
Lower bounds for graph reconstruction with
maximal independent set queries

Lukas Michel† Alex Scott†

4 April 2024

Abstract

We investigate the number of maximal independent set queries required to re-
construct the edges of a hidden graph. We show that randomised adaptive algo-
rithms need at least Ω(∆2 log(n/∆)/ log ∆) queries to reconstruct n-vertex graphs
of maximum degree ∆ with success probability at least 1/2, and we further im-
prove this lower bound to Ω(∆2 log(n/∆)) for randomised non-adaptive algo-
rithms. We also prove that deterministic non-adaptive algorithms require at least
Ω(∆3 log n/ log ∆) queries.

This improves bounds of Konrad, O’Sullivan, and Traistaru, and answers one
of their questions. The proof of the lower bound for deterministic non-adaptive
algorithms relies on a connection to cover-free families, for which we also improve
known bounds.

1 Introduction

The graph reconstruction problem is the problem of determining the edges of a hid-
den graph G = (V, E) through queries that reveal some partial information about the
graph. For a given type of query, the following natural question presents itself.

What is the minimum number of queries required to reconstruct any graph?

This problem has been extensively studied for independent set queries that reveal
whether a queried set of vertices contains an edge. Bounds on the minimum num-
ber of queries required were studied for general graphs [AC08, AB19], specific families
of graphs [AA05, ABK+04], and hypergraphs [AC06, ABM14]. In related graph prob-
lems, other query models were considered. For instance, maximal matching queries
were used to approximate maximum matchings in a graph [KK20, KNS23], and vertex
degree queries were used to estimate the average degree of a graph [Fei06, GR08].

Konrad, O’Sullivan, and Traistaru [KOT24] recently investigated graph reconstruction
for maximal independent set queries. In this setting, an algorithm can query a set of
vertices Q ⊆ V to obtain a maximal independent set of the subgraph of G induced by
Q. Using this information, the algorithm has to reconstruct all edges of the graph.

†Mathematical Institute, University of Oxford, United Kingdom ({michel,scott}@maths.ox.ac.uk). Re-
search of Alex Scott supported by EPSRC grant EP/X013642/1.

1

mailto:michel@maths.ox.ac.uk
mailto:scott@maths.ox.ac.uk


There are two important properties that influence the minimum number of queries
required by such an algorithm. Firstly, queries can either be adaptive, which means
that they depend on the outcomes of other queries, or they are non-adaptive if they
do not. While adaptive algorithms require fewer queries, non-adaptive algorithms are
desirable because their queries can be performed in parallel. Secondly, algorithms can
randomise their queries. In contrast to deterministic algorithms which always recon-
struct the graph correctly, randomised algorithms only succeed with high probability,
but they might use far fewer queries.

Randomised algorithms. One way of choosing non-adaptive queries for a randomised
algorithm is to choose each query by independently including each vertex with a fixed
probability. By analysing this strategy, Konrad, O’Sullivan, and Traistaru [KOT24]
showed that O(∆2 log n) non-adaptive queries suffice to reconstruct graphs with n ver-
tices and maximum degree ∆ with high probability.

Theorem 1.1 (Konrad, O’Sullivan, and Traistaru). There is a randomised non-adaptive
algorithm that uses O(∆2 log n) queries to reconstruct any graph of maximum degree ∆ with
high probability.

To complement this upper bound, Konrad, O’Sullivan, and Traistaru proved that any
randomised adaptive algorithm that succeeds with probability at least 1/2 requires at
least Ω(∆2 + log n) queries. They asked whether an algorithm could attain this lower
bound. We show that this is not possible.

Theorem 1.2. The number of queries of a randomised adaptive algorithm that reconstructs any
graph of maximum degree ∆ with probability at least 1/2 is at least

Ω

(
∆2 log

( n
∆

)
log ∆

)
.

For non-adaptive algorithms, we further improve this lower bound by a factor of log ∆.
This matches Theorem 1.1 for ∆ ≤ n1−ε when ε > 0 is fixed.

Theorem 1.3. The number of queries of a randomised non-adaptive algorithm that reconstructs
any graph of maximum degree ∆ with probability at least 1/2 is at least

Ω
(

∆2 log
( n

∆

))
.

The proofs of these lower bounds rely on graphs that contain a clique of size Θ(∆)
while the remaining vertices form an independent set. We will show that maximal in-
dependent set queries reveal only very little information about such graphs. Counting
the number of these graphs then gives the desired lower bounds.

