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Abstract. We prove that every sequence of length n can be reconstructed from the

multiset of all its subsequences of length k, provided k ≥ (1 + o(1))
√
n logn. This is a

substantial improvement on previous bounds.
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§1. Introduction

The large amount of research on the Graph Reconstruction Conjecture of S. Ulam

and P. Kelley has led to interest in reconstruction problems for various other

combinatorial structures (such as digraphs and posets). In this paper, we consider

the reconstruction problem for sequences. A sequence S of length n contains
(
n
k

)
subsequences of length k; the multiset of these sequences is called the k-deck of

S (our notation follows [6]). A sequence that is uniquely defined by its k-deck

is called k-reconstructible. Thus S is k-reconstructible iff no other sequence has

the same k-deck as S. For instance, 1001 is not 2-reconstructible, since it has

the same 2-deck as 0110. However, it is easily seen that all sequences of length

4 are 3-reconstructible, and a few moments’ thought shows that all sequences of

length n are (n− 1)-reconstructible. In fact, it is easy to prove that all sequences

of length n are (bn/2c) + 1-reconstructible, by considering subsequences of length

bn/2c+ 1 which contains all occurrences of whichever symbol occurs fewest times.

The problem of determining for which k every sequence of length n can be re-

constructed from its k-deck was raised by Kalashnik [3], who apparently proved

that every sequence can be reconstructed from its bn/2c-deck (see [6] for this, and

for an incorrect assertion claimed by Aleksanjan [1]). Zenkin and Leont‘ev [10]

proved that we may be unable to reconstruct with k = log n/ log log n; they also

gave some related results, including the fact that if k = o(n) then almost every

sequence cannot be reconstructed from the set of sequences (without multiplicity)

found in its k-deck. Recently, Manvel, Meyerowitz, Schwenk, Smith and Stock-

meyer [6] gave another proof that it is possible to reconstruct from the bn/2c-deck,

for n ≥ 7, and proved that it is not necessarily possible to reconstruct from the

log n-deck; Schwenk [9] has improved the lower bound by a construction giving

5
4 log n for sufficiently large n. Leont’ev and Smetanin [5] remarked that deter-

mining whether a given vector can be uniquely reconstructed from a given set

of subsequences is an NP-complete problem; Kubicka and Schwenk [4] have also

investigated algorithmic aspects of the problem, and calculated precise bounds for

small values of k.

It will be useful to define some notation. For a positive integer n, let f(n) be the

smallest k such that every sequence of length n is k-reconstructible. Let us note
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that, for k < l, it is easy to deduce a sequence’s k-deck from its l-deck, so f(n) is

nondecreasing. The bounds in [6] and [9] are

5

4
log2(n) < f(n) ≤

⌊n
2

⌋
, (1)

for n ≥ 7.

In the main result of this paper, we improve the upper bound substantially to

f(n) ≤ (1 + o(1))
√
n log n

(all logarithms will be natural, unless otherwise indicated). We remark that this

is in sharp contrast to the case for graph reconstruction. Indeed, Nýdl [8] has

shown that for every c ∈ (0, 1), there exist graphs that cannot be reconstructed

from their bcnc-decks.

Note that, as observed in [6], every sequence of length n is k-reconstructible iff

every binary sequence of length n is k-reconstructible, since we can always choose

to ignore the difference between certain symbols. We shall therefore assume that

all our sequences are binary sequences.

We prove our result in two stages. We first show that in order to reconstruct

the binary sequence a = (a1, . . . , an) it is enough to know the values of certain

polynomials in a1, . . . , an, and then show that if k is large enough we can deduce

these values from the k-deck of a. We give the proof in §2, except for the proof of

Lemma 1, which is given in §3. We make some further remarks in §4, and indicate

how the same methods might be applied to the reconstruction of permutations

and matrices.
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§2. Main Results

We begin with a problem that is closely related to the problem of reconstructing

a sequence from its subsequences of a given length. Given nonnegative integers

s0, . . . , sk, consider the equations

n∑
j=1

ajj
0 = s0

n∑
j=1

ajj
1 = s1

...
n∑

j=1

ajj
k−1 = sk−1,

(2)

where we demand a = (a1, . . . , an) ∈ {0, 1}n. Under what conditions do the

integers s0, . . . , sk−1 uniquely determine a?

Let us put this more formally. For a sequence of integers a = (a1, . . . , an), let

si(a) =
n∑

j=1

ajj
i,

and let Sk(a) be the sequence (s0(a), . . . , sk−1(a)); note that Sk is a linear function

from Zn to Zk. We define f∗(n) to be the largest integer k such that we can solve

Sk(a) = Sk(b) with distinct a,b ∈ {0, 1}n. Equivalently, k is the largest integer

such that Sk(a) = 0 has a non-zero solution with a ∈ {−1, 0, 1}n. Thus for l > k,

we can reconstruct a ∈ {0, 1}n from Sl(a).

