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Abstract

The boundary rigidity problem is a classical question from Riemannian geometry: if
(M, g) is a Riemannian manifold with smooth boundary, is the geometry of M determined
up to isometry by the metric d; induced on the boundary 0M? In this paper, we consider
a discrete version of this problem: can we determine the combinatorial type of a finite
cube complex from its boundary distances? As in the continuous case, reconstruction is
not possible in general, but one expects a positive answer under suitable contractibility and
non-positive curvature conditions. Indeed, in two dimensions Haslegrave gave a positive
answer to this question when the complex is a finite quadrangulation of the disc with no
internal vertices of degree less than 4. We prove a 3-dimensional generalisation of this result:
the combinatorial type of a finite CAT(0) cube complex with an embedding in R3 can be
reconstructed from its boundary distances. Additionally, we prove a direct strengthening of
Haslegrave’s result: the combinatorial type of any finite 2-dimensional CAT(0) cube complex
can be reconstructed from its boundary distances.

1 Introduction

The reconstruction of higher-dimensional structures from lower-dimensional information has
been an important area of research for many years. For example, the question of whether a
Riemannian manifold with boundary is determined by its spectrum was popularized in a famous
article of Mark Kac [9]; and there is a huge body of research on reconstructing discrete objects
from their projections [8].

A particularly natural question of this type is whether the internal structure of an object can
be determined from distances between boundary points. In Riemannian geometry, the notion of
reconstruction from a distance function on the boundary of a geometric object is well-established
in the realm of boundary rigidity questions. Broadly, a Riemannian manifold (M, g) is said to
be boundary rigid if its associated metric d, (which is defined on any two points, including
the interior) is determined up to isometry by its boundary distance function given by the
restriction dgl|amxanr. In 1981, Michel [10] conjectured that every simple compact Riemannian
manifold with boundary is boundary rigid. The 2-dimensional case was verified by Pestov and
Uhlmann [11]. In higher dimensions, however, the conjecture is wide open and has only been
verified for a few classes [3, 4].
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There has been less work on analogous questions for discrete structures. Haslegrave, answering
a question of Benjamini [2], proved the following result in two dimensions.

Theorem 1 (Haslegrave [6]). Let Q be a planar quadrangulation with a simple closed boundary
such that all internal vertices have degree at least 4. Then the distances between boundary
vertices determine QQ up to isomorphism.

Here, the distances are taken to be in the graph metric and the condition on the boundary
of @ can be restated by saying that @ is (isomorphic to) a planar quadrangulation of a disc.
Moreover, the degree condition is necessary for reconstruction; for instance, one can always
‘hide’ a square inside another by choosing an existing face of a planar disc quadrangulation,
adding a new neighbour inside the face for each of the four vertices bounding the face, and
joining them up so as to split the face into five new faces, creating a different quadrangulation
with the same boundary distances.

Theorem 1 can be viewed as a discrete analogue of the 2-dimensional boundary rigidity result of
Pestov and Uhlmann [11]. The discrete case should be more approachable than the continuous
one in general. Indeed, this can be seen for instance in the fact that much stronger restrictions
on the boundary are required in the latter, and that the proof of Theorem 1 even provides
an efficient algorithm for reconstructing ) from the given data which is not expected in the
continuous case.

In this paper, we look at generalising Theorem 1 to higher dimensions where the natural coun-
terpart for a quadrangulation is a cube complex — just as a quadrangulation can be formed by
gluing Euclidean squares (or 2-dimensional cubes) along edges, a k-dimensional cube complex is
informally a complex formed by gluing together cubes of dimension at most k along subcubes.
This leads to the following question.

Question 1. Under what conditions is a finite k-dimensional cube complexr X — RF recon-
structible up to combinatorial type from its boundary distances?

Question 1 requires not only determining the full 1-dimensional structure from boundary dis-
tances alone, but also reconstructing the higher-dimensional structure from the 1-dimensional.
This is not really true of Theorem 1: while the goal is to reconstruct a 2-dimensional complex,
any polyhedral graph has a unique embedding in the sphere [13], and hence a unique embedding
in the plane with a designated outer face, so the second step is immediate in this case.

We provide an answer to Question 1 for 3-dimensional complexes, with a well-studied condition
which directly generalises the one stated in Theorem 1. We require complexes to satisfy the
CAT(0) property, which entails both a global topological condition (simply connectedness) and
a local negative curvature condition (Gromov’s link condition, which states that the link of
every vertex is a flag complex). Intuitively, the latter condition is natural as it allows us to
fill in boundaries of cubes in the 1-skeleton with actual cubes, as required for the second step
mentioned above. Analogously to CAT(0) spaces, CAT(0) cube complexes form a large, popular
class of complexes possessing useful convexity properties (see Section 4). This makes them a
natural choice of setting for boundary rigidity problems. Our main theorem is the following.

Theorem 2. Suppose that X is a finite CAT(0) cube complex admitting an embedding in R3,
with a labelling of vertices in X . Let D be the matrix of pairwise distances between vertices of
0X with respect to the graph metric on the 1-skeleton of X. Then the combinatorial type of X
is reconstructible from D.
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Figure 1: A cube hidden within another. Links of vertices of the ‘hidden’ cube are not flag:
four cubes meet at each such vertex, but the complex has no cells of dimension 4.

Figure 2: Two pure cube complexes with the same boundary distances. The dark shaded cubes
are removed.

Like in the 2D case, our proof provides an efficient algorithm for reconstructing the combinatorial
type of X, and the labelling of boundary vertices is preserved throughout this process.

Both the simply connectedness and flag conditions are used essentially in numerous places
throughout the proof. It is also possible to see directly that they cannot be omitted from the
statement. If we do not require links to be flag, then one could ‘hide’ a cube inside another as in
Figure 1: geodesics between vertices on the outer cube are unaffected by the presence of the inner
cube. This is a 3-dimensional analogue of ‘hiding’ a square within another in a quadrangulation
of the disc, as described earlier. Another example is given by taking a 3 x 3 x 3 block of cubes
and considering the cube complexes formed by removing the top two cubes in the centre column
and by removing the top and bottom cubes in the centre column (depicted in Figure 2). These
two cube complexes do not satisfy the flag condition at any vertex of the (possibly missing)
middle cube, and it is easily seen that they have the same boundary distances since all vertices
are on the boundary and both complexes have the same edges. Similarly, we can see that
contractibility, which implies simply connectedness, is necessary as it would be impossible to
differentiate between a single square with or without a face only from the boundary distances.

CAT(0) cube complexes are ubiquitous in modern geometric group theory. While the impor-
tance of the condition in the context of reconstruction may not be immediately clear, it does
in fact directly generalise earlier conditions. To see this, we note that Gromov’s link condition
reduces to the degree condition of Theorem 1 for cube complexes of top dimension at most 2,
and local negative curvature is also one of the key assumptions used by Besson, Courtois and
Gallot in the continuous setting [3]. Furthermore, the fact that 2-dimensional cube complexes
in Theorem 1 are contractible is also captured in the CAT(0) condition, which follows from
the Cartan-Hadamard theorem. In fact CAT(0) complexes have the even stronger property of
collapsibility (see [1]).



Question 1 asks whether one can recover combinatorial information of a cube complex X from
some partial combinatorial information, namely the distance (in the graph of the entire complex)
between any two vertices on the boundary. In order for this question to be well-defined, we first
need to make precise the notion of boundary. In the present paper we mostly work with the
natural extrinsic notion of geometric boundary: given an embedding X — R*, we define 0X to
be the topological (induced from the Euclidean metric) boundary of X. This notion implicitly
depends on the dimension k of the space that we embed X into. Indeed, if X has no cells of
dimension at least k then it is its own boundary in any embedding X < R¥, so reconstructing X
from boundary information is trivial. Hence, we always consider k-dimensional cube complexes
embedded in k-dimensional Euclidean space.

A convenient observation is that for finite cube complexes the geometric boundary is indepen-
dent of the embedding we choose, so long as one exists; indeed, for finite cube complexes with
an embedding in R¥ the geometric boundary admits an intrinsic description. In Section 2, we
will discuss a combinatorial notion of boundary for cube complexes that provides such a de-
scription, which we then use in Section 9. Since this combinatorial boundary does not require
an embedding, it suggests a natural generalisation of Question 1: can we reconstruct CAT(0)
cube complexes which do not necessarily admit embeddings in a Euclidean space of their top
dimension? We give a positive answer for cube complexes of top dimension at most 2, providing
in particular a strengthening of Theorem 1.

Theorem 3. Let X be a CAT(0) cube complex of top dimension at most 2 with finitely many
cells and D its matriz of pairwise distances between vertices on the combinatorial boundary of
X. Then, the combinatorial type of X is reconstructible from D.

1.1 Extensions

Our results prompt the natural question of whether the CAT(0) property is also necessary and
sufficient for reconstructing higher dimensional cube complexes. We conjecture that this is the
case, and moreover, in light of Theorem 3, that it is not necessary to have an embedding in a
Euclidean space of the same dimension as the complex.

Conjecture 4. For any k > 3, any finite CAT(0) cube complex can be reconstructed up to
combinatorial type from its boundary distances.

After the appearance of this paper as a preprint, Chalopin and Chepoi [5] verified Conjecture
4 using a lovely combinatorial argument based on properties of median graphs.

Another direction is to consider the situation in the world of simplicial complexes.

Question 2. Under what conditions is a finite k-dimensional simplicial complex reconstructible
up to combinatorial type from its boundary distances?

Reconstructibility for simplicial complexes is less approachable as at first sight there does not
seem to be any obvious ‘convex’ substructure to remove. The case of 2-dimensional complexes
embeddable in R? has been dealt with in [6], where it is shown that all internal vertices having
degree at least 6 is a sufficient condition.