Deterministic algorithms. To obtain a deterministic algorithm, Konrad, O’Sullivan,
and Traistaru [KOT24] adapted the idea of their randomised algorithm. They showed
that a fixed collection of sufficiently many random queries will reconstruct every graph
correctly. This gives a deterministic algorithm with O(∆3 log n) non-adaptive queries.1

Theorem 1.4 (Konrad, O’Sullivan, and Traistaru). There is a deterministic non-adaptive
algorithm that uses O(∆3 log n) queries to reconstruct any graph of maximum degree ∆.

1In fact, their arguments show that O(∆3 log(n/∆)) queries are sufficient.

2



Konrad, O’Sullivan, and Traistaru also showed that every deterministic non-adaptive
algorithm needs at least Ω(∆3/(log ∆)2 + log n) queries. We provide a lower bound
that matches the upper bound from Theorem 1.4 up to a factor of log ∆.

Theorem 1.5. The number of queries of a deterministic non-adaptive algorithm that recon-
structs any graph of maximum degree ∆ is at least

Ω
(

min
{

n2,
∆3 log n

log ∆

})
.

Our proof of Theorem 1.5 relates deterministic non-adaptive algorithms to cover-free
families. Here, a family of sets F is (w, r)-cover-free if for all A1, . . . , Aw ∈ F and all
B1, . . . , Br ∈ F \ {A1, . . . , Aw} we have

w⋂
i=1

Ai ⊈
r⋃

i=1

Bi.

The size of cover-free families has been widely studied because of their relevance
to non-adaptive group testing [HS87, DH00, DH06, AJS19], key distribution patterns
[MP88, DFFT95], superimposed codes [KS64, DR82], and more [Wei06, Eng96]. For
a given n, let t(n, w, r) denote the minimal t such that there exists a (w, r)-cover-free
family F ⊆ P(t) with n sets. We observe the following connection between cover-free
families and deterministic non-adaptive algorithms.

Lemma 1.6. The minimum number of queries of a deterministic non-adaptive algorithm that
reconstructs any graph of maximum degree ∆ is at least t(n, 2, 2∆− 2) and at most t(n, 2, 2∆).

Upper and lower bounds on t(n, w, r) have been extensively studied. On the side of
upper bounds, it is well-known [DFFT95, Eng96, STW00, SW04] that

t(n, w, r) = O
(
(w + r)w+r+1

wwrr log n
)

.

If w is fixed, this yields t(n, w, r) = O(rw+1 log n) which gives an alternative proof of
Theorem 1.4.

In terms of lower bounds, when w = 1, D’yachkov and Rykov [DR82] proved that
t(n, 1, r) = Ω(r2 log n/ log r) if r is fixed and n → ∞. Later, Ruszinkó [Rus94] and
Füredi [Für96] gave purely combinatorial proofs of this result. More generally, for
arbitrary r and n, the argument of Füredi gives the following lower bound.

Theorem 1.7 (Füredi). If 1 ≤ r < n, then

t(n, 1, r) = Ω
(

min
{

n,
r2 log n

log r

})
.

This shows that t(n, 1, r) = Ω(r2 log n/ log r) for r = O(
√

n), matching the upper
bound up to a factor of log r, and t(n, 1, r) = Θ(n) for r = Ω(

√
n).

For w ≥ 2, previous lower bounds were more complicated. Stinson, Wei, and Zhu
[SWZ00] showed that t(n, w, r) = Ω(rw+1 log n/ log r) if r is fixed and n → ∞. It was

3



only later determined by Ma and Wei [MW04] that this result holds for r = O(
√

n).
For r = Ω(

√
n), Abdi and Bshouty [AB16] proved the best lower bounds known. They

showed that t(n, w, r) = Ω(rw+1 log n/ logk+1 r) for Ω(n(k−1)/k) ≤ r ≤ O(nk/(k+1))

where 2 ≤ k ≤ w, and t(n, w, r) = Θ(nw) for r = Ω((n log n)w/(w+1)).

Using probabilistic arguments, we generalise Theorem 1.7 to w ≥ 2. This improves the
previous lower bounds for r = Ω(

√
n).

Theorem 1.8. If w ≥ 1 is fixed and 1 ≤ r < n, then

t(n, w, r) = Ω
(

min
{

nw,
rw+1 log n

log r

})
.

This result implies that t(n, w, r) = Ω(rw+1 log n/ log r) for r = O(nw/(w+1)) and
t(n, w, r) = Θ(nw) for r = Ω(nw/(w+1)). Theorem 1.5 is an immediate consequence
of this result in combination with Lemma 1.6.

The rest of the paper is organised as follows. In Section 2 we prove Theorem 1.8, our
lower bound for cover-free families. We use this result in Section 3 to obtain a lower
bound on the number of queries of deterministic algorithms, proving Theorem 1.5
and Lemma 1.6. In Section 4, we then consider randomised algorithms and prove
Theorems 1.2 and 1.3. We finish with some open problems in Section 5.

