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Abstract
Tovey [10] showed that it is NP-hard to decide the satisfiability

of 3-SAT instances in which every variable occurs four times, while
every instance of 3-SAT in which each variable occurs three times
is satisfiable. We explore the border between these two problems.
Answering a question of Iwama and Takaki, we show that, for every
fixed k ≥ 0, there is a polynomial time algorithm to determine the
satisfiability of 3-SAT instances in which k variables occur four times
and the remaining variables occur three times. On the other hand,
it is NP-hard to decide the satisfiability of 3-SAT instances in which
all but one variable occurs three times, and the remaining variable is
allowed to occur an arbitrary number of times.

1 Introduction

An instance of k-SAT is a set of clauses that are disjunctions of exactly k
literals. The problem is to determine whether there is an assignment of truth
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values to the variables such that all the clauses are satisfied. It is well known
that 2-SAT can be solved in polynomial time, while Cook [4] showed that
k-SAT is NP-hard for k ≥ 3. This leads to the general question of exploring
the boundary region between polynomial time and NP-hard satisfiability
problems, by considering more or less restricted problem instances (of course,
this is most interesting if P 6=NP).

One way to restrict instances of k-SAT is to limit the number of times
a variable can occur. Tovey [10] showed that instances of 3-SAT in which
every variable occurs three times are always satisfiable (this is an immediate
corollary of Hall’s Theorem), while it is NP-hard to decide the satisfiability
of 3-SAT instances in which every variable occurs four times. Results of this
type for k > 3 were obtained by Dubois [5] and Kratochv́ıl, Savický and Tuza
[7], and also in [2], [3]. The approximation hardness of the corresponding
maximization problem was studied in [2], [3].

The boundary between three occurrences and four occurrences of variables
in 3-SAT was further examined by Iwama and Takaki [6]. Let us write
(3, 4(k))-SAT for the set of 3-SAT instances in which k variables occur four
times and the remaining variables occur three times, and (3, 4(k), n)-SAT
for the set of instances of (3, 4(k))-SAT with n variables. Thus (3, 4(0))-SAT
is the collection of 3-SAT instances in which every variable occurs exactly
three times. Note that k must be divisible by three, as the total number
of literals is three times the number of clauses. Iwama and Takaki showed
that every instance of (3, 4(3))-SAT is satisfiable, while there are unsatisfiable
instances of (3, 4(9))-SAT. They further asked whether there is a constant k
such that (3, 4(k))-SAT is NP-hard. In this paper, we give a negative answer
to this question (under the P 6= NP assumption). We also show that it is
NP-hard to decide the satisfiability of 3-SAT instances in which all but one
variable occurs three times, and the remaining variable is allowed to occur
an arbitrary number of times.

We remark that there are other interesting ways to explore the border
between polynomial-time and NP-hard satisfiability problems. For instance,
instead of looking at restrictions of 3-SAT, one can consider extensions of 2-
SAT. This line of investigation has been pursued by several authors, including
Monasson and Zecchina [8], Monasson, Zecchina, Kirkpatrick, Selman and
Troyansky [9], Anderson [1] and Zhao, Deng, Lee and Zhu [11].

2



2 Results

We begin by answering the question raised by Iwama and Takaki.

Theorem 1. Satisfiability of instances of (3, 4(k), n)-SAT can be determined
in time 2k/3nk/3poly(n).

Thus for any fixed k, (3, 4(k), n)-SAT instances can be solved in polyno-
mial time.

In order to prove Theorem 1, we shall rely on the fact that satisfiable
instances of (3, 4(k))-SAT have satisfying assignments with a particular struc-
ture. Let I be a satisfiable instance of (3, 4(k))-SAT with clauses C and vari-
ables V , and let φ be a satisfying assignment. A witness function w : C → V
for φ is a function that, for each C ∈ C, chooses a variable w(C) which occurs
(possibly negated) as a literal in C evaluating to true under φ. Thus w(C)
is a variable that “witnesses” the satisfaction of C in φ.

