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Abstract

We give a construction of r-partite r-uniform intersecting hypergraphs
with cover number at least r − 4 for all but finitely many r. This
answers a question of Abu-Khazneh, Barát, Pokrovskiy and Szabó,
and shows that a long-standing unsolved conjecture due to Ryser is
close to being best possible for every value of r.
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1 Introduction

A hypergraph is said to be r-partite if it has a vertex partition V1 ∪ · · · ∪ Vr
such that each edge contains at most one vertex from each Vi. An old and
well-studied conjecture of Ryser [12] states that every r-partite r-uniform
hypergraphH satisfies τ(H) ≤ (r−1)ν(H), where τ(H) denotes the minimum
size of a vertex cover and ν(H) denotes the maximum size of a set of pairwise
disjoint edges in H. In particular this would imply that every intersecting
r-partite r-uniform hypergraph can be covered by r − 1 vertices. Despite
substantial work by many authors over many years, Ryser’s Conjecture is
known to be true in general only for r = 2 (König’s Theorem) and r = 3 [3],
and for intersecting hypergraphs only for r ≤ 5 [13]. For more on the history
of the problem see e.g. [8].
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Ryser’s Conjecture is tight for a given value of r if there is an r-partite r-
uniform hypergraphH with τ(H) ≥ (r−1)ν(H) (such hypergraphs are called
r-Ryser hypergraphs in [2]). Because of the apparent difficulty of the problem
in general, a significant amount of work has been done on constructing and
understanding r-Ryser hypergraphs (e.g. [1, 4, 6, 7, 10]). For every prime
power p there is a standard construction, based on the projective plane, that
gives an intersecting r-Ryser hypergraph for r = p + 1. Very recently it
was proved in [2] that intersecting r-Ryser hypergraphs exist also for every
r = p + 2. Apart from these infinite families, the only other values of r for
which the conjecture is known to be tight are r = 7 [4, 1], r = 11 [1] and
r = 12 [6]. In [2] the authors ask whether there exists a constant K such
that for every r there exists an intersecting r-partite r-uniform hypergraph
H with τ(H) ≥ r −K, thus showing that Ryser’s problem is close to being
best possible for every r. Here we answer this question in the affirmative,
by showing in particular that we may take K ≤ 4 for all sufficiently large
integers r. This is our main result (Theorem 6), and it appears in Section 4.
We also give a new construction for intersecting r-Ryser hypergraphs for
special values of r in Section 5.

2 Basic construction

As in most known constructions for this problem (for example [2]), our con-
struction will be based on finite projective planes and the corresponding
affine planes. Recall that a projective plane of order p is a (p + 1)-uniform
hypergraph with p2 +p+1 vertices, with the property that each pair of edges
(called lines) intersects in exactly one vertex, and each pair of vertices (called
points) is contained in exactly one line. It is well-known that for every prime
power p, there exists a projective plane PG(2,p) of order p.

The affine plane AG(2, p) is constructed from PG(2,p) by deleting a line
L and all of its points (so we delete exactly one point from each line L′ 6= L).
Thus AG(2, p) has p2 points. Its lines each have p points, and they fall into
p+1 parallel classes Bi, each of which is a set of p disjoint lines (corresponding
to the lines of PG(2,p) passing through a single point of L). Any two lines
from different parallel classes have exactly one vertex in common.

We define a hypergraph Ap constructed from AG(2, p) by choosing an
arbitrary point x and removing it, together with all lines that contain x.
The remaining lines of AG(2, p) form the edges of Ap.
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Proposition 1. The hypergraph Ap has the following properties.

1. Ap is (p + 1)-partite, with vertex classes V1, . . . , Vp+1 where {x} ∪
V1, . . . , {x} ∪ Vp+1 are the lines of AG(2, p) containing x. Note |Vi| =
p− 1 for each i.

2. Ap is p-uniform.

3. The edges of Ap fall into p + 1 parallel classes Ci, each of which is a
set of p−1 disjoint edges. Any two edges from different parallel classes
have exactly one vertex in common.