Notation. We denote the dual of a family of sets F ⊆ P(X) by F ∗ = {Fx : x ∈ X}
where Fx = {F ∈ F : x ∈ F}. Moreover, if G = (V, E) is a graph and X ⊆ V, then
G[X] is the subgraph of G induced by X, and NG(X) is the neighbourhood of X in G.

2 Cover-free families

In this section we prove Theorem 1.8 and show that for any fixed w ≥ 1,

t(n, w, r) = Ω
(

min
{

nw,
rw+1 log n

log r

})
.

We split the proof of this result into two regimes. If r = O(
√

n), we use Theorem 1.7 to
show that t(n, w, r) = Ω(rw+1 log n/ log r). We will do this with the following result.

Lemma 2.1. If w, r, s ≥ 1 and w + r ≤ n, it holds that

t(n, w + 1, r + s) ≥
(

w + r
w

)w
· t(n − w − r, 1, s).

Proof. Let F ⊆ P(t) be a (w + 1, r + s)-cover-free family with n sets, and suppose that

t <
(

w + r
w

)w
· t(n − w − r, 1, s).

Pick A1, . . . , Aw ∈ F uniformly and independently at random. Let A = {A1, . . . , Aw}.
Then, pick B1, . . . , Br ∈ F \ A uniformly and independently at random and let B =
{B1, . . . , Br}. For any x ∈ [t], if αx = |Fx|/n, we have

P(A ⊆ Fx,B ⊆ F c
x) ≤

(
|Fx|

n

)w(n − |Fx|
n − w

)r

=

(
n

n − w

)r
αw

x (1 − αx)
r.

4



Note that the term αw
x (1 − αx)

r is maximised by αx = w/(w + r), and so we get

P(A ⊆ Fx,B ⊆ F c
x) ≤

(
n

n − w

)r( w
w + r

)w( r
w + r

)r
≤
(

w
w + r

)w
,

where the last inequality used the fact that w + r ≤ n. Thus, if

X = {x ∈ [t] : A ⊆ Fx,B ⊆ F c
x},

then E(|X|) ≤ (w/(w + r))w · t < t(n − w − r, 1, s), and so with positive probability
we have |X| < t(n − w − r, 1, s). This implies that the sets F ∩ X with F ∈ F \ (A∪ B)
cannot form a (1, s)-cover-free family2, and so there exist Aw+1 ∈ F \ (A ∪ B) and
C1, . . . , Cs ∈ F \ (A∪ B ∪ {Aw+1}) such that

Aw+1 ∩ X ⊆
s⋃

i=1

(Ci ∩ X) ⊆
s⋃

i=1

Ci.

Now, suppose that x ∈ ⋂w+1
i=1 Ai. If x /∈ X, we must have x ∈ ⋃r

i=1 Bi. Otherwise x ∈ X,
so x ∈ Aw+1 ∩ X and therefore x ∈ ⋃s

i=1 Ci. So,

w+1⋂
i=1

Ai ⊆
r⋃

i=1

Bi ∪
s⋃

i=1

Ci.

This contradicts the fact that F is (w + 1, r + s)-cover-free.

If r = Ω(
√

n), then log r = Θ(log n), and so the lower bound we want to show simpli-
fies to t(n, w, r) = Ω(min{nw, rw+1}). Using arguments very similar to the proof of the
previous lemma, we show that this is true.

Lemma 2.2. If w, r, s ≥ 1 and w + r ≤ n, it holds that

t(n, w, r + s) ≥ min
{

1
2

( n
w

)w
,

s
2

(
w + r

w

)w}
.

Proof. Let F ⊆ P(t) be a (w, r + s)-cover-free family with n sets, and suppose that

t < min
{

1
2

( n
w

)w
,

s
2

(
w + r

w

)w}
.

We proceed as in the proof of Lemma 2.1. Pick A1, . . . , Aw ∈ F uniformly at random
and let A = {A1, . . . , Aw}. Then, pick B1, . . . , Br ∈ F \ A uniformly at random and let
B = {B1, . . . , Br}. For any x ∈ [t], we have

P(A ⊆ Fx,B ⊆ F c
x) ≤

(
w

w + r

)w
.

Thus, if X = {x ∈ [t] : A ⊆ Fx,B ⊆ F c
x}, then E(|X|) ≤ (w/(w + r))w · t ≤ s/2, and

so P(|X| > s) ≤ 1/2. Moreover, the event {A = Fx} can only happen if |Fx| ≤ w, and
in that case we have P(A = Fx) ≤ (w/n)w. So,

P(A = Fx for some x ∈ [t]) ≤ t ·
(w

n

)w
<

1
2

.

