is organized as follows. We establish parts a and b of Theorem 1.2
in Section 2. The remainder of Theorem 1.2 as well as Theorems 1.3 and 1.4 are proved
in Section 3. We conclude in Section 4 with some discussion of open problems.

Throughout we use standard asymptotic notation and assume that n is sufficiently large.

3



2 Reconstructing a linear proportion of the points

In this section, we prove parts a and b of Theorem 1.2. Fix a set V of n points on the
real line. Our method for reconstructing a linear portion of V is via short cycles. We
first show that, for most short cycles C whose vertices are in V, if the edges of C were
all revealed distances, then the vertices of C can be reconstructed up to isometry. This
will follow from the fact that multiple possible embeddings of a short cycle on the real
line would yield a small “linear dependence” among the pairwise distances of adjacent
points on the cycle. We show in Section 2.1 that this linear dependence can only occur
for a small proportion of short cycles.

Then in Section 2.2 we assume that each pairwise distance is known independently
with probability p = 42/n. We note that a random graph G ∼ G(n, 42/n) will typically
have Ω(n2) pairs of vertices that are contained in a short cycle. Since most short cycles
can be reconstructed, we can reconstruct the distances between Ω(n2) pairs of points.
This allows us to apply the following extremal result of Benjamini and Tzalik [BT22] to
reconstruct a linear proportion of all points and so prove part a.

Theorem 2.1 (Benjamini and Tzalik [BT22]). Let V be a set of n points on the real line.
Suppose that the set of known pairwise distances P has size greater than 40n3/2. Then there is a
set of Ω(|P|/n) points that can be reconstructed.

Finally, to obtain part b, we start with this linear proportion of all points that we have
already reconstructed. Then, by increasing p and so sprinkling in some additional edges,
we will find that for most points we will know at least two distances to the set that we
have already reconstructed, and so we can reconstruct those points as well.

2.1 Reconstructible tuples in embeddings

In this section we show that most short cycles, if their edges are revealed distances, can
be reconstructed. To this end we make the following definition.

Definition 2.2. A tuple T = (v1, v2, . . . , vk) of distinct points in V is cycle-reconstructible
if, given just the pairwise distances |v2 − v1|, . . . , |vk − vk−1|, and |v1 − vk|, we can
reconstruct {v1, . . . , vk} up to isometry.

Consider some k-tuple T = (v1, v2, . . . , vk) and let d1 = |v2 − v1|, . . . , dk−1 = |vk − vk−1|,
and dk = |v1 − vk|. Certainly there are some ε1, . . . , εk−1 ∈ {−1, 1} such that

k−1

∑
i=1

εidi = dk. (1)

If T is not cycle-reconstructible, then there are at least two (ε1, . . . , εk−1) ∈ {−1, 1}k−1

satisfying (1). Subtracting two such expressions and halving the result shows that there
is some non-zero vector (γ1, . . . , γk−1) ∈ {−1, 0, 1}k−1 with

k−1

∑
i=1

γidi = 0. (2)

This allows us to bound the number of non-cycle-reconstructible k-tuples.
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Lemma 2.3. Let k ⩽ 0.9 log n. At most an n−0.01 fraction of all k-tuples are not cycle-
reconstructible.

Proof. Select a k-tuple T = (v1, v2, . . . , vk) of distinct points in V uniformly at random.
Let d1 = |v2 − v1|, . . . , dk−1 = |vk − vk−1|. We say that vs+1 fails (for 1 ⩽ s ⩽ k − 1) if
there is some non-zero vector (γ1, . . . , γs−1) ∈ {−1, 0, 1}s−1 with ∑i<s γidi = ds. By the
preceding discussion, if T is not cycle-reconstructible, then some vs+1 fails.