1.2 Organisation

This work makes significant use of notions and tools from algebraic topology and from the theory
of CAT(0) cube complexes. Since there is a good deal of terminology involved, we postpone



technical discussions and first introduce notation and necessary theory in Section 2. With this
background in hand, we give a skeletal version of the proof of Theorem 2 in Section 3. This
provides a roadmap for Sections 5 through 8, which are devoted to the different aspects of the
main proof, while Section 4 collects and proves basic technical lemmas needed to make our
arguments rigorous. The reader may wish to skip this section at first and use it as a reference.
In Section 9, we provide a brief sketch of the proof of Theorem 3.

2 Definitions

In this section, we define the key objects and terminology that we will be working with. This
will then allow us to give a broad outline of the proof of Theorem 2.

We start with some standard topological notions. For simplicity of exposition, we will restrict
some definitions to the cases that we require, although they may exist in much greater generality.
We refer to [7] for a detailed account of the concepts from point-set and algebraic topology
and the basic definition of CW complexes, and [14] for specifics on cube complexes. All CW
complexes we consider are regular, meaning that their gluing maps are homeomorphisms. Our
notation and descriptions below are chosen to reflect the fact that we will require a mix of
combinatorial and geometric properties of the objects in question.

We write I for the unit interval [0,1]. Let S* and B* be the unit sphere and ball in R¥
respectively, i.e.

S ={(x1,20,...,ap) ERF :af 4+ 4 u
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2.1 Geometric boundary

Let X be a regular CW complex whose gluing maps are isometries. Given an embedding
X — R", the (geometric) boundary of X, denoted 0X, is the set of points in X for which every
neighbourhood intersects both X and R™ \ X. The interior of X is then int X = X \ 0X.
Explicitly, this is the set of points p € X such that the ball B.(p) is contained in X for some
sufficiently small e > 0, where B.(p) denotes the ball of radius & centered at p.

If finiteness of the complex is not assumed, the geometric boundary may depend on the chosen
embedding. For example, let Z be the 2-dimensional complex corresponding to the graph with
vertex set NU {0} and edge set {(0, k), (k—1,k) : k € N}, and whose 2-cells have vertex sets of
the form {0, k,k+1}. One embedding of Z into D C C can be obtained by gluing 2-cells to the

sectors bounded by consecutive vectors (viewed as edges) from {e”(HZ?:O ). k € N}. The
geometric boundary from this embedding is the preimage of the unit circle, so in particular does
not contain the (preimage of the) edge e™. Yet one can embed Z into C so that the preimage of
this edge is on the geometric boundary by gluing 2-cells to the sectors bounded by consecutive

vectors from {e'™ Yi-027 ke N} (see Figure 3).

For a regular CW complex X of maximum dimension k whose gluing maps are isometries, we
define its combinatorial boundary to be the downward closure of the cells of dimension less than
k in at most one cell of dimension k. In general, the geometric and combinatorial notions of
boundary are different even for complexes admitting embeddings in R¥, as the combinatorial
boundary is independent of any embedding. For finite complexes however, these two notions
coincide, so long as there exists an embedding in RF.
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Figure 3: Two embeddings of the same (infinite) complex with differing geometric boundary.

Proposition 5. Let X be a reqular k-dimensional CW complex whose gluing maps are isome-
tries and which admits an embedding X — RF. If X has a finite number of cells, then its
combinatorial and geometric boundaries are the same.

Proof. Let X be a finite regular CW complex of dimension k and fix an embedding in R*.
Suppose that a cell S of dimension less than & is contained in at most one cell of dimension k.
Suppose that a point x inside S (that is, in S but not in any lower dimension cell) is not in the
geometric boundary. Since the complex is finite, there is some minimum distance between x and
the union of all k-cells not containing S. Take a ball of radius smaller than this. Now any point
in the ball that does not intersect the (k — 1)-skeleton must be in some k-cell. Furthermore,
there must be at least two such cells involved, since if there is a unique such cell T then the
whole ball is in (the closure of) T, and so, since gluing maps are isometries, x is in the interior
of T, contradicting the choice of z. So all of the interior of S is on the geometric boundary.
Since the geometric boundary is closed, it also contains all cells of S, so the geometric boundary
contains the combinatorial boundary.

Now consider a point z that lies inside the combinatorial boundary. Suppose S is a (k — 1)-cell
contained in two k-cells, and let x be a point in the interior of S. Then a sufficiently small ball
around x meets no cells other than these three. By passing to a smaller ball if necessary we
can assume that it is divided into two parts by S, either of which contains interior points of the
larger cells. Thus each part of the ball is contained in one of the two cells, and x is not on the
geometric boundary.

Suppose & € S is in the geometric boundary, where S is a cell of dimension at most k — 2
and is the inclusion minimal cell containing z. If S is not in the combinatorial boundary, then
every (k — 1)-cell containing S, of which there is at least one, is in two k-cells. Take a ball
around z that is sufficiently small to avoid any (k — 1)-cell not containing S. This ball contains
a point y in the interior of some k-cell (since x lies in the closure of such a cell), and a point
z outside the complex (since z is in the geometric boundary). Now the ball is path-connected,
even if we remove the (k — 2)-skeleton from it. Thus there is a path from y to z, which avoids
the (k — 2)-skeleton and must contain a point on the geometric boundary. By the previous
paragraph, no point in the interior of a (k — 1)-cell containing S is in the geometric boundary,
a contradiction. O

In particular, this result applies to the cube complexes considered throughout this paper. Hence-
forth, all CW complexes are assumed to have a finite number of cells.



2.2 Simplicial complexes

An n-simplex is an n-dimensional object formed by taking the convex hull of n linearly indepen-
dent vectors. Every n-simplex is homeomorphic to a standard n-simplez A™ := {(xq,...,z,) C
R 3 2; =1 and @; > 0 for all i}, which is spanned by the unit vectors along each coordi-
nate axis. We say that xg,...,z, span the simplex A™. Low-dimensional simplices are familiar
objects: we will call O-simplices vertices, 1-simplices edges, 2-simplices triangles and 3-simplices
tetrahedra.

Recall that a simplicial complex S is a CW complex whose cells is a collection of simplices such
that

e for every simplex in .S, all of its simplicial faces are also in S, and

e the intersection of any two simplices in S is a simplicial face of both of them.

The dimension of a simplicial complex is the dimension of its top-dimensional simplices. We
say that a simplicial complex S is flag if whenever there is a collection of k pairwise adjacent
vertices (that is, joined by edges), then those k vertices span a (k — 1)-simplex in S. Informally,
this means that there is a k-simplex everywhere there should be one according to the graph
of vertices and edges in the complex. Finally, note that the boundary of an n-dimensional
simplicial complex has a natural structure as an (n — 1)-dimensional simplicial complex.

2.3 Cube complexes

We now turn to cube complezes, which are CW complexes whose n-cells are n-cubes and gluing
maps are combinatorial isometries. Let the standard n-cube be the set of points Q" = I" C R"
(the standard 0-cube is a single point). Note that each n-cube is endowed with a natural internal
coordinate system. By restricting any & of the coordinates to 0 or 1, we obtain an (n — k)-cube
on the boundary of our n-cube which we call a cubical face. In general, an n-cube is any set in
R™ that is homeomorphic to the standard n-cube. The dimension of a cube complex is defined
analogously to that for simplicial complexes. An n-dimensional cube complex is pure if every
k-cube with k < n is contained in an n-cube. Since we mainly work with 3-dimensional cube
complexes, in the later sections of this paper we will use the terms wvertices, edges, faces, and
cubes (with no specified dimension) to mean 0-cubes, 1-cubes, 2-cubes and 3-cubes respectively.
As such, we will refer to the 1-skeleton X' as the graph of X, with the corresponding graph
theoretic terminology. In particular, unless otherwise stated, a path ~ in X is a graph path
in its graph X! and its length |y| is its number of edges, and a walk is a path where vertices
may be repeated. When ~ consists of vertices vy, ..., v, in this order, we sometimes use the
notation vg - - - vy for .

For k,¢ > 0 we say that an ¢-cube in a k-dimensional cube complex is free if it is not contained
in any k-cube, this being one possible structure in a cube complex that is not pure. We will
mainly use this term to refer to free faces in 3-dimensional cube complexes, i.e. 2-cubes not
contained in 3-cubes. A cubulation of the ball is a cube complex that is homeomorphic to B3. In
Section 7 we will see a construction which requires fixing an embedding X < R3; as such, when
introducing a cube complex X we use this notation to indicate that we have fixed a specific
embedding of X. Say that a vertex is the corner of a cube (face) if all cells containing it are
contained in a unique cube (face).

In this paper we are interested in the graph metric on the 1-skeleton of cube complexes, meaning
the length of shortest paths between vertices. When it is unambiguous to do so we will talk



about geodesics on cube complexes to mean geodesics on their 1-skeleton. As such, if X is a cube
complex, the 1-distance graph induced by the boundary G(X) is the subgraph of X! induced by
the vertices 9X Y. This contains X' as a subgraph, which may be a proper subgraph since edges
not in 0X can have endpoints on the boundary. Hence, we can read G(X) off the restriction
Dyx of the distance matrix to the boundary, but not necessarily 0X".

A map f: X = Y between CW complexes X and Y is said to be combinatorial if its restriction
to the boundary of any cell of X is injective, and if it maps each cell to a cell of same dimension.
Two cube complexes X and Y are said to have the same combinatorial type if there are bijections
fi: X* = Y for each dimension i such that any two cells o, 7 of X are incident if and only if
f(o) is incident to f(7) in Y. In this paper, we will mostly be interested in cube complexes up
to combinatorial type, meaning that we consider them to be distinct when their combinatorial
types differ.