4. Each edge of Ci is disjoint from Vi.

Our aim is to construct an intersecting hypergraph based on Ap, by
adding a gadget for each parallel class Ci to make it intersect. To show
that the cover number of the resulting construction is large we will make use
of the following theorem of Jamison [9] and Brouwer and Schrijver [5].

Theorem 2. τ(AG(2, p)) = 2p− 1.

Note that a cover of size 2p − 1 can be obtained by choosing a parallel
class Ci, and taking all points from one line in Ci and one point from each
of the remaining lines in Ci.

3 Near-extremal constructions

Let J be an r0-partite r0-uniform intersecting hypergraph with r0 ≤ p and
τ(J ) ≥ r0 − 1− d0 ≥ 2 for some d0 ≥ 0.

Set r = p + r0. We construct an r-partite r-uniform hypergraph Hr as
follows. Fix a copy of Ap with vertex classes V1, . . . , Vp+1 (as in Proposition
1). For each parallel class Ci of Ap place a copy J i of J with one vertex
class in Vi and the remaining r0 − 1 classes in Vp+2 . . . Vp+r0 in an arbitrary
way, such that all J i are disjoint from each other and from Ap. Extend every
edge e of Ci to |J | edges e ∪ f of Hr by appending each edge f of J i to e.
Thus the edge set of Hr is

⋃p+1
i=1 {e ∪ f : e ∈ Ci, f ∈ J i}.

Proposition 3. The hypergraph Hr has the following properties.

1. Hr is an r-partite r-uniform intersecting hypergraph,

3



2. τ(Hr) ≥ r − 1− (d0 + 1).

Proof. The definitions, together with Part 3 of Proposition 1, imply that Hr

is r-partite and r-uniform. To see that Hr is intersecting, let e∪f and e′∪f ′
be two edges of Hr. If e = e′ or if e and e′ are from different parallel classes
of Ap then they intersect in Ap, implying that e ∪ f and e′ ∪ f ′ intersect
in Hr. If e and e′ are from the same parallel class of Ap then f and f ′ are
two (not necessarily distinct) edges from the same copy of the intersecting
hypergraph J , and therefore they intersect.

To estimate τ(Hr), consider a minumum cover T .

Case 1: No vertex of T is in any J i.
In this case T ∪ {x} is a cover of the affine plane AG(2, p), which by

Theorem 2 must have size at least 2p− 1. Hence |T | ≥ 2p− 2 ≥ p+ r0− 2 =
r − 2 ≥ r − 1− (d0 + 1).

To address the remaining cases, we claim that if T contains a vertex z of
J i then T contains a cover of J i. To see this, suppose on the contrary that
some edge f of J i is disjoint from T . Since T is a minimum cover there exists
an edge e∪ f ′ of Hr such that T ∩ (e∪ f ′) = {z}, where e ∈ Ci and f ′ ∈ J i.
Then T ∩ e = ∅. But then e ∪ f ∈ Hr is disjoint from T , contradicting the
fact that T is a cover. This verifies the claim.

Case 2: For some i 6= j, the cover T intersects J i but not J j.
Then by the claim T contains a cover of J i, which has size at least

r0− 1− d0. Since T has no vertices in J j it must cover Ci within the vertex
set of Ap which is disjoint from J i. Since the p−1 edges in Ci are disjoint, we
get another p−1 vertices in T , for a total of p−1+r0−1−d0 = r−1−(d0+1)
as required.

Case 3: T intersects J i for every i.
Since the J i are all disjoint we find by the claim that |T | ≥ τ(J )(p+1) ≥

2p+ 2 > r − 1− (d0 + 1).

Therefore in all cases the statement holds.

4 The main theorem

We begin with a construction of r-partite r-uniform hypergraphs when r has
a special form.
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Lemma 4. Let r =
∑k

i=1 pi + 1, where each pi is a prime power and
pi ≥

∑
j<i pj + 1 for each i ≥ 2. Then there exists an r-partite r-uniform

intersecting hypergraph Hr with τ(H) ≥ r − k.