2Note that it could happen that F ∩ X = F′ ∩ X for some distinct F, F′ ∈ F \ (A ∪ B). In that case,
we could simply pick Aw+1 = F and C1 = · · · = Cs = F′ in the argument that follows.

5



This implies that with positive probability we have |X| ≤ s and A ̸= Fx for all x ∈ [t].
Note that for each x ∈ X we have A ⊆ Fx, and so there must exist some Cx ∈ Fx \ A.

Now, suppose that x ∈ ⋂w
i=1 Ai. If x /∈ X, we must have x ∈ ⋃r

i=1 Bi. Otherwise x ∈ X,
and so x ∈ Cx. Therefore,

w⋂
i=1

Ai ⊆
r⋃

i=1

Bi ∪
⋃

x∈X
Cx.

This contradicts the fact that F is (w, r + s)-cover-free.

Putting these two lemmas together, we obtain the desired result.

Proof of Theorem 1.8. If r = O(
√

n), Lemma 2.1 together with Theorem 1.7 implies that

t(n, w, r) ≥
(

w − 1 +
⌈ r

2

⌉
w − 1

)w−1

· t
(

n + 1 − w −
⌈ r

2

⌉
, 1,
⌊ r

2

⌋)
= Ω

(
rw+1 log n

log r

)
.

Otherwise, if r = Ω(
√

n), Lemma 2.2 shows that

t(n, w, r) ≥ min

{
1
2

( n
w

)w
,

⌊ r
2

⌋
2

(
w +

⌈ r
2

⌉
w

)w}
= Ω

(
min

{
nw,

rw+1 log n
log r

})
.

3 Deterministic non-adaptive algorithms

In this section, we use the lower bound for cover-free families to prove a lower bound
on the number of queries of deterministic non-adaptive algorithms. Formally, such an
algorithm corresponds to a family of queries Q ⊆ P(V) with the following property:
for all distinct graphs G and H with maximum degree ∆ there exists a query Q ∈ Q
such that no set of vertices is a maximal independent set of both G[Q] and H[Q]. We
call such a family Q a query scheme.

To bound the number of queries in such schemes, we relate them to cover-free families.
Our main observation is that a family of queries Q ⊆ P(V) is a query scheme if and
only if its dual Q∗ is (2, r)-cover-free for r ≈ 2∆. This was essentially already proved
by Konrad, O’Sullivan, and Traistaru [KOT24], but with different terminology. We
provide a proof of the direction necessary for the lower bound in Lemma 1.6.

Lemma 3.1. If Q ⊆ P(V) is a query scheme, then Q∗ is (2, 2∆ − 2)-cover-free.

Proof. If Q∗ is not (2, 2∆ − 2)-cover-free, there exist two distinct vertices u, v ∈ V and
a set of vertices W ⊆ V \ {u, v} with |W| ≤ 2∆ − 2 such that Qu ∩ Qv ⊆ ⋃

w∈W Qw.
Let G be a graph with the least number of edges that has maximum degree ∆ − 1 and
satisfies NG({u, v}) = W. Let H = G ∪ {uv}.

For every Q ∈ Q, let IQ be a maximal independent set of G[Q] with Q \ {u, v} ⊆ IQ.
We claim that IQ is also a maximal independent set of H[Q]. Indeed, otherwise we
must have u, v ∈ IQ ⊆ Q. Then, Q ∈ Qu ∩Qv ⊆ ⋃

w∈W Qw, and so W ∩ Q ̸= ∅. This
implies that

NG({u, v}) ∩ IQ = W ∩ IQ ⊇ W ∩ (Q \ {u, v}) = W ∩ Q ̸= ∅.

6



Since u, v ∈ IQ, this contradicts the fact that IQ is an independent set of G. So, for all
Q ∈ Q, IQ is a maximal independent set of both G[Q] and H[Q]. This contradicts the
fact that Q is a query scheme.

Using arguments from Konrad, O’Sullivan, and Traistaru [KOT24], we can obtain the
following converse.

Lemma 3.2. Let Q ⊆ P(V). If Q∗ is (2, 2∆)-cover-free, then Q is a query scheme.

Using these two results, we can now prove Lemma 1.6. Together with Theorem 1.8,
this proves Theorem 1.5.

Proof of Lemma 1.6. Let Q ⊆ P(V) be a query scheme. Then, by Lemma 3.1, we know
that Q∗ ⊆ P(Q) is (2, 2∆ − 2)-cover-free, and so

|Q| ≥ t(|Q∗|, 2, 2∆ − 2) = t(n, 2, 2∆ − 2).

On the other hand, if t = t(n, 2, 2∆), there exist a family R ⊆ P(t) with |R| = n that
is (2, 2∆)-cover-free. By identifying R with V, we obtain a family Q = R∗ ⊆ P(V)
with |Q| = t such that Q∗ ∼= R is (2, 2∆)-cover-free. Then, by Lemma 3.2, Q is a query
scheme with t = t(n, 2, 2∆) queries.