Given v1, . . . , vs there are at most 3s−1 values of ds = |vs+1 − vs| for which there is a
vector (γ1, . . . , γs−1) ∈ {−1, 0, 1}s−1 with ds = ∑i<s γidi. Each such ds corresponds to
two possible values of vs+1 (namely vs ± ds). In particular, as there are n − s possible
choices for vs+1,

P(vs+1 fails) ⩽
2 · 3s−1

n − s
⩽

3s

n
,

and so, taking a union bound,

P(T not cycle-reconstructible) ⩽ ∑
s⩽0.9 log n

3s

n
⩽

30.9 log n+1

2n
=

3
2

n0.9 log 3−1 ⩽ n−0.01.

We say that a pair of points u, v is k-bad if greater than an n−0.005 fraction of the k-tuples
containing both u and v are not cycle-reconstructible. Given the preceding lemma, it
follows that there are only few k-bad pairs of points.

Lemma 2.4. Let k ⩽ 0.9 log n. At most an n−0.005 fraction of all pairs are k-bad.

Proof. Note that every pair of points is in the same number of k-tuples – call this common
value A. Let u, v be a uniformly random pair of points in V and let X be the number of
non-cycle-reconstructible k-tuples containing both u and v. We will double count the
number of (T, {u, v}) where T is a non-cycle-reconstructible k-tuple and the pair u, v is
contained in T. By Lemma 2.3, this number is at most

n−0.01 · number of k-tuples · (k
2) = n−0.01 · A(n

2).

On the other hand, the number is exactly equals E(X) · (n
2). Hence E(X) ⩽ An−0.01.

Thus, by Markov’s inequality,

P(u, v is k-bad) = P(X > An−0.005) ⩽
E(X)

An−0.005 ⩽ n−0.005.

If a pair of points u, v is not k-bad for any k ⩽ 0.9 log n, then a random short cycle in
G(n, p) containing u and v is likely to allow us to reconstruct the distance between u
and v. This motivates the following definition.

Definition 2.5. A pair of points u, v is useless if there is some k ⩽ 0.9 log n such that the
pair u, v is k-bad. Otherwise u, v is useful.

Using the previous results, we can bound the number of useless pairs of points.

Corollary 2.6. There are at most n2−0.004 useless pairs of points.

Proof. By Lemma 2.4, the number of useless pairs of points is at most

∑
k⩽0.9 log n

number of k-bad pairs ⩽ (0.9 log n)n2−0.005 ⩽ n2−0.004.
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2.2 Reconstructing from short cycles in G(n, p)

Given the results from the previous section, it will be helpful to show that most pairs of
points in G(n, p) are contained in a short cycle. We will use the following straightforward
result about random graphs.

Lemma 2.7. A random graph G ∼ G(n, 42/n) contains whp Ω(n2) pairs of vertices that are
in a cycle of length at most 0.9 log n.

Let diam(G) denote the largest distance between two vertices in the same component
of G. We will use the following consequence of a (much more general) result by Riordan
and Wormald [RW10, Thm. 1.1]. There are alternative elementary arguments that prove
results similar to Lemma 2.7, but we use this result for brevity.

Lemma 2.8. A random graph G ∼ G(n, 21/n) satisfies whp diam(G) ⩽ 0.44 log n.

Proof of Lemma 2.7. Let V = V1 ∪ V2 with |V1| = |V2| = n/2. First reveal the edges
inside V1 and V2, and let C1 and C2 be the largest components in G[V1] and G[V2]
respectively. G[V1] and G[V2] are independently distributed as G(n/2, 21/(n/2)).

By standard facts about random graphs (see, for example, [Bol01, Ch. 6]), C1 and C2
both have size Ω(n) whp. Also, Lemma 2.8 implies that whp C1 and C2 have diameter
at most 0.44 log n.

Next, we reveal the edges between V1 and V2. For a fixed vertex v ∈ C1 write Xv
for the indicator random variable of the event that v has a neighbour in C2. We have
P(Xv = 0) = (1 − 42/n)|C2| ⩽ e−42|C2|/n which is at most some constant a < 1. Since
the variables Xv for v ∈ C1 are independent, by Chernoff, we have whp that ∑v Xv ⩾
(1 − a)|C1|/2, and so the set A of vertices in C1 that have a neighbour in C2 has size
at least Ω(n). Now, for any pair of vertices u, v ∈ A, concatenating the shortest path
between them in C1, their respective edges to vertices wu, wv ∈ C2, and the shortest
path between wu and wv in C2 gives a cycle containing u and v of length at most
0.44 log n + 0.44 log n + 2 ⩽ 0.9 log n.