There is an important construction which allows us to encode local structural information from
a cube complex via an auxiliary simplicial complex. Given a cube complex X and a vertex
v € X, the link of v, denoted link(v), is the simplicial complex where:

e the vertices of link(v) are in bijection with edges containing v,

e for n > 2, there is an (n — 1)-simplex with vertices ey, ..., e, in link(v) if and only if there
is an n-cell C in X containing v where ey, ..., e, are the edges of C' that contain v.

Intuitively, the simplices in link(v) correspond to ‘corners’ of cells in X that contain v. A useful
alternative perspective, assuming that X is finite and embedded in Euclidean space, is that
link(v) is the intersection of the sphere S¢(v) with X for sufficiently small ¢ > 0. This has a
natural simplicial structure.

2.4 CAT(0) Cube complexes

At last, we arrive at the key property that we need for reconstruction. A cube complex X
is CAT(0) if it is simply connected and link(v) is flag for every v € X°. The latter part of
this definition is really a condition requiring that the complex has nonpositive curvature, and
in fact directly generalises the degree condition in Theorem 1. In a disc quadrangulation, the
link of each boundary vertex is a path, while the link of an internal vertex is a cycle. Thus a
disc quadrangulation is CAT(0) if and only if cycles in links have length at least 4, i.e. if and
only if each internal vertex has degree at least 4. However, in three dimensions there is no
corresponding equivalence: being CAT(0) implies that every internal vertex has degree at least
6, but the flag condition may fail at an internal vertex even if it has high degree, and it may
also fail at a boundary vertex. The structure of links of vertices in CAT(0) cube complexes will
be crucial for us. We continue this discussion in Section 4.2.

While there is a great deal of rich theory surrounding CAT(0) cube complexes — especially
concerning their applications in geometric group theory, we will only need basic combinatorial
considerations for our purposes and will refrain from delving deeper in the existing theory. Two
important objects of study will be immersed hyperplanes and disc diagrams.

2.5 Hyperplanes and disc diagrams

For n > 1, a midcube in an n-cube C' = I™ is a codimension 1 cube M with an embedding
M = I""! x {1/2} in C. As such, C has precisely n distinct midcubes, and the intersection
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Figure 4: From left to right: a nonogon, a bigon and a self-intersecting hyperplane. The relevant
immersed hyperplanes are represented in dashed lines.

of each midcube with a face of C' of codimension at least 2 is again a midcube of that face.
Moreover, two midcubes of distinct cubes in a cube complex X intersect in a combinatorial
manner, meaning that the natural gluing map between the midcubes is combinatorial. In this
way, midcubes of cubes of dimension at least 1 form connected components which we refer
to as hyperplanes. We emphasize the distinction between a hyperplane H as a standalone
cube complex and its natural embedding H — X as midcubes by referring to the latter as an
immersed hyperplane. Then, the (cubical) neighbourhood of H — X, written N(H) or H x I
(sometimes called the carrier of H), is the union of cubes in X containing it. We say that two
immersed hyperplanes cross (in a complex X) if they contain two midcubes of some cube of
any dimension (in this complex X); when a hyperplane crosses itself we say that it self-crosses.

A disc diagram is a locally injective combinatorial map D — X, where D is a quadrangulation
of the disc. We now define some pathological substructures in disc diagrams D — X. In
this setting, hyperplanes are 1-dimensional cube complexes, i.e. graphs. A nonogon is the
neighbourhood of an immersed hyperplane which is a cycle. Bigons can be defined from two
non self-crossing immersed hyperplanes crossing each other at least twice in D: we define a
bigon to be the cubical neighbourhood of two paths in such hyperplanes crossing each other
exactly twice which are inclusion minimal with this property. Notice that these definitions also
apply for CAT(0) cube complexes of dimension at most 2.

Both cells and simplices are specified by their vertices, so we will refer to a particular within a
complex by a set of vertices. In addition, if X is a simplicial complex (or cube complex), let X*
be the i-skeleton of X which is the union of all k-simplices (k-cells) for 0 < k < 1.

In this setting, a minimal disc diagram is understood to be, for a fixed cycle v in X', a disc
diagram D — X whose boundary is mapped to -, chosen so that it minimises the number of
faces, edges and vertices. Hyperplanes and minimal disc diagrams are particularly well-behaved
in CAT(0) cube complexes, a statement which we make precise in Section 4.1.

3 Proof overview and discussion

This section provides, in a skeletal form, the proof of our main theorem. The main purpose is
to provide a break-down of the proof into the components that span the remaining sections of
this paper, as well as discuss the necessity of certain approaches.

To prove sufficiency of the conditions in Theorem 2, we proceed by induction beginning with
complexes with at most one edge. At each step, we aim to reduce the size of our cube complex:
we have four processes that each use a particular substructure within the complex to define one
or more smaller subcomplexes on which the induction hypothesis can be applied. This entails



Figure 5: CAT(0) cube complex where removing a row of cubes gives a complex which is not
homeomorphic to a ball: the dark blue cube is a row of cubes on the boundary (its red edge is a
path of length 1 with endpoints and internal vertices of boundary degrees 3 and 4 respectively),
yet removing it leaves two cubes sharing an edge.

a number of verifications, namely that:
1. each substructure can be recognised from the boundary distance data that we start with,
2. all resulting subcomplexes still satisfy the CAT(0) property,
3. the boundary distances in all resulting subcomplexes can be recovered, and

4. if we are not in the base case, then at least one of the substructures exists in our finite
CAT(0) cube complex so that a reduction can be performed.

Our four chosen substructures are cut-vertices, corners of faces, vertices of degree 3 that are not
in any cube, and rows of cubes on the boundary. For the first three of these structures, there
is a natural way to reduce our complex into smaller pieces and the corresponding verifications
are relatively straightforward. These are detailed in Section 5, and allow us to proceed with the
assumption that our complex X does not contain any of these three structures in which case
we call X ‘clean’.

The main work in our proof lies in handling rows of cubes on the boundary — essentially maximal
stacks of cubes with one side on the boundary (the precise definition is given in Section 6). These
structures are a natural choice for induction arguments in CAT(0) cube complexes because of
their well-behaved hyperplanes. Here they work nicely in that they can easily be read off the
boundary distance matrix, and their removal (for several natural definitions of removal) leave a
subcomplex where the flag condition is preserved at each vertex and their hyperplanes allow us
to recover boundary distances to newly created boundary vertices. These properties are proved
in Section 6. Within our proof, rows of cubes are key to making bulletpoint 4 above true. The
intuition for this comes from the controlled case when X is a finite CAT(0) cube complex that
is homeomorphic to a ball, where a simple Euler characteristic argument can be used to show
that there must exist a row of cubes on the boundary of X.

Unfortunately, the property of being homeomorphic to a ball is not necessarily preserved when
removing rows of cubes. See Figure 5 for instance: removing the central cube from three cubes
glued together to form an ‘L’ shape. One could hope to reduce the resulting complexes by
‘splitting’ then appropriately into subcomplexes homeomorphic to balls, but this approach is
complicated by the fact that CAT(0) cube complexes may possess ‘essential’ lower dimensional
features, in the sense that removing these yields complexes with non-trivial homotopy. See for
example Figure 6.

To overcome this, we use a removal process where we leave the ‘back wall’ of the row of cubes

10
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Figure 6: CAT(0) cube complex where removing the face bounded by the central blue square
gives a complex which is not contractible.

intact, thus ensuring contractibility. However this forces us to adapt our arguments for CAT(0)
complexes which may not have fixed Euler characteristic. Our approach is form an auxiliary
complex by ‘thickening’ the complex X . This procedure, which is the topic of Section 7, produces
a cube complex X homeomorphic to the ball B® that contains X. Roughly speaking, this is
achieved by taking X together with a cubical shell around X. This shell is constructed in
such a way that there is a correspondence between the graphs of X and 0X (Lemma 17). In
particular, this correspondence allows us to apply the previously mentioned Euler characteristic
argument to X in order to find a row of cubes in X and then transfer it back to X.

Proof of Theorem 2. Let X be a contractible CAT(0) cube complex with an embedding in R3.
We proceed by induction on the number of vertices of 0X. We may assume without loss of
generality that X is clean, as otherwise, by the discussion described in Section 5 we can recognise
this and perform a reduction to reduce to a complex with fewer vertices on the boundary which
satisfies the induction hypothesis.

By Lemma 19, the thickening X of X admits a good configuration C. Under the correspondence
described in Lemma 17, C corresponds to a good configuration 7(C) in X. This good configura-
tion is a pattern in the boundary distance matrix which can be recognised, and by Lemma 12,
m(C) corresponds in turn to a row R of cubes on the boundary of X. Finally, applying the
reduction described in Section 6.2, we reduce X to a complex with smaller boundary which
satisfies the induction hypothesis. O

4 Technical toolbox

4.1 Hyperplanes in CAT(0) cube complexes

Let X be a cube complex and ¥ C X a subcomplex. Recall that the metric we consider is the
graph metric on 1-skeleta. In this setting we say that Y is convex if any geodesic with both
endpoints in Y is entirely contained in Y.

A consequence of the CAT(0) property in cube complexes is the presence of natural convex
subcomplexes, namely neighbourhoods of immersed hyperplanes. This convexity is crucial to
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recover boundary distances after removing parts of a CAT(0) cube complex, and we use it in
the form of the following theorem, based on a paper of Sageev [12].