4 Randomised algorithms

Finally, we want to lower bound the number of queries of randomised algorithms, both
in the adaptive and non-adaptive setting. We begin with some general observations.

First, note that any randomised algorithm A can randomly decide in advance for ev-
ery possible execution path which set of vertices it wants to query next. This gives a
deterministic strategy S that the algorithm will then perform to reconstruct the graph.
From now on, we will assume that every algorithm is of this form. That is, A randomly
selects in advance a deterministic strategy S ∈ S from some family of strategies S , and
it will then execute this strategy to reconstruct the graph.

The following lemma tells us that by analysing the strategies S ∈ S separately, we can
show that there is a graph that will likely be incorrectly reconstructed by A.

Lemma 4.1. Let G be a family of graphs and S be a family of strategies of a randomised
algorithm A. If G ∈ G is a random graph, then there exists a graph H ∈ G such that

P(A reconstructs H) ≤ sup
S∈S

P(S reconstructs G).

Proof. Let p = supS∈S P(S reconstructs G). Denote the indicator variable of an event
E by 1E. Then, it holds that

E
(
1{A reconstructs G}

)
= ∑

S∈S
P(A selects S) · E

(
1{S reconstructs G}

)
= ∑

S∈S
P(A selects S) · P(S reconstructs G)

≤ ∑
S∈S

P(A selects S) · p = p.

7



In particular, there exists a graph H ∈ G such that

P(A reconstructs H) = E
(
1{A reconstructs H}

)
≤ p.

4.1 Randomised adaptive algorithms

We start by providing a lower bound on the number of queries of a randomised adap-
tive algorithm. For this, we will consider the family of graphs that contain a clique U
of size Θ(∆) while V \ U is an independent set.

Then, for every query Q ⊆ V of the algorithm, either Q ∩ (V \ U) is a maximal inde-
pendent set, or there is a vertex u ∈ Q ∩ U such that (Q ∩ (V \ U)) ∪ {u} is a maximal
independent set. So, the answer to a query will always be one out of at most Θ(∆)
many alternatives. This implies that with t queries, the algorithm can correctly recon-
struct at most O(∆t) many graphs. By counting the number of graphs in our family,
this yields the desired lower bound on t.

Proof of Theorem 1.2. Let U ⊆ V be a set with |U| = ⌈∆/2⌉ and let G be the family
of graphs G with maximum degree ∆ such that U is a clique of G and V \ U is an
independent set of G. Since every vertex of U can have up to ∆ − (|U| − 1) neighbours
in V \ U, we get

|G| ≥
(

n − |U|
∆ − (|U| − 1)

)|U|
≥
(

n − ∆
⌈∆

2 ⌉

)⌈∆
2 ⌉

≥
(

n − ∆
⌈∆

2 ⌉

)⌈∆
2 ⌉2

≥
(

n − ∆
∆

) ∆2
4

.

Now, let S be the family of strategies of a randomised adaptive algorithm A with
success probability at least 1/2, and suppose that A makes at most t queries. Pick a
graph G ∈ G uniformly at random, and fix a strategy S ∈ S .

For every possible query Q ⊆ V, note that either Q ∩ (V \ U) is a maximal indepen-
dent set of G[Q], or there is a vertex u ∈ Q ∩ U such that (Q ∩ (V \ U)) ∪ {u} is a
maximal independent set of G[Q]. So, when executing S on graphs from G, the answer
to each query of S is always one out of |Q ∩ U|+ 1 ≤ ∆ + 1 different sets. Since S is
deterministic and makes at most t queries, it follows that S will correctly reconstruct at
most (∆ + 1)t graphs from G. Therefore,

P(S reconstructs G) ≤ (∆ + 1)t

|G| .

Given that the success probability of A is at least 1/2, it follows by Lemma 4.1 that
(∆ + 1)t/|G| ≥ 1/2. If ∆ ≤ n/3, this implies that

t ≥
log
(
|G|
2

)
log(∆ + 1)

≥
∆2 log

(
n−∆

∆

)
− 4 log 2

4 log(∆ + 1)
= Ω

(
∆2 log

( n
∆

)
log ∆

)
.

For ∆ ≥ n/3, we can simply apply this argument with ∆ = n/3 to obtain the desired
lower bound.

8



4.2 Randomised non-adaptive algorithms

To obtain a lower bound on the number of queries of a randomised non-adaptive algo-
rithm, we adapt the arguments of the proof from the last section. In this proof, recall
that the answer to a query Q of the algorithm is always one out of |Q ∩ U|+ 1 many
alternatives. We used that this is at most ∆ + 1, but if Q ∩ U is much smaller than this
for most queries, then we should get a better lower bound on the number of queries.