Note that if w is a witness function for some satisfying assignment and
w(C1) = w(C2) = x then x must occur as a literal with the same sign in
C1 and C2. On the other hand, any function satisfying this condition can
be used to find a satisfying assignment of I. We shall call such a function
consistent

Lemma 1. If I = (C, V ) is a satisfiable instance of (3, 4(k))-SAT then there
is a satisfying assignment φ with a surjective witness function w : C → V .

Proof. Let (φ, w) be a satisfying assignment and a witness function chosen
such that the size of the image of w is maximal (over all such pairs). If w is
surjective then we are done. Otherwise, let us consider the bipartite graph
G with vertex classes C and V and an edge from C ∈ C to v ∈ V if and only
if v occurs (with either sign) in C. We shall say that an edge vC is used if
w(C) = v; otherwise vC is unused.

Let U = {v ∈ V : |w−1(v)| ≥ 2} be the set of variables that are used as
witnesses by more than one clause (note that, since w is not surjective, |U | >
0). Let s :=

∑
v∈U |w−1(v)| ≥ 2|U | be the number of used edges incident

with U . An alternating path in V is a path v1C1v2C2 · · · vk or v1C1v2 · · ·Ck

for some k ≥ 1 such that v1 ∈ U , all edges viCi are used and all edges
Civi+1 are unused. We shall show that if w is not surjective then we can use
a suitable alternating path to construct a new witness function w′ with a
larger image.
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Let us say that a vertex of G is reachable if it belongs to any alternating
path. Let U ′ be the set of reachable vertices in V \U , and let B be the set of
reachable vertices in C. Note that if u ∈ U ∪U ′ and the edge uC is used then
it is easy to find an alternating path that contains C (take an alternating
path as far as u, and if C has not already been visited then extend the path
with the edge uC); it follows that C ∈ B.

There are s used edges incident with U and |U ′| used edges incident with
U ′. Since every clause is incident with exactly one used edge, we have

|B| ≥ s + |U ′|. (1)

On the other hand, each clause is incident with at least 2 unused edges, and
so there are at least 2|B| unused edges incident with B. It is easy to check
that if C ∈ B and vC is unused then v ∈ U ∪U ′ (we argue as before: take an
alternating path as far as C and add the edge Cv if necessary). Thus there
are at least 2|B| unused edges incident with U ∪ U ′.

Now suppose that every vertex of U ∪ U ′ is in the image of w. Since
the vertices of U ∪ U ′ are incident with s + |U ′| used edges, and at most k
vertices have degree 4, it follows that the number of unused edges incident
with U ∪ U ′ is at most

3(|U |+ |U ′|) + k − (s + |U ′|) = 3|U |+ 2|U ′|+ k − s.

Since this is at least 2|B|, it follows from (1) that

2(s + |U ′|) ≤ 3|U |+ 2|U ′|+ k − s,

and so
s ≤ |U |+ k/3. (2)

Now let U ′′ = Im(w) \ U . Since U ⊂ Im(w) and Im(w) 6= V , we have

|U |+ |U ′′| ≤ |V | − 1. (3)

Since every vertex of U ′′ is incident with exactly one used edge, and there
are |C| = |V |+ k/3 used edges in total, we have

s + |U ′′| = |V |+ k/3. (4)

Therefore, by (3) and (4),

s = |V |+ k/3− |U ′′| ≥ |U |+ k/3 + 1,
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which contradicts (2).
It follows that there is some vertex u′ ∈ U ′ that is not contained in the

image of w. Let P = v1C1v2 · · · vkCku
′ be a shortest alternating path from

U to u′: note that v1 is in U , but vi 6∈ U for i > 1. Exchanging used and
unused edges in P , we obtain a consistent witness function w′ with a larger
image than w. This contradicts the maximality of the image of w, and we
therefore deduce that w is surjective.

We can now prove Theorem 1.