Theorem 6 (Wise [14, Theorem 2.13]). Let X be a CAT(0) cube complex.
(i) Each midcube lies in a unique immersed hyperplane.
(ii) Hyperplanes are CAT(0) cube complexes.

(iii) The cubical neighbourhood N(H) = H x [0,1] of an immersed hyperplane H is a convex
subcomplex.

(iv) X \ H consists of two connected components.

4.2 Links of vertices

The links of vertices in a complex contain important local information. We will mostly be
interested in deducing information about the local structure around vertices from their degree
and existing partial information.

Lemma 7. Let X be a finite CAT(0) cube complex with an embedding in R® and v a vertezx of
0X. Then:

(a) For any subcomplexr' Y C X containing v, there is a natural containment map linky (v)
— linkx (v). In particular, linkyx (v) has at least as many components as link x (v).

(b) If v is contained in a cube C of X, then linkgx (v) has at least 3 vertices. If linkgx (v) is
further a single cycle, then linkx (v) is homeomorphic to a disk D?.

(c) If linksx (v) does not contain a cycle, then the containment linkyx (v) C linkx(v) is a
bijection.

(d) Suppose linkgx (v) is a single cycle and H C (linky (v))! is a subgraph. This inclusion
corresponds to an embedding of H in an e-sphere about v in R3 which is a planar drawing
for H. Suppose that the following hold:

e H is a triangulation of linkyx (v), meaning that (linkpx (v))! € H and this natural
containment is a planar drawing of H such that all vertices of linkgx (v) lie on the
outer face, and every other face is a triangle.

o The following diagram, where the maps are the aforementioned natural containments,
commutes.

linkyx (v) —— H

!

anX (U)

Then the above embedding describes an isomorphism between H and (linky (v))*.
A useful consequence of the second bullet point is that when X is homeomorphic to the ball

B3, the link of any of its boundary vertices is homeomorphic to a disc D?.

Proof. (a) The embedding Y < X gives a natural embedding linky (v) < linkx (v) through
the identification between k-cells incident to v and (k — 1)-cells in the links at v. In
particular, the natural embedding 0X < X guarantees that linkyx(v) has at least as
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many connected components as linkx (v): a path f (interpreted here as a continuous map
f:10,1] = linkgx (v)) in linkyx (v) extends to a path f’: [0,1] — linkx (v) by precompos-
ing with the inclusion map linkyx (v) < linkx (v) as the former is obtained from the latter
by removing simplices.

Consider an e-sphere around v in X. The connected component of link x (v) containing the
2-simplex corresponding to C' is 2-dimensional and thus — as linkx (v) is flag and therefore
has no double edges — has at least three vertices on its boundary, as desired.

If linky x (v) is a single cycle, linkyx (v) C linkx (v) is homeomorphic to S* and so separates
the e-sphere into two components homeomorphic to discs D?. One of these components
is link x (v), as desired.

If linkyx (v) does not contain a cycle, then an e-sphere about v is not disconnected by
removing linkyx (v). It follows that linkx (v) lies entirely on the boundary.

First, linkyx (v) corresponds to a cycle in a e-sphere about v, separating this sphere into
two parts. Since H is a triangulation and linkx (v) is flag, linkx (v) contains at least one
2-simplex and thus (exactly) one of the two parts of the e-sphere is contained in link y (v).

Since links of X are flag and H C (linkx(v))! is a triangulation, each triangle of the
planar drawing of H bounds a 2-simplex in linky (v). Now, (linkgx (v))! € H so linky (v)
and the 2-simplices bounded by edges of H are both homeomorphic to a disc D? with
boundary linkyx (v), the only difference being that link x (v) may contain subdivisions of
2-simplices bounded by edges of H. This in particular gives a planar drawing of H.

Suppose now that H is a proper subcomplex of (linky (v))!. Since (linkgx (v))! € H and
every triangle of H bounds a 2-simplex in linkx (v), there must be a face F' of H that is
triangulated in (linkx (v))!, meaning that there is a single vertex adjacent to every vertex
in the triangle. But such a vertex forms a clique of size 4 in the graph of linkx (v) which,
since X is CAT(0), implies that there is a 4-dimensional cell in X, a contradiction. [

Recall that G(X) is the 1-distance subgraph of X induced by the vertices of 9X. These facts
allow us to diagnose structures appearing in X from adjacencies in G(X) and partial information
on the structure of X. We elaborate on this in the next lemma.

A cut-verter in X is a vertex v € X° such that X \ v has at least two non-empty connected
components. Recall that a corner of a cube in X is a vertex v contained in a unique cube of X.
In particular, v € X° and degy(v) = 3 and v is incident to a unique cube in X, whose three
faces incident to v lie on 0.X.

Lemma 8. Let X be a finite CAT(0) cube complex with an embedding in R® and v € (0X)°.

(a)
(b)
()

If a vertez v is a cut-vertex of X, then linkyx (v) is disconnected.
If linkyx (v) is a triangle, then v is a corner of a cube.

If degg(xy(v) =4 and v is in a cube of X, then degyy (v) = 4, which implies that linkyx (v)
is either a cycle of length 4, a triangle with a pendant edge, or a triangle plus an isolated
vertex. Moreover, one of the following holds:

e v is incident to exactly one cube and one free face of X;

e v is incident to exactly one cube and one edge of X not contained in any face;
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e v is incident to at least four cubes of X, and the four faces incident to v on 0X each
lie in different cubes; or

e v is incident to exactly two cubes in X, each of which contains two of the four faces
incident to v on 0X.

Proof.  (a) If linksx (v) is connected, then by Lemma 7 (a) so is linkx (v). Hence X \ v is also
connected.

(b) By Lemma 7 (d) with H = linkgx (v), linkgx (v) ~ (linkx (v))! and so linkx (v) is a single
triangle as desired.

(c) Suppose for contradiction that degyy (v) # 4. Then, degyy (v) < 3. Since v is in a cube of
X, by Lemma 7 (b) linksx (v) has exactly 3 vertices. In particular, linksx (v) is connected:
otherwise each connected component of linkyx (v) would have fewer than 3 vertices and
hence no cycles, this would lead to a contradiction in view of Lemma 7 (c) as linkx (v)
contains at least one 2-simplex. Hence, by Lemma 7 (d) v is then the corner of a cube, so
degg(x) = 3, a contradiction.

If linkgx (v) does not contain a cycle then Lemma 7 (c) contradicts the fact that v lies
in a cube. Thus linkyy (v) is either a 4-cycle, a 3-cycle with a pendant edge, or a 3-cycle
plus an isolated vertex.

In the first case, if two faces incident to v lie in the same cube, then the corresponding
edges in linkx (v) necessarily share an endpoint, and lie in a triangle. Hence, (linky (v))*
contains a 4-cycle with an extra edge. By Lemma 7 (d), link x (v) is a 4-cycle with an extra
edge, with each triangle bounding a 2-simplex. Otherwise the four faces of 90X containing
v lie in four different cubes.

In the second case, the triangle bounds a 2-simplex and the final edge corresponds to a
free face.

Similarly, in the last case the triangle bounds a 2-simplex and the remaining vertex cor-
responds to an edge not contained in a face. O

We conclude this technical section with a standard observation that in CAT(0) cube complexes,
cycles of length 4 bound a face.

Lemma 9. Let w,z,y,z be vertices forming a square in the graph of X. Then these vertices
lie in a face of X.

Proof. Let C be the square they form. Since X is simply connected, by van Kampen’s theorem
(see [14, Lemma 3.1]) there is a disc diagram D — X with C' ~ 0D. Let D be such a disk,
chosen to minimise its number of faces. Under such minimality assumptions, D contains in
particular no nonogons, no bigons and its hyperplanes do not self-cross (see [14, Lemma 3.2)).
Since C' has only 4 edges and any hyperplane crosses the boundary twice, D admits at most
two hyperplanes and hence has at most one face: if two distinct faces share an edge, their four
midcubes belong to three distinct hyperplanes of D, as they would otherwise force a forbidden
structure in D. O

In particular, pairs of vertices with two common neighbours correspond to faces of X. As a
consequence, we can easily find the neighbours of a vertex v € X which lie in the same face:
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they are precisely those that have a common neighbour in G(X) other than v. Hence, from the
1-skeleton of X we can recover the link in X of every vertex in 0.X.

5 Cleaning

Let X be a finite CAT(0) cube complex. Recall that a vertex is the corner of a cube if it has
degree 3 in X and is contained in a unique cube in X. Analogously, a corner of a face is a
vertex with degree 2 in X that is contained in a unique face in X. Recall that cut-verter in X
is a vertex v € X° such that X \ v has at least two non-empty connected components. Each
such connected component together with v has fewer boundary vertices than X.

In this section, we describe substructures with their recognition and reduction steps in CAT(0)
cube complexes. In the order that they will be performed, the cleaning operations are the
following:

(1) removing cut-vertices;
(2) removing corners of faces;
(3) removing vertices of degree 3 that are not in a cube.

For (1), the idea of reduction is that if v is a cut-vertex then we will try to apply the induction
hypothesis to each connected component of X \ v with v added back. If v is one of the features in
(2) and (3), then we will apply the induction hypothesis to X —v. In order to apply induction,
it is important to note that each of the above reduces the number of boundary vertices by at
least one. A CAT(0) cube complex with none of the above features is called clean.

Note that the order of our cleaning operations is important in the sense that when we go
through the steps for a later structure in the list, we sometimes need the assumption that none
of the earlier structures are present. Likewise, it is important that we can later assume that
our complex is clean to then show that there exists a row of cubes on the boundary.

5.1 Removing cutvertices

Recognition. A vertex v € 90XV is a cut-vertex in X if and only if it is a cut-vertex in the graph
of 0X*.