Recall that P is the set of known distances. We say that a pair of points u, v is close
if u and v are in a cycle in (V,P) of length at most 0.9 log n. We say that the pair u, v
is deducible if |u − v| can be uniquely determined from P . Note that if some cycle-
reconstructible cycle in P contains both u and v, then the pair u, v is deducible. With
this in mind, we bound the number of useful pairs of points that are in a short cycle,
but where we cannot determine their distance.

Lemma 2.9. If (V,P) is distributed as G(n, p), then whp there are at most n2−0.002 pairs of
points that are close and useful but not deducible.

Proof. Fix a pair of points u, v ∈ V and let k ⩽ 0.9 log n. Conditioned on the event that
(V,P) contains a k-cycle which contains u and v, the probability that any particular
k-tuple containing u and v appears in (V,P) as a cycle is uniform. If u, v is useful, then
at most an n−0.005 fraction of these k-tuples is non-reconstructible, and so

P(u, v not deducible | u, v in a k-cycle and useful) ⩽ n−0.005.
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This holds for all k ⩽ 0.9 log n and so P(u, v not deducible | u, v close and useful) ⩽
n−0.005. Hence,

P(u, v close and useful but not deducible) ⩽ n−0.005.

Let X denote the number of pairs which are close and useful but not deducible. Then
E(X) ⩽ n−0.005 · (n

2). By Markov’s inequality,

P(X > n2−0.002) ⩽
E(X)

n2−0.002 ⩽ n−0.003.

We are now ready to prove the statements a and b of Theorem 1.2.

Proof of Theorem 1.2a. By Lemma 2.7, whp there are Ω(n2) close pairs of points in (V,P).
Of the close pairs, at most n2−0.004 pairs are useless by Corollary 2.6 and whp at most
n2−0.002 are useful but not deducible by Lemma 2.9. In particular, whp at least Ω(n2)
pairs of vertices in (V,P) are deducible.

Finally, Theorem 2.1 implies that whp there is a set of Ω(n) vertices that can be recon-
structed up to isometry.

Note that if we have reconstructed a set S of points and we know at least two distances
from another point v to some points in S, this uniquely determines the position of v
relative to S, and so we can reconstruct S ∪ {v}. This allows us to prove part b.

Proof of Theorem 1.2b. By Theorem 1.2a, there is a constant c > 0 such that for p = 42/n
whp there is a set R of at least cn points that can be reconstructed. Let d > c be a
constant, q = d/(cn) and consider G ∼ G(n, q). Every vertex v /∈ R satisfies

P(|NG(v) ∩ R| < 2) = (1 − q)|R| + |R|q(1 − q)|R|−1 ⩽ 2nq(1 − q)cn ⩽ (2d/c)e−d.

Since all of these events are independent, a Chernoff bound implies that whp at most
(4d/c)e−dn points v /∈ R have at most one neighbour in R. Because every point with
two neighbours in R can also be reconstructed relative to R, it follows that whp a set of
at least (1 − (4d/c)e−d)n points can be reconstructed in G(n, p) ∪ G(n, q) and therefore
also in G(n, p + q) ∼ G(n, ω/n) where ω = 42 + d/c. Since (4d/c)e−d → 0 when
d → ∞, this proves the claim.