In §3, we shall prove the following bounds for f∗(n).

Lemma 1.

(1 + o(1))

√
2n

log2 n
≤ f∗(n) ≤ (1 + o(1))

√
n log n. (3)

Our main result now follows immediately, since we shall show that Sk(a) can easily

be calculated from the multiset of subsequences of a with length k.
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Theorem 2. For positive integers n, we have

f(n) ≤ (1 + o(1))
√
n log n

.

Proof. Suppose we are given the k-deck of a sequence a = (a1, . . . , an). For i ≤ k,

let ni be the number of subsequences of a of length i that terminate with a 1. Thus

ni =

n∑
j=1

aj

(
j − 1

i− 1

)
=

n∑
j=1

ajpi(j),

where pi(x) is a polynomial of degree i−1. It is easily checked that the polynomials

p1(x), . . . , pi+1(x) form a basis for the space of polynomials of degree at most i; in

particular, the polynomial xi is in their span. Thus by taking a linear combination

of the ni we can determine the value of si(a) =
∑n

j=1 ajj
i, for i < k. Therefore

we can reconstruct a, provided that k > f∗(n); the result follows from Lemma

1.

§3. Proof of Lemma 1

In this section we give a proof of Lemma 1.

(i) We begin with the lower bound. Suppose n > k > 1 and Sk(a) = Sk(b) is not

solvable with distinct a,b ∈ {0, 1}n. Note that

si(a) ≤
n∑

j=1

ji ≤ (n+ 1)i+1

(i+ 1)
.

Therefore, since k < n, there are at most

k−1∏
i=0

(n+ 1)i+1

(i+ 1)
< (n+ 1)

k−1∏
i=1

ni+1 < n(k+2)2/2

possible values for Sk(a). However, there are 2n sequences in {0, 1}n, so if Sk(a) =

Sk(b) is not solvable with distinct a,b ∈ {0, 1}n then we must have

n(k+2)2/2 ≥ 2n,
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and so

(k + 2)2 ≥ 2n

log2 n
,

which gives the lower bound in (3).

(ii) For the upper bound, let ε > 0 and let k = d(1 + ε)
√
n log ne. We show that

f∗(n) ≤ k for sufficiently large n. We use standard elementary number theoretic

results (see [2]).

Suppose a ∈ {0, 1}n. For positive integers i, j define

ni,j(a) =
∑

s≡i mod j

as. (4)

Thus n0,1(a) =
∑n

i=1 ai and ni,n(a) = ai. We claim that, for any prime p and any

integer i,

ni,p(a) ≡ s0(a)−
p−1∑
j=0

(
p− 1

j

)
sj(a)(−i)p−1−j mod p. (5)

Indeed, since p is prime, ip−1 ≡ 1 mod p for any i 6≡ 0. Thus

s0(a)−
p−1∑
j=0

(
p− 1

j

)
sj(a)(−i)p−1−j =

n∑
r=1

ar −
p−1∑
j=0

(−i)p−1−j
(
p− 1

j

) n∑
r=1

arr
j

=
n∑

r=1

ar −
n∑

r=1

ar

p−1∑
j=0

(
p− 1

j

)
rj(−i)p−1−j

=
n∑

r=1

ar −
n∑

r=1

ar(r − i)p−1

≡
∑

r≡i mod p

ar mod p,

as claimed.

It is clear from (4) that 0 ≤ ni,p(a) ≤ dn/pe, so if p >
√
n + 1 then we have

0 ≤ ni,p(a) < p and we can therefore determine ni,p(a) from (5). Thus we can

calculate ni,p(a) from Sk(a) for all primes p with
√
n+ 1 < p < k and all integers

i.

Now define the vector

vi,j = (v
(1)
i,j , . . . , v

(n)
i,j )
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by

v
(r)
i,j =

{
1 if r ≡ i mod j
0 otherwise,

(6)

and let ṽi,j = (ṽ
(r)
i,j )∞r=1 be the extension of this to all positive integers, defined in

the same way. Note that vi,j = vi′,j or ṽi,j = ṽi′,j iff i ≡ i′ mod j.

It is clear that, for any i, j, we have

ni,j(a) = a · vi,j .

Now suppose that a, b are distinct vectors in {0, 1}n with Sk(a) = Sk(b). As we

have noted, if
√
n + 1 < p < k and i is any integer, then ni,p(a) and ni,p(b) are

uniquely defined by (5), and so we must have ni,p(a) = ni,p(b). Therefore

a · vi,p = b · vi,p. (7)

We now work over F2. In order to prove the required bound it is enough to show

that (7) implies a = b for sufficiently large n (dependent on ε). We do this by

showing that the set of vectors

S = {vi,p : p prime,
√
n+ 1 < p < k, 0 ≤ i ≤ p− 1} (8)

spans Fn
2 . Then a · v = b · v for any v ∈ {0, 1}n, so a = b.