Proposition 10. Let X < R3 be a CAT(0) cube complex. Then X \ v is connected if and only
if 0X \ v is connected.

We stress that the CAT(0) condition is necessary: consider for instance any cubulation of the
space Y = {(x,y,2): 22+ y?> + 22 < 4 and (x — 1)? + y? + 22 > 1} consisting of the points
between two spheres meeting at the single point p = (2,0,0). Note that Y is not contractible.
Then Y \ p is connected while 9Y" \ p is disconnected.

Proof. For any cube complex Z and vertex v € Z, note that Z \ v is connected if and only
if Z1\ v is connected. Hence, it suffices to show the assertion for 1-skeleta: that X!\ v is
connected if and only if X'\ v is connected.

If X \v is disconnected, then clearly 0X \v is disconnected. For the converse, suppose that 9X \v
has at least two connected components. Let A be such a component and write B := 90X \ (vUA).
Note that since the restriction of an immersed hyperplane of X to 0X is connected (it is a closed
walk) and avoids X, it cannot intersect both A and B. At the same time, it must intersect
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one of the two. Consider two immersed hyperplanes H, H' < X such that H and H’ restricted
to the boundary of X are contained in A and B respectively. By Theorem 6 the hyperplanes
H, H' are CAT(0) cube complexes, and further their top dimension is at most 2. Recall that
nonogons in a disc diagram are hyperplanes whose image is a cycle, and that a self-crossing
hyperplane is one which contains two midcubes of some face.

Claim 1. The immersed hyperplane H contains no nonogons.

Proof. Since hyperplanes of CAT(0) cube complexes are themselves CAT(0) cube complexes
(Theorem 6(ii)), they are simply connected and in particular contain no nonogons. |

Claim 2. HN H' = 0.

Proof. Suppose not. Then, since the cubical neighbourhood of H N H' in H is a sequence of
faces where consecutive ones share edges, there is a disc diagram D < H which contains HNH'.
As H has no nonogons and is finite, H N H' must intersect 9 H non-trivially, contradicting that
H' C B. |

Let a € A and b € B be neighbours of v and suppose for contradiction that there is an (a, b)-
path v € X'\ v. As X is contractible, the closed loop formed by 7 together with v bounds
a disc diagram D — X. Let Fy,..., F; and av = ey,..., e, = bv be the clockwise ordering of
faces and edges, respectively, incident to v in D. For each 0 < i < k write H; for the hyperplane
corresponding to the midcube of edge e¢;. Then, H; 1 crosses H; in face F; foreachi=1,...,k.
Since the restrictions to the boundary of Hy and Hj lie in A and B respectively, this contradicts
Claim 2 (with H := Hy and H' := Hy). O

Reduction. For this step, we use a simple fact from algebraic topology which we prove for
completeness. An alternative argument using van Kampen’s theorem is also possible.

Lemma 11. Let X =/, X; be a wedge of CW complexes X; with common point xo. Then if
X is contractible, so is each X;.

Proof. The map m,(\/,; X;) — m(I[; Xi) =~ @, mn(X;) induced by inclusion is surjective for
each n. By assumption the term on the left hand side is trivial and thus each m,(X;) is trivial
as well for each n. O

Suppose that v is a cut-vertex. Then X can be written as the wedge \/, X; of finitely many
subcomplexes X; whose pairwise intersection is {v}. By Lemma 11, each X; is contractible (in
particular, simply connected). Since each connected component of linkx (v) is a flag complex,
so is each linkx, (v) and thus each X; is CAT(0).

It is clear that 9X; C 0X and X can be reconstructed from its subcomplexes X;. Additionally,
if vertices =,y € 0X lie in the same subcomplex X;, then dx,(z,y) = dx(z,y) as any z, y-path
in X using a vertex not in X; can be shortened to a path using only vertices in X;.
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5.2 Removing corners of faces

Recognition. If X has no cut-vertices, a vertex v € XV is the corner of a face precisely if
degyx (v) = 2. Indeed, if v is a corner of a face then degyy(v) = 2 by definition. Conversely, if
degyx (v) = 2 then by Lemma 7 (b), v is not contained in any cube of X and so by Lemma 7
(c), linkgx (v) ~ linkx (v) and therefore is a single edge.

Reduction. Suppose that v is a corner of a face C'. Note that C' must be free, and hence
C is in 0X. Remove all cells containing v to obtain a proper subcomplex ¥ C X. As X
deformation retracts onto Y and X is contractible, Y is contractible. For a vertex u not in C,
we have linky (u) = linkx (u) which is therefore a flag complex. For a vertex w in C, linky (w) is
obtained from link x (w) by removing either a degree 1 vertex together with its incident edge, or
an edge not contained in any triangle. In either case, the resulting complex linky (w) is flag and
so Y is CAT(0). It is clear that X can be reconstructed from Y. We also have that 9Y C 90X
because all vertices of C' are in X. Moreover, degy (x,y) = deg y (z,y) for any z,y € 9Y°. To
see this, let u be the vertex of C' not adjacent to v and note that v can be replaced by « in any
shortest (z,y)-path in X without changing its length.

5.3 Removing vertices of degree 3 not in a cube

Recognition. Suppose X has no cut-vertices nor vertices of degree 2, and v € XY has degree
3. Then v is not in a cube of X if and only if two of its neighbours do not have a common
neighbour different from v. Indeed, since X has no cut-vertices, it follows from Lemma 8 (a)
that linksx (v) is connected and is therefore either a path with 2 edges or a triangle. The former
case occurs precisely when v is the unique common neighbour of two of its neighbours, and in
the latter case, by Lemma 8 (b), v is in a cube.

.
.
V1 Vg

u

Figure 7: Pattern corresponding to a vertex v of degree 3 not in a cube.

Reduction. Suppose X has no cut-vertices nor vertices of degree 2, and that v € 9X0 is a vertex
of degree 3 not in a cube. This forces the cells containing v to form them pattern depicted in
Figure 7, where all vertices in the figure are on 0X. Let Y C X be the proper subcomplex of
X obtained by removing all cells containing v. Using the known pattern, we can reconstruct X
from Y.

Since X deformation retracts onto Y via the map collapsing v onto u and the edges v1v, vvy
onto viuju, vougu respectively, Y is contractible. Moreover, since Y is obtained from X by
removing cells of dimension at most 2 not contained in any cubes, all links of vertices in Y are
flag complexes. Hence, Y is a CAT(0) cube complex.

Consider vertices p,q € 9Y; we certainly have dy(p,q) = dx(p,q). Let H be the unique
immersed hyperplane splitting X into parts X,, X, with u € X,,, v € X,,. Note that we can
recognise the part to which each vertex on 9X belongs from the known distance matrix. By
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convexity of the neighbourhood of H, p € X, if and only if dx (p,u) < dx(p,v). There are three
cases to consider to recover distances exactly.

1. If p,q € X,, then since hyperplanes are convex (Theorem 6 (iii)), no shortest p, g-path
uses v. Hence, dy (p,q) = dx(p,q).

2. If p e Xy, q € Xy, we can assume dx (p, q) = dx(p,v)+dx (v, q) as every shortest p, g-path
otherwise misses v.

Since v,q € X,, either dx(v,q) = 1+ dx(v1,q) or dx(v,q) = 1+ dx(v2,q); assume
without loss of generality the latter. As H is the only hyperplane separating us and wve,
we have dx (p,u2) = dx(p,v2) — 1 = dx(p,v) and dx(uz,q) = dx(ve,q) + 1 = dx(v,q).
Thus, there is a shortest (p,¢)-path containing ug. This path does not contain v, since
a shortest (p, ug)-path lies entirely within X, and v is too far from ¢ to be on a shortest

(u2, q)-path.

3. Finally, suppose that p,q € X,. To proceed, we claim that every shortest (p, q)-path in
X, is a shortest path in X. This holds since if p is a (p, ¢)-path that intersects X, in a
subpath p/ , the convexity of the tubular neighbourhood of H means that p, is contained
in this neighbourhood. Then we can replace p), by a projection of the same length p! in
p, and this produces a (p, ¢)-path contained in X, that is shorter than p.

Now note that v is a cut-vertex in X,,. If p and g are in the same component of X, \v (this
can again be recognised from the distance matrix for 9.X), then the shortest p, g path in
X, avoids v. The preceding claim then implies that dy (p,q) = dx(p,q) = dx(p,q).

So suppose that p and ¢ are in different components of X, \v, meaning a shortest (p, q)-
path in X uses v. By Theorem 6 H is simply connected, so by van Kampen’s theorem (see
[7, Theorem 1.20]), X, is also simply connected. Furthermore, since v is not contained
in any face in X,, any (v1,v2)-path P avoiding v would form a non-trivial loop with the
path vjvvy, which is impossible. Hence, any (p, ¢)-path v in X! avoiding v — i.e. a path
in Y1 — must use at least one vertex outside X,,.

Let zy be an edge of v with z € X, y € X,. Then, again by the convexity of the
tubular neighbourhood of H, dx(p,y) = dx(p,z) + 1 and dx(y,q) > dx(z,q) + 1. Hence,
Iv| = dx(p,y) +dx(y,q) = dx(p,x) +dx(x,q)+2. In particular, taking v to be a shortest
path allows us to conclude that dy (p,q) > dx(p,q) + 2. In fact, by replacing v by ujuus
in v, we see that dy (p,q) = dx(p,q) + 2.