For adaptive algorithms, we cannot hope for this to be true because such algorithms
can easily identify U with the first query and then always ensure that U ⊆ Q. For non-
adaptive algorithms, however, a randomly chosen U will usually have a very small
intersection with a query Q of the algorithm, unless Q is large. But if Q is large, then
most vertices of U will have a neighbour in Q which again restricts the number of
possible answers to the query. Using this idea, we can improve the lower bound on the
number of queries for non-adaptive algorithms by a factor of log ∆.

Proof of Theorem 1.3. For disjoint sets U, W ⊆ V with |U| = ⌈∆/3⌉ and |W| = ⌊∆/3⌋,
let GU,W be the family of graphs G with maximum degree ∆ such that U is a clique of
G, V \ U is an independent set of G, and all vertices in U are connected to all vertices
in W. Let G be the union of all the families GU,W . Note that

N = |GU,W | ≥
(

n − |U| − |W|
∆ − (|U| − 1)− |W|

)|U|
≥
(

n − ∆
⌈∆

3 ⌉

)⌈∆
3 ⌉

≥
(

n − ∆
∆

) ∆2
9

.

Let S be the family of strategies of a randomised non-adaptive algorithm A with suc-
cess probability at least 1/2, and suppose that A makes at most t queries. Pick a graph
G ∈ G at random by first picking the sets U, W ⊆ V uniformly at random and then
picking G ∈ GU,W uniformly at random. Fix a strategy S ∈ S . Since A is non-adaptive,
the strategy S corresponds of a family of queries Q ⊆ P(V) with |Q| ≤ t.

For every query Q ∈ Q, note that Q ∩ (V \ U) is a maximal independent set of G[Q]
whenever Q ∩ W ̸= ∅. Otherwise, either Q ∩ (V \ U) or (Q ∩ (V \ U)) ∪ {u} for some
u ∈ Q∩U is a maximal independent set of G[Q]. So, when executing S on graphs from
GU,W , the answer to each query Q ∈ Q is always one out of DQ different sets, where
DQ = 1 if Q ∩W ̸= ∅ and DQ = |Q ∩U|+ 1 otherwise. It follows that, S will correctly
reconstruct at most D = ∏Q∈Q DQ graphs from GU,W . Therefore, for any M ≥ 0,

P(S reconstructs G | D ≤ M) ≤ M
N

.

Note that
DQ = 1 + ∑

u∈U
1{u∈Q,W⊆Qc}.

Therefore,

E(log DQ) ≤ E(DQ) ≤ 1 + ∑
u∈U

E
(
1{u∈Q,W⊆Qc}

)
= 1 + ∑

u∈U
P(u ∈ Q, W ⊆ Qc).

Let αQ = |Q|/n. Since U and W are chosen uniformly at random, we have

P(u ∈ Q, W ⊆ Qc) ≤ |Q|
n

(
n − |Q|
n − 1

)|W|
=

(
n

n − 1

)|W|
αQ(1 − αQ)

|W|.

9



The term αQ(1 − αQ)
|W| is maximised by αQ = 1/(|W|+ 1), and so we get

P(u ∈ Q, W ⊆ Qc) ≤
(

n
n − 1

)|W| 1
|W|+ 1

(
|W|

|W|+ 1

)|W|
≤ 1

|W|+ 1
≤ 3

∆
.

It follows that E(log DQ) ≤ 1 + 3|U|/∆ ≤ 4 and therefore, by Markov’s inequality,

P
(

D ≥ e16t
)
= P

(
∑

Q∈Q
log DQ ≥ 16t

)
≤

E(∑Q∈Q log DQ)

16t
≤ 4t

16t
=

1
4

.

Overall, we get

P(S reconstructs G) ≤ P
(

D ≥ e16t
)
+ P

(
S reconstructs G

∣∣∣ D ≤ e16t
)

P
(

D ≤ e16t
)

≤ 1
4
+

e16t

N
.

Given that the success probability of A is at least 1/2, it follows by Lemma 4.1 that
e16t/N ≥ 1/4. If ∆ ≤ n/3, this implies that

t ≥ 1
16

log
(

N
4

)
≥ ∆2

144
log
(

n − ∆
∆

)
− 1

16
log 4 = Ω

(
∆2 log

( n
∆

))
.

For ∆ ≥ n/3, we can simply apply this argument with ∆ = n/3 to obtain the desired
lower bound.

5 Open problems

In this paper, we improved the lower bounds on the number of queries required for
graph reconstruction with maximal independent set queries. However, some gaps
between the lower and upper bounds remain.