3 Hitting time for complete reconstruction

In this section, we prove Theorem 1.3. For this, we use the following standard coupling
of random graphs. Let (Ue)e∈E(Kn) be a collection of independent random variables all
uniformly distributed on [0, 1]. For p ∈ [0, 1], let Gp be the subgraph of Kn whose edges
are exactly those edges e with Ue ⩽ p. Note that Gp is distributed as G(n, p) and, as
p is increased continuously from 0 to 1, Gp evolves as a random graph process where
edges are added one-by-one in a uniformly random order (note that with probability
1 all Ue are distinct). We use this to model the process of revealing distances between
pairs of points in V one-by-one uniformly at random. We will freely use the following
facts about G(n, p) in this section (see, for example, [Bol01, Ch. 7]). For any positive
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integer k: if p ⩽ (log n + (k − 1) log log n − ω(1))/n, then whp G(n, p) has minimum
degree at most k − 1 and if p ⩾ (log n + (k − 1) log log n + ω(1))/n, then whp G(n, p)
has minimum degree at least k.

Three particular values of p will be important for our analysis. Theorem 1.2b implies
that there is some large constant ω such that whp there is a set R ⊆ V of size at least
0.9n that can be reconstructed in Gω/n. Let p1 = ω/n. Let p2 = p1 + (0.9 log n)/n and
p3 = (2 log n)/n. Note that whp Gp2 still contains isolated vertices and so the whole of
V is not yet reconstructible. We will show that the whole of V is reconstructible in Gp3

and so our analysis will focus on the range [p2, p3].

Lemma 3.1. Whp, for every edge uv in Gp3 with u, v /∈ R, at least one of u, v has at least two
neighbours among R in Gp2 .

Proof. First, reveal all edges in Gp1 . This determines R and a Chernoff bound implies
that whp Gp1 has at most 2p1(

n
2) ⩽ ωn edges. Now, reveal the edges of Gp3 in the

complement of R. This adds every edge independently with a probability of at most
p3 to the graph Gp1 . Hence, a Chernoff bound implies that whp this adds at most
2p3(

n
2) ⩽ 2n log n edges to the complement of R, and so Gp3 has in total at most

ωn + 2n log n ⩽ 3n log n =: m edges in the complement of R.

Finally, reveal the edges of Gp2 between R and the complement of R. Each such edge
was already present in Gp1 or is added independently with probability at least p :=
p2 − p1 = (0.9 log n)/n to the graph Gp1 . Therefore, every point v /∈ R satisfies

P(|NGp2
(v) ∩ R| < 2) ⩽ (1 − p)|R| + |R|p(1 − p)|R|−1 ⩽ 2np(1 − p)|R|

⩽ 2np(1 − p)0.9n ⩽ (2np)e−0.9pn ⩽ (2 log n)n−0.81 ⩽ n−0.8.

Since these events are independent between distinct points u, v /∈ R, this implies

P(max(|NGp2
(u) ∩ R|, |NGp2

(v) ∩ R|) < 2) ⩽ (n−0.8)2 = n−1.6.

Let X denote the number of edges uv in Gp3 such that u, v /∈ R, but u and v both
have at most one neighbour among R in Gp2 . Since Gp3 has at most m edges in the
complement of R, this implies that E(X) ⩽ m · n−1.6 ⩽ 3n−0.6 log n ⩽ n−0.5, and so
P(X ⩾ 1) ⩽ n−0.5.

If a vertex v has two neighbours among a reconstructible set, then the position of v
can be reconstructed with respect to that set. With this in mind, we define, for each
p ∈ [0, 1], R′

p and R′′
p as follows.

R′
p = R ∪ {v ∈ V : |NGp(v) ∩ R| ⩾ 2},

R′′
p = R′

p ∪ {v ∈ V : |NGp(v) ∩ R′
p| ⩾ 2}.

We now collect some important facts about the R′
p and R′′

p .

Lemma 3.2. With high probability the following all hold.

a. For all p ⩾ p1, R′
p and R′′

p are reconstructible in Gp.
b. For all p ∈ [p2, p3], every edge in Gp is incident to a vertex in R′

p.
c. For all p ∈ [p2, p3], R′′

p contains every vertex of degree at least two in Gp.

8



Proof. Note that R is reconstructible in Gp1 . For any p ⩾ p1, Gp contains Gp1 and so R is
reconstructible in Gp. R′

p consists of R and all vertices with at least two neighbours in R
and so is reconstructible in Gp. Similarly for R′′

p . This proves a.