6 Rows of cubes

A row of cubes of length k in X is a tuple of cubes (C1,...,C}) from X where non-consecutive
cubes are disjoint, and for each ¢ = 2,...,k — 1, there are opposite faces F, F’ of C; such
that C;_1 N C; = F and C; N Cjyq = F'. If moreover, there is a path pg---pg such that
degy(po) = degx(pr) = 3 and degy(p;) = 4 for i = 1,...,k — 1, and additionally py € Ci,
pr € Cr and p; € Cj—1 NC; for each @ = 2,...,k, then we say that (Cy,...,C%) is on the
boundary. In particular, this implies that pg, ..., pr are boundary vertices.

In this section, we describe the recognition and reduction steps for rows of cubes on the bound-
ary. For the former, we will introduce so-called ‘row configurations’ and ‘good row configura-
tions’ in Section 6.1. As will follow from Lemma 12, when X is a contractible clean CAT(0)
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cube complex, good row configurations in G(X) correspond to rows of cubes on the boundary.
Their existence in clean contractible CAT(0) cube complexes will be discussed in Section 7. The
latter step is detailed in Section 6.2.

6.1 Row configurations

Definition 1. A row configuration of length k in a graph H = (V| E) is a tuple of labelled
vertices
(@i, pi,bi:i=0,...,k)

for some k > 1 such that degy(po) = 3, degy (px) # 4, degy(pi) =4 fori=1,....k —1, all
edges (referred to as the edges of C)

aipi7bipia Z:O,,k,
a;—1a;, bi—1b;, pi—1pi, i=1,...,k;

are in F, the p; are distinct and (a;), (b;) are distinct sequences. As it turns out, these sequences
do not intersect in row configurations on the boundary of CAT(0) cube complexes. The oriented
path pop1 ...pg is called the spine of C and we refer to py and py as the start verter (which
always has degree 3) and end vertex (which always has degree at least 3), respectively. We
identify row configurations with the same spine, i.e. those of the form

(ai)pi7bi: 7/:0,,]{3)
(biup’iuai: 7/:0,,]{7)

We refer to row configurations with end vertex of degree 3 as good row configurations or good
configurations for short. When X is a cube complex, we will say ‘a (good) row configuration in
X’ to mean a (good) row configuration in the graph X1

agp ai ag

Fy
Po Y41 Pk

bo ) bi.

Figure 8: Row configuration.

When Y is a clean CAT(0) cube complex, row configurations in G(Y) enjoy multiple useful
properties: we show that all edges of a row configuration in G(Y') are in fact edges of (9Y)!
and that a row configuration corresponds to a row of cubes.

Lemma 12. Let Y be a clean CAT(0) cube complex. Then a row configuration of length k
in (OY) or G(Y) corresponds to a row of cubes of length k on the boundary of Y. Namely,
given a row configuration C := (a;,p;,bi: i =0,...,k) in (OY) or G(Y), there is a row of cubes
R = (Cy,...,Ck) inY such that the faces bounded by a;—1,a;,pi,pi—1 and p;—1, pi, bi,bi—1 are
faces of C; for each i =1,...,k, and all edges of C are in (OY)'. Further, this row of cubes is
uniquely determined by k and the vertices pg, p1. We refer to R as the underlying row of cubes

of C.
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Note that a single row of cubes may be the underlying row of cubes of multiple row configurations
inY (e.g. when Y is a single cube). However, such row configurations are uniquely determined
by the first edge of their spine.

Proof. Suppose that C is a row configuration in G(Y'). Since Y is clean pg is in a cube, so by
Lemmas 7 (b) and 8 (b), po is the corner of a cube C; in Y and moreover edges incident to it in
G(Y) are present in (9Y)!. In particular, Cy has faces Fy, I, containing vertices {ag, a1, p1, po}
and {bo, b1, p1,po}, respectively. If ag = by, then F; and F» share three vertices and so, as Y is
CAT(0), F; = F5 and in particular a; = b;. Continuing in this way we see that (a;) = (b;), a
contradiction. In a similar way, if there is some 0 < ¢ < k with a; = b; we can see that ag = b,
leading to a contradiction. So without loss of generality, ag # bg. As po has degree 3 in Y, both
Fy and F; are in 9Y and so agpay, bob1 are edges of (9Y)!.

If degg(yy(p1) # 4, we are done. Otherwise, degg(yy(p1) = 4 and faces Fy, F> both contain
p1 and are faces of the same cube Cj. Furthermore, OY! contains the 4-cycles piaiasps and
p1b1bapa, which by Lemma 9 must each span faces of Y, and so linkgy (p1) contains a 4-cycle.
The only possibility from Lemma 8 (c) consistent with this is that there is some cube Cs such
that p; is only incident to Cy, Cs in Y, i.e. (', Cs share a face containing p;. Moreover, both
faces of Cy incident to p; are on JY, and in particular, the edges of these faces are also on 0Y'.
Let {a1, a2, p2,p1} and {b1, ba, p2,p1}, respectively, be the vertices of the faces of Cy incident to
p1. Continuing in this way we find the desired row of cubes (C1,...,Cy) with all edges of C on
oY O

In light of this lemma, there is a one to one correspondence between row configurations in
G(Y) and (9Y)!: a row configuration in G(Y) is clearly one in (9Y')! since all its edges are in
(0Y)!, and conversely, given a row configuration C in (9Y)! labelled as above, we must have
deggy (pi) = degy (p;) for each i and hence C is a row configuration in G(Y') as well. Moreover,
the underlying row of cubes of a good configuration in (9Y)! is on the boundary, and rows of
cubes on the boundary give rise to good configurations in (9Y)?.

6.2 Removing a row of cubes

Let C = (aj, pi,bi: i =0,...,k) be a good configuration in X! and (Cj,...,C}) its underlying
row of cubes as in Lemma 12. We define Y := X — C to be the cube complex obtained from X

by removing vertices po, ..., pr as well as all cubes, faces and edges containing them. For each
1, we denote the common neighbour of a; and b; by ¢;. Note that JY has at most k — 1 new
vertices ci, ..., cr_1 and thus has at least one fewer vertex than 0.X.

We now check that Y admits an embedding in R3, is contractible and all links are flag. The
first part is clear: an embedding X — R? induces an embedding Y < R3. The second part is
also straightforward as X deformation retracts onto Y and thus has the same homotopy type.
For the third part, observe that for each i = 1,...,k — 1, linky (¢;) is obtained from linkx (¢;)
by removing an edge and the only two triangles containing it. When ¢ = 0 or k then linky (¢;)
is obtained from link x (¢;) by removing an edge as well as the unique triangle containing it. In
particular, in either case we have that linky (¢;) is flag, as desired. A similar, simpler argument
shows that all linky (a;)s and linky (b;)s are also flag.

It remains to recover the boundary distances. To do so, we will use the following fact, which
essentially says that the distance between a vertex p and a pair of adjacent vertices separated
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by a hyperplane H determines on which side of H the vertex p lies. In fact, this lemma holds
for general CAT(0) cube complexes, with essentially the same proof.

Figure 9: Sketch of proof of Lemma 13. If the dashed path ~, is a geodesic, we can project its
intersection with the tubular neighbourhood of H to the side of A, giving a subpath ~y. This
produces a (p, z)-path of length at most dx(p,y) — 1.

Lemma 13. Let x,y be adjacent vertices of X and H — X the immersed hyperplane containing
the midcube of the edge xy. Let A, B be the connected components of X \ H, containing x and
y respectively. Then, for every p € X,

dx(p,y) =dx(p,z) +1 & p e A

Proof. Suppose first that p € A.

Given a geodesic path from p to z in X!, we can extend it using the edge 2y to form a (p, y)-path
of length dx(p,z) + 1, and hence dx(p,y) < dx(p,z) + 1.

For the reverse inequality, consider a geodesic path v, from p to y in X!. Let ¢ be the first
intersection point of ~y, with the tubular neighbourhood N := H x [0, 1] of H, where H x{0} C A,
H x {1} C B. In particular, if (1,h) =y for h € H then (0, h) = x. The subpath v of 7, from ¢
to y has both endpoints in the tubular neighbourhood of H and so, by Theorem 6, lies entirely
in it.

We show that the (p,y)-path obtained from ~, by ‘pushing’ v to H x {0} uses at least one less
edge than .. More precisely, let vo := {(0,h): (t,h) € N} be the projection of v to H x {0}
and define 7’ to be v, from z to ¢ concatenated with 7' and zy. The length of g is at most the
number of edges of v which do not cross H, so || < |y| as v has at least one edge crossing H.
In particular, |7/| < |y| and therefore dx (p,z) < dx(p,y) — 1, as desired.

Applying the symmetric argument when p € B yields the desired equivalence. O
We use the labelling described in the beginning of this section. Additionally, write N for the
hyperplane of X containing the midcube of edge b;p;.

Lemma 14. Given the matriz Dyx of distances in X between vertices of 0X, we can deduce
the matriz Dyy of distances in Y between vertices of 0Y .
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Proof. First, we claim that for any vertices z,y € dY, we can find a geodesic path avoiding the
removed vertices {p;: ¢ = 1,...,k}. Indeed, given v a geodesic (x,y)-path in X, by replacing
each p; in v by ¢; we obtain a walk in Y of the same length. In particular, for any x,y € 0Y
we immediately have dx(z,y) = dy(z,y). These distances are already given by the distance
matrix Dyyx for vertices z,y € Y N0X.

It remains to deduce the distances between boundary vertices and those newly created by the
removal process. For each i = 1,...,k— 1, we claim that for any = € 9Y, the distance to vertex
¢; is given by

dx(z,a;)+1 ifdx(z,b;) =dx(z,pi)+1,

d i =
vie o) {dx(x,az‘) -1 ifdx(z,b) =dx(z,p) — 1.