Proof. We use induction on k. The case k = 1 is dealt with by the standard
example of the truncated projective plane (formed by removing one point
from the projective plane, together with every line containing it): we obtain
an example with r = p+ 1 classes and τ = p = r − 1 ≥ 2.

Assume k ≥ 2 and let Hs be a hypergraph with the claimed properties
for s = r− pk. Observe that the conditions guarantee pk ≥ s. Note also that
τ(Hs) ≥ 2. Construct Hr as in Section 3, starting with the hypergraph Apk
and using J = Hs. Then by the induction hypothesis τ(J ) ≥ s− (k − 1) =
s − 1 − d0 where d0 = k − 2. By Proposition 3 we obtain an intersecting
hypergraph Hr for r = s+ pk that is r-partite and r-uniform, that satisfies

τ(Hr) ≥ r − 1− (d0 + 1) = r − k.

This completes the proof.

In fact we will use this lemma below only when each pi is prime and
k = 3.

To show the existence of suitable primes we use the following classical
result of Montgomery and Vaughan [11].

Theorem 5. There exist Q, γ > 0 and N such that for all n > N , all but at
most Qn1−γ even integers in the interval (0, n) are the sum of two primes.

We are now ready to prove our main theorem.

Theorem 6. There exists M such that for every integer r > M

• if r is even then there exists an r-partite r-uniform intersecting hyper-
graph H with τ(H) ≥ r − 3,

• if r is odd then there exists an r-partite r-uniform intersecting hyper-
graph H with τ(H) ≥ r − 4.

Proof. We note that the second claim follows immediately from the first,
since we may construct an r-partite r-uniform intersecting hypergraph H′
from an (r− 1)-partite (r− 1)-uniform intersecting hypergraph H by adding
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a new vertex class, and adding a new vertex in this class to every edge of H.
Then τ(H′) = τ(H). Thus we may assume that r is even.

Our aim is to write r = p1 + p2 + p3 + 1, where p1, p2, p3 satisfy p2 > p1
and p3 > p2 + p1, as in Lemma 4. Let Q, N and γ be as in Theorem 5.
For an interval I we write pI for the number of primes in I, and for a real
number x we let p(x) denote p[1, x]. The Prime Number Theorem tells us
that p(x) = (1 + o(1))x/log x. Therefore there exists M ≥ N such that for
all t ≥M we have

p(3t/4) + p(t/8)− p(t/2)− p(t/4)−Q · (t/2)1−γ ≥ 1.

Let r > M be an even integer. Set t = r − 1. Let w = p( t
2
, 3t
4

] =
p(3t

4
)−p( t

2
), so there are w choices for a prime p3 in the interval ( t

2
, 3t
4

]. Thus
there are w integers in the interval [ t

4
, t
2
) of the form t−p3 where p3 is prime.

Now we show that one of these w integers can be written as p1 + p2 for
distinct primes p1 and p2. Let us call such an integer good. By Theorem 5
there are at most z = Q · ( t

2
)1−γ integers in [ t

4
, t
2
) that are not the sum of two

primes. The number y of integers in [ t
4
, t
2
) of the form 2p where p is prime is

p[ t
8
, t
4
) = p( t

8
, t
4
] since neither t/4 nor t/2 is an integer. Thus y = p( t

4
)−p( t

8
).

Thus the number of good integers is at least

w − z − y = p(3t/4) + p(t/8)− p(t/2)− p(t/4)−Q · (t/2)1−γ ≥ 1.

Therefore a good integer exists and we can write r− 1 = t = p1 + p2 + p3
where p1 < p2 and p3 ≥ t+1

2
= 1 + t−1

2
≥ 1 + p1 + p2. Therefore by Lemma 4

there exists an r-partite r-uniform intersecting hypergraph Hr with τ(H) ≥
r − 3 as required.

5 Extremal constructions

Here we give another construction based on the hypergraphAp of an r-partite
r-uniform intersecting hypergraph with cover number exactly r− 1. It exists
whenever r = 2p− 1 and both p and p− 1 are prime powers.