By Lemma 3.1, whp every edge in Gp3 has an end-point in R′
p2

. Now let p ∈ [p2, p3]
and let uv be an edge of Gp. Then uv is an edge of Gp3 . Hence, at least one of u, v is in
R′

p2
⊆ R′

p. This proves b.

Let u be a vertex of degree at least two in Gp. By b, either u is in R′
p or every neighbour

of u is in R′
p. Either way, u is in R′′

p which proves c.

Now whp G(n, p3) has minimum degree at least two and so, by the time that the random
graph process from the coupling reaches minimum degree two, Lemma 3.2 tells us that
whp the whole of V can be reconstructed. Theorem 1.2d follows immediately.

We say that an ordered pair of points (u, v) is uncertain in Gp if uv is the only edge
incident to u and the point w = 2v − u is a point of V with degree one in Gp. We call u
uncertain in Gp, if (u, v) is uncertain in Gp for some v ∈ V.

Lemma 3.3. Whp, for all p ∈ [p2, p3], Gp contains no uncertain point.

Proof. Let (u, v) be an ordered pair of points such that w = 2v − u is a point of V. If
(u, v) is uncertain in Gp for some p ∈ [p2, p3], then there is a point x such that the edges
uv and wx are present in Gp ⊆ Gp3 , but every other edge incident to u and w cannot be
present in Gp ⊇ Gp2 . In particular, we get that

P((u, v) is uncertain in some Gp) ⩽ np2
3(1 − p2)

2n−5 ⩽ 2np2
3(1 − p2)

2n

⩽ (2np2
3)e

−2np2 ⩽ 8(log n)2n−1n−1.8 ⩽ n−2.5.

Let X denote the number of ordered pairs of points (u, v) which are uncertain in
some Gp. Since there are at most n2 ordered pairs of points, this implies that E(X) ⩽
n2 · n−2.5 = n−0.5, and so P(X ⩾ 1) ⩽ n−0.5.

We say that a point u is undecidable in Gp if it has degree one in Gp and (u, v) is not
secure where v is the unique neighbour of u. Note that Theorem 1.3 says that whp Gp is
reconstructible exactly when it has no isolated nor undecidable points.

Proof of Theorem 1.3. Using Lemma 3.2 and Lemma 3.3, we know that whp all of the
following hold for all p ∈ [p2, p3]. Firstly, R′′

p can be reconstructed in Gp. Secondly,
every edge in Gp is incident to a vertex in R′′

p . Thirdly, Gp contains no uncertain point.
Fourthly, R′′

p contains all vertices of degree at least two in Gp. Finally, Gp2 has isolated
points while Gp3 has minimum degree at least two.

Now, consider the minimal p such that the graph Gp has no isolated and no undecidable
points. By the final property, we know that p2 < p ⩽ p3. In particular, R′′

p can be
reconstructed in Gp by the first property. Let u be a point in the complement of R′′

p .
Since u cannot be an isolated point, u must have a unique neighbour v, and that
neighbour must be in R′′

p by the second property. So v has been reconstructed and we
therefore know that u can only be at position u or w = 2v − u.

9



Given that u is not undecidable, (u, v) must be secure which means that w is a point
of V. Since w cannot be isolated and u is not uncertain by the third property, it then
follows that the degree of w must be at least two. Hence, by the fourth property, w ∈ R′′

p ,
and so w has been reconstructed. So we know that the position w is already occupied
by a point different from u, and so u can only be at a single possible position relative
to the rest of the points. Hence, we can also reconstruct u. Because u was an arbitrary
point of the complement of R′′

p , it follows that all points of Gp can be reconstructed up
to isometry.

Finally note that the graph preceding Gp in the random graph process has an isolated
or undecidable point v ∈ V. Such a point has at least two possible positions relative
to the rest of V and is therefore not determined up to isometry. Hence, Gp is the first
graph in the random graph process that can be reconstructed up to isometry.