Let A, B be the two connected components of X \ N. We apply Lemma 13 in X to edges p;b;
and a;c; (whose midcubes are both contained in hyperplane N). On one hand this allows us to
determine the component of = as dx(z,b;), dx(x, p;) are known and

dx(v,b;) = dx(z,p;)) +1 & x € A,
dx(l',bi) = dx<3?,pi) -1 xeB.

On the other hand, this information allows us to deduce dx(x,¢;) = dy(z,¢) as dx(x,a;) is
known and

dx(z,¢) =dx(z,a;) +1 &z € A,
dx(z,¢) =dx(r,a;) — 1 &z € B. O

7 Rows of Cubes II: The Thickening

The purpose of this section is to overcome the difficulty that our complex X is not necessarily
homeomorphic to a ball. We describe a method by which to ‘thicken’ X into a new cube complex,
denoted X, that is homeomorphic to the ball, but whose boundary is sufficiently similar to the
original that we can use it to deduce the existence of structures on X. Broadly, our thickening
process entails gluing a new cube on every face of our cube complex, and then identifying sides
of those new cubes to reflect face incidences in X. This creates a ‘shell’ of cubes around X
which bulks up lower-dimensional free cells and produces a pure contractible cube complex X,
the thickening of X.

It is good to note that although the construction of the thickening of a cube complex X depends
on the choice of embedding X <+ R3, this is not an issue when proving an existence statement
for a structure in X. As such, we slightly abuse notation and speak of the thickening of X to
mean a fized instance of a thickening of X.

Let X be a clean CAT(0) cube complex and I = [0, 1] denote the unit interval. Let the sides of
X refer to faces on 0.X counted with multiplicity, so that free faces are counted twice. For each
face F' € 0X, let sides(F") be the collection of its associated sides, namely a multiset {F, F'} if
F ' is free and the singleton set {F'} otherwise. Write F := | sides(F') for the multiset of sides
over all faces of 0X.

In the first step of our thickening process, we associate to each side S € F a new cube C'g = I xS
with the natural gluing map ¢g: {0} x S — 5 C X. We refer to the face {1} x S C Cg as the
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Figure 10: Example of gluing faces of cubes Cr together.

external face of Clg. As its name suggests, the external face of Cg will be on the boundary of
X (which we verify more formally in Claim 4).

We define an intermediate complex X' = X U| |Cg / | | ¢s, where both disjoint unions are taken

over S € F, namely X’ is the complex obtained from X by gluing cubes Cg to each side S
of 0X along maps ¢g. We write Hy g: S — Cg C X' for the map (z,y) — (t,z,y), so that
Hys(S) =5 C X and H; 5(S5) is the external face of C's embedded in X'.

Note that that there exists an embedding of X’ in R?, with X < R3 as a subcomplex. Fix
such an embedding; for each edge e of 0X, it induces a cyclic ordering Si, ..., Sy of the sides
of boundary faces incident to e. For each ¢, there are two faces of Cg, which are incident to e
in X’. One is {0} x S; and we denote the other S¢. See Figure 10. For each i, we define gluing
maps ¢, s; between S and S, ; whenever the points between Sf and S, ;| in the cyclic ordering
around the edge e are not in X, where indices are considered modulo k.

The thickening of X, denoted X, is the cube complex X = X '/ || ¢e,s obtained from X’ by
gluing cubes associated to consecutive sides in the cyclic ordering around each edge e € 90X
according to gluing maps ¢, g. For each fixed ¢ € [0, 1] we have the following compositions:

/ I—’¢E,S
2

H
S 5 0g U5 X X,

where the union in the last map is taken over each edge e of S. The embedding of X’ in R?
allows us for each fixed ¢t € [0,1] to extend these compositions to a continuous map Hy: L :=

LJ S/ Llés U ]¢e,s — X. Moreover, these maps are continuous with ¢. Then, Ho(L) = 0X

and Hy(L) C 9X. In fact, in Claim 3 we will show that Hi(L) = 0X, so that {H;: t € I}
describes a deformation retraction of X onto X. We define the projection map n: X — 90X
as Hy(z) — Ho(z) for each € L. Note that 7 is combinatorial, and that it is well-defined as
Hq: L — X is an embedding.

Note that each z € 90X is adjacent to precisely one vertex 7(x) of X° in X. We sometimes refer
to the cubes | |gc 7 Cs as the new cubes of X.

The following claim is essentially immediate from our construction.

Claim 3. X is a connected contractible pure 3D cube complez.

Proof. The maps {H;: t € I} give a deformation retraction of X onto X, so contractibility of X
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follows from the contractibility of X. Connectedness is also inherited directly from the original
complex. The assumptions that X is clean and simply connected mean that the only lower-
dimensional cells in X that are not in cubes are the free faces. Since the thickening process
ensures that each of these is now in a new cube (two, in fact), we have that X is pure. ]

Claim 4. The thickened complex X is a 3-manifold with boundary. Moreover, the boundary of
X is precisely the union of the external faces of all new cubes glued according to restrictions of
the maps ¢e 5.

Proof. Let us begin by characterising 0X. We first note that all external faces must be on
the boundary of X, as they are on the boundary of every intermediate cube complex as we go
through the construction described. For the other direction, we will rule out the possibility that
any faces, edges or vertices not in an external face can be on the boundary. To this end, note
that any (open) face F' of X is either in int(X), or it is in 0X meaning a new cube is glued
onto each side in sides(F") in the thickening process. In both cases, we see that the interior of
F is in the interior of X from which we conclude that the faces of 0X are the external faces.
At the same time, for any edge or vertex to be in 9X, it must be part of a face in 0X. This
follows from the fact that X and hence its boundary are pure cube complexes (the latter in two
dimensions). As we have just seen that all such faces are external, the claim follows.

We now show that X is a manifold. It is certainly second-countable and Hausdorff, so we just
need to verify that it is locally Euclidean. Since X is embedded in Fuclidean space, any point in
the interior of X certainly has a neighbourhood homeomorphic to the open 3-ball. That leaves
us to consider points on the boundary of X. For points p in the interior of a boundary face
of X and £ > 0 sufficiently small, the intersection B.(p) N X is homeomorphic to the half-ball
{x1, 22,73 : 23 + 23 + :B?; < 1,27 > 0} where points with z; = 0 map to a disc on the face
(this rephrases the fact that an individual cube is homeomorphic to the ball B® and hence
a 3-manifold with boundary). This is also true for points on the interior of an edge on 09X,
where points with 1 = 0 map to a disc that intersects the two (distinct, by construction of X)
boundary faces incident to our edge. By our characterisation of 90X in the preceding paragraph,
we know that each vertex v on 9X is surrounded by external faces of new cubes, and the link
of v is a disc by construction. This tells us that the cone on the link, and hence B.(v) N X, is
homeomorphic to the half-ball whose boundary is the union of a disc on 9X and link(v). |

It may be interesting to note that the boundary points of X as a manifold are precisely the
points of 0X.

Corollary 15. 0X is homeomorphic to S2.

Proof. Since X is a 3-manifold with boundary, the boundary 0X is a surface. Moreover, the
contractibility of X means that 0X is a homology 2-sphere. The statement then follows from
the classification of surfaces. O

8 Existence of rows of cubes on the boundary

In this section, we show the existence of good row configurations in clean CAT(0) cube com-
plexes. In particular, Lemma 12 then implies existence of rows of cubes on the boundary.

For this section, let Y < R3 be a finite clean CAT(0) cube complex and Y its thickening.
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8.1 Row configurations in the thickened complex

Let v € OYY, 2 := 7(v) and C, . .., C be the cyclically ordered cubes incident to the edge vz in
Y. Since 7 is combinatorial, its restriction to D induces a combinatorial map 7*: linkgy(v) —
linkgy ().

Since 7* is combinatorial and only identifies edges corresponding to the two sides of a single
face in Y, we have the following fact.

Fact 1. Under above setup, the image of 7 is a closed walk W C linkgy (x). This walk is
formed by identifying either pairs of edges in linkgy (v) or vertices of linkgy(v) together.

The next lemma essentially states that the projection map 7 is well-behaved at vertices of
degrees 3 and 4: the former come from vertices of degree 3 on Y and under suitable assumptions
the latter come from vertices of degree 4. Moreover, all other vertices of OY have degree at least
4.

Lemma 16. Let v € 9Y" and = == 7(v) € JY, i.e. vz is an edge. Then,

1. If degyy(v) = 3, then degy (z) = 3. Conversely, for every x € OY° with deggy () = 3,
7 1(x) is a singleton vertex and deggy(n~1(v)) = 3.

2. If deggy (v) = 4, then degyy (x) > 4.

3. Suppose deggy(v) = 4 and the faces of OY incident to it are, in cyclic order, Fy,...,Fy
with projections w(Fy),...,7(Fy) CY. Then n(Fy),...,m(Fy) are distinct and if w(F}),
w(Fy) lie in a common cube C' of Y, then w(F3), n(Fy) also lie in a common cube D of
Y, and deggy (x) = 4.

Proof. Note that links of vertices in Y do not contain self-loops nor double edges as they are
simplicial complexes. In particular, in light of Fact 1, this guarantees that all vertices of OY
have degree at least 3: vertices of degree 1 or 2 would imply self-loops and double edges in
boundary links of Y, respectively.

Suppose deggy (v) = 3. Then, since linkgy (7(v)) does not contain self-loops nor double edges, we
have that 7*(linkgy (v)) is a triangle. Since Y is CAT(0), it follows that this triangle corresponds
to a cube C C Y, with faces Fy, Fs, I3 incident to z. By construction a small ball around z in
dY is covered by CUCFE, UCE, UCE,, so degy(x) = 4 and degy (z) = 3. The converse follows as
Y is clean: vertices of degree 3 on Y are corners of cubes, so the claim follows by construction.
This also proves the second bullet point as there are no vertices of degree less than 3 in Y.