For deterministic non-adaptive algorithms, we showed that Ω(∆3 log n/ log ∆) queries
are necessary while the upper bound O(∆3 log n) was given by Konrad, O’Sullivan,
and Traistaru [KOT24]. This is the same gap as the longstanding gap between the
lower and upper bounds Ω(rw+1 log n/ log r) ≤ t(n, w, r) ≤ O(rw+1 log n) for cover-
free families.

Problem 5.1. Are there (1, r)-cover-free families F ⊆ P(t) with t ∈ O(r2 log|F |/ log r)?

For randomised non-adaptive algorithms, the upper bound of Konrad, O’Sullivan,
and Traistaru [KOT24] is O(∆2 log n). We proved that such algorithms need at least
Ω(∆2 log(n/∆)) queries, and ask whether this is tight.

Problem 5.2. Is there a randomised non-adaptive algorithm which uses O(∆2 log(n/∆))
queries to reconstruct any graph of maximum degree ∆ with high probability?

Finally, for adaptive algorithms, we have the same upper bounds as for non-adaptive
algorithms in both the deterministic and randomised setting. However, our best lower
bound drops to Ω(∆2 log(n/∆)/ log ∆) in both settings. This suggests that adaptive
algorithms might perform better than their non-adaptive counterparts.

Problem 5.3. Is there a deterministic adaptive algorithm that uses o(∆3 log(n/∆)) queries to
reconstruct any graph of maximum degree ∆?

10



References
[AA05] NOGA ALON and VERA ASODI (2005). Learning a hidden subgraph. SIAM Journal

on Discrete Mathematics 18(4), 697–712. ↑1

[AB16] ALI Z. ABDI and NADER H. BSHOUTY (2016). Lower bounds for cover-free fami-
lies. Electronic Journal of Combinatorics 23(2), Paper 2.45, 7. ↑4

[AB19] HASAN ABASI and NADER H. BSHOUTY (2019). On learning graphs with edge-
detecting queries. Proceedings of the 30th International Conference on Algorithmic
Learning Theory, PMLR, vol. 98, 3–30. ↑1

[ABK+04] NOGA ALON, RICHARD BEIGEL, SIMON KASIF, STEVEN RUDICH, and BENNY SU-
DAKOV (2004). Learning a hidden matching. SIAM Journal on Computing 33(2),
487–501. ↑1

[ABM14] HASAN ABASI, NADER H. BSHOUTY, and HANNA MAZZAWI (2014). On exact
learning monotone DNF from membership queries. Algorithmic learning theory, Lec-
ture Notes in Computer Science, vol. 8776, 111–124. ↑1

[AC06] DANA ANGLUIN and JIANG CHEN (2006). Learning a hidden hypergraph. Journal
of Machine Learning Research 7, 2215–2236. ↑1

[AC08] DANA ANGLUIN and JIANG CHEN (2008). Learning a hidden graph using O(log n)
queries per edge. Journal of Computer and System Sciences 74(4), 546–556. ↑1

[AJS19] MATTHEW ALDRIDGE, OLIVER JOHNSON, and JONATHAN SCARLETT (2019).
Group testing: an information theory perspective. Foundations and Trends in Com-
munications and Information Theory 15(3-4), 196–392. ↑3

[DFFT95] MARTIN DYER, TREVOR FENNER, ALAN FRIEZE, and ANDREW THOMASON (1995).
On key storage in secure networks. Journal of Cryptology 8, 189–200. ↑3

[DH00] DING-ZHU DU and FRANK K. HWANG (2000). Combinatorial group testing and
its applications, Series on Applied Mathematics, vol. 12. Second edn. (World Scientific
Publishing Co., Inc., River Edge, NJ). ↑3

[DH06] DING-ZHU DU and FRANK K. HWANG (2006). Pooling designs and nonadaptive
group testing, Series on Applied Mathematics, vol. 18 (World Scientific Publishing Co.
Pte. Ltd., Hackensack, NJ). Important tools for DNA sequencing. ↑3

[DR82] A. G. D’YACHKOV and V. V. RYKOV (1982). Bounds on the length of disjunctive
codes. Problems of Information Transmission 18(3), 166–171. ↑3

[Eng96] KONRAD ENGEL (1996). Interval packing and covering in the Boolean lattice. Com-
binatorics, Probability and Computing 5(4), 373–384. ↑3

[Fei06] URIEL FEIGE (2006). On sums of independent random variables with unbounded
variance and estimating the average degree in a graph. SIAM Journal on Computing
35(4), 964–984. ↑1

[Für96] ZOLTÁN FÜREDI (1996). On r-cover-free families. Journal of Combinatorial Theory.
Series A 73(1), 172–173. ↑3

[GR08] ODED GOLDREICH and DANA RON (2008). Approximating average parameters of
graphs. Random Structures & Algorithms 32(4), 473–493. ↑1