Theorem 1.4 is now an easy consequence as we can simply follow the proofs from this
section and the previous section to obtain the algorithm that we want.

Proof of Theorem 1.4. Our algorithm is composed of the following steps.

a. Reveal pairwise distances one-by-one until the graph of known pairwise distances
has 42n edges. Call this graph G′.

b. Enumerate all walks (that do not repeat edges) of length at most 0.9 log n in G′

by starting at an arbitrary vertex and picking neighbours sequentially. From this,
find a list of all cycles of length at most 0.9 log n in G′.

c. Then check each cycle v1 . . . vk of length at most 0.9 log n in G′. If the distances
between consecutive points on the cycle are d1, . . . , dk and there are unique
ε1, . . . , εk−1 ∈ {−1, 1} such that ∑k−1

i=1 εidi = dk, then the distance between vi

and vj must be |∑j−1
l=i ε ldl|.

d. Using these new distances, apply Theorem 2.1 to reconstruct a set of points R (a
polynomial time algorithm can be obtained from the proofs in [BT22]).

e. Reconstruct and add to R every vertex with two neighbours in R as well as every
vertex with one neighbour in R whose other possible position is already occupied
by a vertex of R.

f. Continue to reveal pairwise distances one-by-one. Each time a distance between
points u, v is added where v ∈ R and u /∈ R, check if u has two neighbours in R
or if the reflection of u over v is in R. If either of these two outcomes occur, then
reconstruct u and add u to R.

Let p be such that G′ corresponds to Gp in the coupling. By a Chernoff bound, with
an exponential (in n) failure probability, 42/n < p < 168/n. When p < 168/n, the
expected number of walks in Gp (that do not repeat edges) of length at most 0.9 log n is
at most

∑
k⩽0.9 log n

pknk+1 < n ∑
k⩽0.9 log n

168k < n6,

and the number of such walks is always at most n0.9 log n. Hence, the expected number
of such walks in G′ is polynomial in n which implies that the expected runtime of step b
is polynomial in n. It also follows that if X is the number of cycles of length at most
0.9 log n in G′, then E(X) is polynomial in n. For each cycle of length at most 0.9 log n,
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there are at most 20.9 log n possible (ε1, . . . , εk−1) and so each check in step c takes time
polynomial in n, implying that the runtime of part c is X times a polynomial in n. Hence,
the expected runtime of the first three steps is polynomial in n. The final three steps can
be performed in polynomial time.

The set R obtained by the algorithm is certainly reconstructible. We are left to check that
whp R = V exactly when V is reconstructible. As shown in the proofs of Theorem 1.2
and Theorem 1.3, whp the initial set R will have size Ω(n), and we will then add every
point to R that has degree two or that has degree one and is not undecidable. Thus,
by Theorem 1.3, whp this algorithm will reconstruct V exactly at the time when this is
possible.

We have already shown that if every point is incident to at least two known distances,
then whp the whole of V is reconstructible. While in some cases the whole of V might
be reconstructible even before that time, we now show that this does not happen much
earlier.

Theorem 3.4. Let f : N → R be any function going to infinity. Let V be a set of n points on
the real line. Suppose the distances between pairs of points in V are revealed one-by-one in a
uniformly random order. If there are at least f (n) points that are incident to only one revealed
distance, then whp it is not possible to reconstruct the whole of V.

Proof. We may and will assume that f (n) ⩽ n/100 for all n. Let G = (V,P) be the
graph of known distances and suppose G has at least f (n) points of degree one. It
suffices to show that whp there is a point u whose unique edge uv is such that (u, v) is
not secure.

We first give an upper bound on the number of secure pairs of points. Let the points in
V be v1 < v2 < · · · < vn. Fix k ⩽ n/2. There are at most k − 1 points u ∈ {vk+1, . . . , vn}
for which (u, vk) is secure as the reflection of u over vk must be one of v1, . . . , vk−1. In
particular, there are at most 2(k − 1) points u ∈ V for which (u, vk) is secure, and so the
number of secure pairs whose second vertex is in the first half of V is

∑
k⩽n/2

2(k − 1) = 2
(
⌊n/2⌋

2

)
⩽ n2/4.