Suppose v € OYV satisfies the assumptions of point 3. Then since linkgy (7(v)) does not contain
self-loops nor double edges, we have that 7*(linkgy(v)) is a cycle of length 4, so the projected
faces w(Fy),...,m(Fy) are distinct. As 7w(F}) and 7(F>) lie in the same cube of Y, by Lemma 8
(c), m(v) is incident to exactly two cubes in X, has degyy (z) = 4 and 7(F3), m(Fy) lie in the
same cube, as desired. O

Lemma 17. There is a one to one correspondence between row configurations in OY' and 0.
Namely if pop: - . . pr. is the spine of a row configuration in OY' then w(po)m(p1) ... 7(pk) is the
spine of a row configuration in OY'.

Proof. By Lemma 16.1 and since Y is clean, deggy (7(po)) = 3, so m(po) is the corner of a cube

Cy. Now, degyy(p1) = 4 and p; has a cyclic ordering of incident faces Fi,..., Fy. Since 7 is
combinatorial, m(pg)m(p1) is an edge and so 7(p;) € Ci. Hence, without loss of generality we
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may assume 7(F;),7(Fz) € C7 and so by Lemma 16.3, 7(F3),n(Fy) both lie in a cube Cs.
Moreover, with this labelling of faces, ps € F3, Fy so m(p2) € Cy. Continuing in this way we
find a row of cubes (C,...,C%) where m(pg) is a corner of Cy and 7(p;—1), 7(p;) € C; for each
1 < i < k. This implies that m(pg),...,m(pk) is the spine of a row configuration in Y, as
desired. O

For simplicity, if C C (OY)! is a row configuration, we write 7(C) C (9Y)! for its corresponding
projected row configuration in JY'.
8.2 Existence of good row configurations

Let Y be a clean CAT(0) cube subcomplex of a cubulation of the ball B3. In this section
we show that good row configurations exist in (9Y)!. By the correspondence between row
configurations in (9Y)! and those in G(Y') discussed in Section 6.1, this implies that there are
good configurations in G(Y'). By Lemma 17, our argument boils down to showing that good row
configurations exist in the thickening (9Y)!. For this, we use a simple path-counting argument.

Fact 2. Let v € Y have degyy (v) = 3. Then, there are at least three row configurations in
(OY)! with v as a starting point.

The above fact is clear from definitions and can be strengthened to exactly three, but this will
not be needed for our purposes.

!
bk—1=aj_

/
Ap—1 X bé—l

Figure 11: Two row configurations sharing endpoint x. In fact, Fy and F5 must share an edge.
Lemma 18. Let x € OY° be a vertex with deggy(z) > 5. Then there are at most QL%J row
configurations which end at x.

Note that the condition on the degree is necessary: one can easily find examples of Y with
vertices of degree 3 having three row configurations ending at them in the thickening, e.g. when
Y a single cube.
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Proof. Let

C:(aiaphbi:izo,...,k)
C' = (a;,p}, b;:i=0,...,0)

be two row configurations in 9Y! with a common endpoint = = p;, = Py, as in Figure 11.

If pr—1 = pj_;, then C and C’ share the last edge of their spine, and by a simple inductive
argument it follows that the two spines are the same, meaning C = C’. Suppose now that
Pk—1 7 Dj_q, yet they both lie in face Fy with vertices {px_1,x,p)_;,y} for y = bp_1 = aj_4,
labelled as in Figure 11. In particular, Fy, F} and Fy are pairwise distinct faces of 0Y'.

By Lemma 17, the row configurations C, C’' in 9Y! correspond to row configurations 7 (C), 7(C’)
in OY'! respectively, which share the face w(Fy). Let (C1,...,Cy), (Cf,...,C}) be the rows of
cubes corresponding to 7(C), 7(C’), respectively. Then, Cj, = C} as they share a face on 9Y,
Let {m(px—1),7(pj_,), 2} be the three neighbours of 7(x) in C.

Claim 5. There is no row configuration in (OY)! whose spine ends with edge 7(x)z.

Proof. Since 7(Fy), n(F1),n(F2) C Y lie in a common cube Cj of Y, the edges corresponding
to them in linkgy (7(x)) form a triangle 7. We first show that there is a face F' in 9Y distinct
from 7 (Fp), m(F), m(F») which is incident to w(z)z.

By Lemma 16.2, degyy (7(z)) > 4 as deggy(z) > 5 and so there is an edge m(x)v in Y such
that v € {m(pr—1),7(p)_,),2}. Since Y is clean, in particular m(z) is not a cut vertex. Fix a
path v C Y1\ 7(z) from v to 2. Notice that the edges m(z)m(py—1) and m(x)w(p,_;) are only
incident to faces of Cj in Y as they are on the spine of row configurations. Hence, in a disc
diagram D — Y with 9D = ~, since m(x)z C Cy and w(x)v € Cy the face F' incident to 7(x)z
in D is not on C}, as claimed.

This suffices to prove the claim, since if 7(z)z was the last edge of the spine of a row configura-
tion, then it would only be incident in Y to the two faces of the last cube in the corresponding
row of cubes. |

Indeed, assuming the claim, no row configuration of Y! can have spine ending with edge 2z,
for 2’ € 7(z), as this would lead to a contradiction in light of Lemma 17.

In what follows, we restrict our considerations to row configurations in dY'! which end in x, and
faces of Y incident to x. Let k be the total number of row configurations and write k = ¢t 4 2r
where ¢ counts single row configurations — those sharing no face (incident to x) with other row
configurations, and r counts the pairs of row configurations as above. Then, each single row
configuration forbids two faces while each pair forbids three. In conclusion,

d— d
k=1t+2r< { 23rJ +2r<2M,

as 3r < d, concluding the proof. a

Lemma 19. There exists a good configuration in Y.

27



Proof. Let ny, denote the number of vertices on Y with degree k in 9Y, and |E|, |F| denote
the number of edges, faces respectively of 9Y. Then, by Euler’s formula and Corollary 15,

2="> ng—|E|+|F|.
k>3

Note that every edge is in exactly two faces, and every face is bounded by exactly four edges.
Hence 2|F| = |E| and so,

1
2= an - §\E|
k>3
ng =8+ (k—4)n,

k=5

where the last line follows from using that k- ng = 2|E|, multiplying both sides by 4 and
rearranging.

We may assume that there exists a vertex of degree at least 5 on 90X as otherwise a good
configuration exists immediately. Let u,v be vertices of Y with deggy(v) = 3 and degyy(u) =
k > 5. By Fact 2, v is the starting point of three row configurations, and Lemma 18 implies
u is the ending point of at most 2|k/3] row configurations. Hence, there are at least 3nz row
configurations, of which at most » ;52 {%j ni end in a vertex of degree at least 5. Write N for
the number of row configurations with starting and ending point of degree 3. Using the above
formula for ng we thus have

k
N>3n3—z2\‘3J ng

k=5
k
=24+ (3k-2 3| —12)
k=5 _
>0 for k=5
> 24. O

9 Finite CAT(0) cube complexes of dimensions 1 and 2

In this section, we sketch the proof of the following strengthening of Theorem 1.

Theorem 3. Let X be a CAT(0) cube complex of top dimension at most 2 with finitely many
cells and D its matriz of pairwise distances between vertices on the combinatorial boundary of
X. Then, the combinatorial type of X is reconstructible from D.

The arguments we use are very similar to those used in the proof of Theorem 2, with much less
technical complications.

Proof sketch of Theorem 3. If k = 1, then X is a tree and its boundary are its leaves, so
reconstruction can be achieved by a simple inductive argument. Indeed, the distance between
the neighbour of a leaf v and other leaves is one less than the distance between other leaves
and v, and this neighbour is again a leaf after removing v precisely if it is not on any geodesic
between pairs of leaves.
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If £ = 2, we may first assume that there are no vertices of degree at most 1, as we may then
repeatedly remove such vertices. In particular, without loss of generality, every vertex of X is
contained in at least one face. Similarly we may assume that X has no cut vertices.

Consider an inclusion maximal disc diagram D < X. In particular, since X has no 3-cubes and
is CAT(0), D is a quadrangulation with all internal degrees at least 4, so [6, Lemma 3.4] implies
that there is a vertex v of degree 2 on dD. Since X has no cut vertices and D is maximal, v is
contained in a unique face F' of X. Let u be the vertex not adjacent to v in this face. Then,
by using Lemma 13 similarly as in the argument for the 3-dimensional setting, we can recover
distances between boundary vertices and v in the new complex.

Lastly, we show that vertices on X with degree 2 in X can be recognised. Let v be a vertex
on 0X with dox(v) = 2 and e, f be the two edges on 0X incident to v. Write H, and Hy to
denote the hyperplanes in X dual to e, f respectively. We will show that v has degree 2 in X
if and only if H, and Hy cross in X.

Suppose first that H, and Hy cross in X. Now, by [14, Lemma 3.6] e and f are contained in
a same face F' of X. In particular, since e and f are both on the boundary, v is only incident
to F' and therefore has degree 2 in X. Conversely, if dx(v) = 2, H. and H clearly cross in the
face incident to v.

We now explain how this condition can be recognised from the boundary distances. Both H,
and Hy split X into two connected components. Let 0.X O=A,UB,, A ¢ U By be the resulting
partitions of the vertices of 0.X. These can be identified from the boundary distances by using
Lemma 13. If H, and Hy do not cross in X, then it must be that, without loss of generality,
A, C Ay or B, C Ay. Hence, checking that H, and Hy cross in D amounts to checking that
that Ac € Ay and B, € Ay. O
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