Our construction gives a tight example for Ryser’s conjecture for a few
previously unknown values of r. Note that if p, p− 1 are both prime powers
then one of p, p−1 must be a power of 2. If p = 2i−1+1 then r = 2i+1: since
r − 1 is a prime power, there is already an extremal construction for this r.
However, if p = 2i−1 and p − 1 is also prime, then we obtain a construction
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for r = 2p− 1 = 2i − 1. The construction gives a previously unknown value
of r if neither of r − 1 = 2i − 2 and r − 2 = 2i − 3 is a prime power. For
example, this holds when i is any of 8, 18, 32, 62, 90, 108, 128, 522, 608,
1280, 2204, 2282, 3218, 4254, 4424, 9690, 9942, 11214, 19938. We remark
that the examples on this list all satisfy r = 2p− 1 where p− 1 = 2i−1− 1 is
a Mersenne prime (and recall that it is unknown whether there are infinitely
many Mersenne primes).

We now describe the construction. We repeat the general idea of Sec-
tion 3. Let p be a prime power such that p − 1 is also a prime power. This
time we begin with the hypergraph J formed from AG(2, p−1) by removing
the lines of one parallel class B1 and declaring them to be the classes of a
vertex partition into p − 1 vertex classes, each of size p − 1. Then J is an
r0-partite r0-uniform hypergraph with r0 = p− 1, with p− 1 parallel classes
of edges, each containing p − 1 vertices, and any two edges from different
parallel classes intersect.

Set r = p+ r0 = 2p− 1. We construct an r-partite r-uniform hypergraph
Gr as follows. Fix a copy of Ap with vertex classes V1, . . . , Vp+1. For each
parallel class Ci of Ap place a copy J i of J with one vertex class in Vi and
the remaining r0 − 1 classes in Vp+2 . . . Vp+r0 in an arbitrary way, such that
all J i are disjoint from each other and from Ap. Take an arbitrary matching
between the set Ci and the set of parallel classes of J i and extend every edge
e of Ci to p−1 edges e∪f of Gr by appending to e each edge f of the parallel
class of J matched to e.

Theorem 7. The hypergraph Gr has the following properties.

1. Gr is an r-partite r-uniform intersecting hypergraph,

2. τ(Gr) ≥ r − 1.

Proof. It follows immediately from the definitions that Gr is r-partite and
r-uniform. To see that Gr is intersecting, let e∪ f and e′ ∪ f ′ be two edges of
Gr. If e = e′ or if e and e′ are from different parallel classes of Ap then they
intersect in Ap, implying that e∪ f and e′ ∪ f ′ intersect in Gr. If e and e′ are
from the same parallel class of Ap then f and f ′ are two edges from distinct
parallel classes of J , and therefore they intersect.

To estimate τ(Gr), consider a minimum cover T . If no vertex of T is in
any J i, then T ∪ {x} is a cover of the affine plane AG(2, p), where x is the
vertex deleted from AG(2, p) in the construction of Ap. By Theorem 2, this
must have size at least 2p− 1. Hence |T | ≥ 2p− 2 = r − 1.
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To conclude the proof we show that there exists a minimum cover T that
is disjoint from all J i. To see this, suppose that T contains a vertex z of
J i. Since T is a minimum cover there exists an edge e ∪ f ′ of Gr such that
T ∩ (e∪ f ′) = {z}, where e ∈ Ci and f ′ ∈ J i. Then T ∩ e = ∅. But the p− 1
edges e ∪ g for all g in a parallel class of J i are edges of Gr, and therefore T
contains p−1 vertices of J i to cover them. But then the edges of Gr meeting
J i could instead be covered by p − 1 vertices of Ap, one from each edge in
Ci. Repeating this argument shows the existence of a minimum T disjoint
from all J i, thus completing the proof.

We remark in closing that except for a few sporadic small examples, all
constructions of intersecting r-partite hypergraphs H with τ(H) close to r
seem to be based in some way on finite projective planes, and hence depend on
the existence of these special structures. It would be interesting either to find
a different type of construction, or to show that near-extremal constructions
must contain large pieces from a projective plane.
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