Hence, the total number of secure pairs is at most n2/2.

Now, perform the following random process. First pick a uniformly random degree-one
vertex u1 of G and let v1 be the unique neighbour of u1. For s = 2, . . . , ⌊ f (n)/3⌋ let us
be a uniformly random degree-one vertex in V \ {u1, v1, u2, v2, . . . , us−1, vs−1} and let
vs be the unique neighbour of us. Given {u1, v1, u2, v2, . . . , us−1, vs−1}, note that (us, vs)
is a uniformly random ordered pair from

{(x, y) : x ̸= y, x ∈ V \ {u1, v1, . . . , us−1, vs−1}, y ∈ V \ {u1, u2 . . . , us−1}}.

This set has size at least 3n2/4 and so, given {u1, v1, u2, v2, . . . , us−1, vs−1}, the probabil-
ity that (us, vs) is secure is at most (n2/2)/(3n2/4) = 2/3. In particular, the probability
that (us, vs) is secure for all s ⩽ ⌊ f (n)/3⌋ is at most (2/3)⌊ f (n)/3⌋ = o(1).

Now, if p ⩽ (log n+ log log n−ω(1))/n, then whp G(n, p) has arbitrarily many degree-
one vertices (see, for example, [Bol01, Ch. 7]) and so Theorem 1.2c follows.
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4 Open problems

Theorem 1.2 shows that 1/n is a weak threshold for a linear sized reconstructible set of
vertices. It would be interesting to determine whether there is a sharp threshold and it
is natural to conjecture that this occurs at 1/n as this coincides with the appearance of
the giant component in G(n, p).

Conjecture 4.1. Let V be a set of n points on the real line. Suppose the graph of known pairwise
distances (V,P) is distributed as G(n, (1 + ε)/n) where ε > 0 is a constant. Then whp there
is a reconstructible set of size Ωε(n).

We have not tried to optimize the constant in Theorem 1.2a, but our approach will not
give a bound better than 9/n, as for smaller p there are too few pairs in sufficiently
short cycles. A bootstrapping argument might push the constant below 9, but would
not get down to p = (1 + ε)/n, as most pairs will only be in cycles of length at least
Ω(log(n)/ε).

It would also be interesting to give a characterisation of the giant reconstructible compo-
nent. For global graph rigidity in one-dimension the largest reconstructible component
is the largest 2-connected subgraph. For graph rigidity in two-dimensions the threshold
for the emergence of a giant reconstructible component was determined in [KMT11]
and a characterisation of this component was determined in [BLM18].

Reconstructibility in dimensions greater than one is also interesting. Reconstructing
the whole of V is too much to ask: consider an embedding where n − 2 points lie in a
(d − 1)-dimensional hyperplane and the other two points u, v do not. V can only be
fully reconstructed if the distance between u and v is revealed (otherwise u, v could be
on the same side of the hyperplane or on opposite sides). However, it is interesting to
ask for the threshold at which a linear sized subset of V can be reconstructed. Is 1/n a
weak threshold as it is for d = 1?

Finally, Benjamini and Tzalik [BT22] also considered an even stronger notion of re-
constructibility. Let G = (V, E) be a graph. We say a subset U ⊆ V is adversarially
reconstructible in R if, for every embedding of V in R, U is reconstructible from the
distances |u − v| for uv ∈ E. Note this is similar to the definition of global rigidity with
the generic condition removed. It would be interesting to determine the thresholds
for G(n, p) to be adversarially reconstructible in R and for some linear sized subset
of G(n, p) to be adversarially reconstructible. In contrast to Theorem 1.2, minimum
degree at least two is necessary as the embedding can be chosen so there are no secure
pairs. Benjamini and Tzalik conjectured it is also sufficient: when distances are revealed
one-by-one in a random order, the graph becomes adversarially reconstructible exactly
at the first time that it has minimum degree two.
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