[HS87] F. K. HWANG and V. T. SÓS (1987). Non-adaptive hypergeometric group testing.
Studia Scientiarum Mathematicarum Hungarica 22, 257–263. ↑3

[KK20] LIDIYA KHALIDAH BINTI KHALIL and CHRISTIAN KONRAD (2020). Constructing
large matchings via query access to a maximal matching oracle. 40th IARCS An-
nual Conference on Foundations of Software Technology and Theoretical Computer Science,
Leibniz International Proceedings in Informatics (LIPIcs), vol. 182, Art. No. 26, 15. ↑1

11

https://doi.org/10.1137/S0895480103431071
https://doi.org/10.37236/5202
https://doi.org/10.37236/5202
https://proceedings.mlr.press/v98/abasi19a.html
https://proceedings.mlr.press/v98/abasi19a.html
https://doi.org/10.1137/S0097539702420139
https://doi.org/10.1007/978-3-319-11662-4_9
https://doi.org/10.1007/978-3-319-11662-4_9
https://doi.org/10.1007/11503415_38
https://doi.org/10.1016/j.jcss.2007.06.006
https://doi.org/10.1016/j.jcss.2007.06.006
https://doi.org/10.1007/BF00191355
https://doi.org/10.1142/9789812773463
https://doi.org/10.1142/9789812773463
https://doi.org/10.1017/S0963548300002121
https://doi.org/10.1137/S0097539704447304
https://doi.org/10.1137/S0097539704447304
https://doi.org/10.1006/jcta.1996.0012
https://doi.org/10.1002/rsa.20203
https://doi.org/10.1002/rsa.20203
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.26
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.26


[KNS23] CHRISTIAN KONRAD, KHEERAN K. NAIDU, and ARUN STEWARD (2023). Max-
imum matching via maximal matching queries. 40th International Symposium on
Theoretical Aspects of Computer Science, Leibniz International Proceedings in Informatics
(LIPIcs), vol. 254, Art. No. 41, 22. ↑1

[KOT24] CHRISTIAN KONRAD, CONOR O’SULLIVAN, and VICTOR TRAISTARU (2024).
Graph Reconstruction via MIS Queries. arXiv:2401.05845. ↑1, 2, 6, 7, 10

[KS64] WILLIAM KAUTZ and ROY SINGLETON (1964). Nonrandom binary superimposed
codes. IEEE Transactions on Information Theory 10(4), 363–377. ↑3

[MP88] CHRIS J. MITCHELL and FRED C. PIPER (1988). Key storage in secure networks.
Discrete Applied Mathematics 21(3), 215–228. ↑3

[MW04] X. MA and R. WEI (2004). On a bound of cover-free families. Designs, Codes and
Cryptography 32(1-3), 303–321. ↑3

[Rus94] MIKLÓS RUSZINKÓ (1994). On the upper bound of the size of the r-cover-free fam-
ilies. Journal of Combinatorial Theory. Series A 66(2), 302–310. ↑3

[STW00] D. R. STINSON, TRAN VAN TRUNG, and R. WEI (2000). Secure frameproof codes,
key distribution patterns, group testing algorithms and related structures. Journal
of Statistical Planning and Inference 86(2), 595–617. ↑3

[SW04] D. R. STINSON and R. WEI (2004). Generalized cover-free families. Discrete Mathe-
matics 279(1-3), 463–477. ↑3

[SWZ00] D. R. STINSON, R. WEI, and L. ZHU (2000). Some new bounds for cover-free fami-
lies. Journal of Combinatorial Theory. Series A 90(1), 224–234. ↑3

[Wei06] RUIZHONG WEI (2006). On cover-free families. arXiv:2303.17524. ↑3

12

https://doi.org/10.4230/lipics.stacs.2023.41
https://doi.org/10.4230/lipics.stacs.2023.41
http://arxiv.org/abs/2401.05845
https://doi.org/10.1016/0166-218X(88)90068-6
https://doi.org/10.1023/B:DESI.0000029231.44423.43
https://doi.org/10.1016/0097-3165(94)90067-1
https://doi.org/10.1016/0097-3165(94)90067-1
https://doi.org/10.1016/S0378-3758(99)00131-7
https://doi.org/10.1016/S0378-3758(99)00131-7
https://doi.org/10.1016/S0012-365X(03)00287-5
https://doi.org/10.1006/jcta.1999.3036
https://doi.org/10.1006/jcta.1999.3036
http://arxiv.org/abs/2303.17524

	Introduction
	Cover-free families
	Deterministic non-adaptive algorithms
	Randomised algorithms
	Randomised adaptive algorithms
	Randomised non-adaptive algorithms

	Open problems