Clearly S is not in general an independent set. Let T be the subset of S defined

by

T = {vi,p : p prime,
√
n+ 1 < p < k, 1 ≤ i ≤ p− 1} (9)

Suppose first that the elements of T are not linearly independent, so that

m∑
j=1

vij ,pj = 0

for some m > 0 and distinct (i1, p1), . . . , (im, pm). Note that, by (9), ij 6≡ 0 mod

pj , for j = 1, . . . ,m. By the Chinese Remainder Theorem, we can find an integer

r > 0 such that

r ≡ i1 mod p1
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and, for each j such that pj 6= p1,

r ≡ 0 mod pj .

Therefore ṽ
(r)
i1,p1

= 1 and ṽ
(r)
ij ,pj

= 0 for j = 2, . . . ,m (note that if pj = p1 then

ij 6≡ i1 mod p1, so ṽ
(r)
ij ,pj

= 0), and so, defining

ṽ =
m∑
j=1

ṽij ,pj
,

we have

ṽ(r) =
m∑
j=1

ṽ
(r)
ij ,pj

6= 0.

Let s be the smallest positive integer such that ṽ(s) = 1; clearly s > n. Then, for

1 ≤ t ≤ n, consider the vector vt defined by

vt =
m∑
j=1

vij−s+t,pj
.

In effect, we shift ṽ to the left by s− t places. We get

v
(i)
t = 0

for 1 ≤ i < t and

v
(t)
t = 1.

Thus v1, . . . ,vn are in the span of S (though not necessarily of T ) and span Fn
2 .

The other possibility is that the elements of T are independent, in which case we

must have |T | ≤ n. Let P be the set of primes p with
√
n+ 1 < p < k. Then

|T | =
∑
p∈P

(p− 1) = (1 + o(1))
∑
p∈P

p.

It follows from the Prime Number Theorem (see (22.19.1) in [2]) that, for η > 0,

π(x+ ηx)− π(x) =
ηx

log x
+ o

(
x

log x

)
,
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and so ∑
p≤x

p ∼ x2

2 log x
,

where the sum is taken over primes p ≤ x. Therefore

|T | ∼
∑
p∈P

p ∼ k2

2 log k
− n

log n
,

so |T | > n provided k > (1 + o(1))
√
n log n.

§4. Remarks

While Theorem 2 represents a substantial improvement on previous bounds, it

is probably a long way from being best possible. Indeed, it seems likely that

f(n) = (1 + o(1))c log n, for some constant c. The method we have used above

could perhaps be slightly improved by strengthening Lemma 1; however, the lower

bound in (3) shows that we cannot hope for an improvement of more than a factor

of log n. Any significantly better bound on f(n) would require a new idea.

The approach of §2 should also work for the problem of reconstructing matrices

(and for the analogoue higher-dimensional problems). For an n × n matrix A =

(aij)
n
1,j=1, we define the k-deck of A to be the multiset of

(
n
k

)2
k × k submatrices

of A (for the problem of reconstructing matrices from their principal minors, see

Manvel and Stockmeyer [7]). By considering the a × b submatrices of A, for

1 ≤ a, b ≤ k, we can determine the values of
∑n

i,j=1 aiji
cjd, for 1 ≤ c, d ≤ k. A

similar argument to that used in §3 should give a bound of the form O(n2/3 log n).

However, proving that the set of matrices equivalent to (8) forms a spanning set

for Fn2

appears to be more difficult than in the one-dimensional case.

The same approach could be used for reconstructing permutations, which can be

seen as a special case of the matrix reconstruction problem. Given a permutation

σ of [n] = {1, . . . , n} and a subset S ∈ [n](k) (i.e. |S| = k), σ rearranges the

order of elements in S and thus induces a permutation σ|S. The k-deck of σ is

the multiset {σ|S : S ∈ [n](k)}. It is fairly easy to reconstruct the k-deck of the
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permutation matrix of σ from the k-deck of σ, and it should therefore be possible

to obtain similar upper bounds to those for the matrix reconstruction problem.

Finally, we mention the problem of reconstructing a cyclic sequence: we are given

the k-deck of a sequence of length n up to cyclic permutation and seek to re-

construct the original sequence up to cyclic permutation. Equivalently, we want

to reconstruct a necklace of n coloured beads from the multiset of necklaces ob-

tained by removing n − k of the beads. If every cyclic sequence of length n is

reconstructible from its k-deck then clearly every sequence of length n is recon-

structible from its k-deck. However, we do not have good bounds for the cyclic

reconstruction problem.
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