Proof of Theorem 1. If I is satisfiable then there are a satisfying assignment
φ and a surjective witness function w for φ. Since there are n + k/3 clauses,
and n variables, it follows that at most k/3 variables are covered more than
once by w. We can therefore search for such a w by explicitly examining
every set of bk/3c variables and every assignment of those variables, and
then checking for a matching from the remaining unsatisfied clauses to the
remaining unassigned variables.

We have shown that for any constant, (3, 4(k))-SAT instances can be
solved in polynomial time. What if we allow more than four occurrences of
some variables? The following theorem shows that if we allow an unbounded
number of occurrences of even one variable, then the problem becomes NP-
hard.

Theorem 2. The restriction of 3-SAT to the set of instances in which all
but one variable occur exactly three times is NP-hard.

We shall prove Theorem 2 by reduction from another problem. We define
(O3, L ≤ 3)-SAT to be the set of instances of satisfiability in which every vari-
able occurs three times and every clause has length at most 3. This problem
is NP-hard, as was shown by Tovey [10]. We give a proof for completeness.

Theorem 3. Determining the satisfiability of instances of (O3, L ≤ 3)-SAT
is NP-hard.

Proof. We give a reduction from 3-SAT due to Tovey [10]. Given an instance
of 3-SAT, we run through its variables in turn, modifying the instance as
follows. If a variable x occurs at most three times we do nothing. If x
occurs d > 3 times, we introduce new variables x1, . . . , xd and 2-clauses
x1 ∨ ¬x2, . . . , xd−1 ∨ ¬xd, xd ∨ ¬x1. We then replace the d occurrences of x
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by x1, . . . , xd in turn and remove x. It is easily checked that this preserves
satisfiability/unsatisfiability, and when we have dealt with all the variables
we have an equivalent instance of (O3, L ≤ 3)-SAT.

Note that a typical variable in the instance constructed above will belong
to two clauses of length 2. We sketch a slightly more complicated construction
that allows us to insist that every variable belongs to at most one clause of
length two. Given an instance of 3-SAT, we first perform the construction in
the proof above to obtain an instance I of (O3, L ≤ 3)-SAT. We introduce
new variables ai, bi, . . ., i = 1, 2, 3. We build a new instance as follows: take
the clause ¬a1 ∨¬a2 ∨¬a3, and for each i add the following chain of clauses:

ai bi ci

ai ¬bi

bi ¬ci di

¬di ei

¬di ¬ei fi

. . .

For each i, take a copy Ii of I (on a new set of variables), and extend all of
its 2-clauses to 3-clauses by adding the negation of some variable that occurs
twice in the corresponding chain (ie one of {¬ci,¬ei, . . .}). This gives the
required instance. Note that in any satisfying assignment of the resulting
instance, one of the variables ai must be false, and so the variables ci, ei, . . .
must be true, which means that Ii (and hence I) is satisfiable. On the other
hand, if I is satisfiable, then the new instance is easily seen to be satisfiable.

We now return to the proof of Theorem 2.

Proof. We give a reduction from (O3, L ≤ 3)-SAT. Let I be an instance of
(O3, L ≤ 3)-SAT. We take two copies I1, I2 of I (on disjoint sets of variables)
and a new variable x. We construct an instance of 3-SAT by adding x to
every 2-clause in I1 and ¬x to every 2-clause in I2. The resulting instance is
clearly equivalent to I.

3 Conclusion

We have given a polynomial time algorithm for instances of 3-SAT in which
a constant number of variables occur four times and the remainder occur
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three times. What happens if we allow the number of variables occurring
four times to grow slowly?

Problem. Is there a function f(n) that tends to ∞ as n →∞ such that the
satisfiability of instances of (3, 4(f(n)), n)-SAT is solvable in polynomial time?
(We assume here that f(n) is a multiple of three, to exclude trivial cases.)

We conjecture that for sufficiently slow-growing f the problem can be
solved in polynomial time.
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