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Abstract

Given a set X, a collection F ⊆ P(X) is said to be k-Sperner if it does not contain
a chain of length k + 1 under set inclusion and it is saturated if it is maximal with
respect to this property. Gerbner et al. [11] conjectured that, if |X| is sufficiently large
with respect to k, then the minimum size of a saturated k-Sperner system F ⊆ P(X)
is 2k−1. We disprove this conjecture by showing that there exists ε > 0 such that for
every k and |X| ≥ n0(k) there exists a saturated k-Sperner system F ⊆ P(X) with
cardinality at most 2(1−ε)k.

A collection F ⊆ P(X) is said to be an oversaturated k-Sperner system if, for every
S ∈ P(X)\F , F ∪{S} contains more chains of length k+1 than F . Gerbner et al. [11]
proved that, if |X| ≥ k, then the smallest such collection contains between 2k/2−1 and

O
(
log k
k 2k

)
elements. We show that if |X| ≥ k2 + k, then the lower bound is best

possible, up to a polynomial factor.

Keywords: minimum saturation; set systems; antichains

1 Introduction

Given a set X, a collection F ⊆ P(X) is a Sperner system or an antichain if there do not
exist A,B ∈ F such that A ( B. More generally, a collection F ⊆ P(X) is a k-Sperner
system if there does not exist a subcollection {A1, . . . , Ak+1} ⊆ F such that A1 ( · · · ( Ak+1.
Such a subcollection {A1, . . . , Ak+1} is called a (k+1)-chain. We say that a k-Sperner system
is saturated if, for every S ∈ P(X) \ F , we have that F ∪ {S} contains a (k + 1)-chain. A
collection F ⊆ P(X) is an oversaturated k-Sperner system1 if, for every S ∈ P(X) \ F , we
have that the number of (k+1)-chains in F∪{S} is greater than the number of (k+1)-chains

1In [11], this is called a weakly saturated k-Sperner system. Since there is another notion of weak saturation
in the literature (see, for instance, Bollobás [3]), we have chosen to use a different term to avoid possible
confusion.
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in F . Thus, F ⊆ P(X) is a saturated k-Sperner system if and only if it is an oversaturated
k-Sperner system that does not contain a (k + 1)-chain.

For a set X of cardinality n, the problem of determining the maximum size of a saturated
k-Sperner system in P(X) is well understood. In the case k = 1, Sperner’s Theorem [17] (see
also [4]), says that every antichain in P(X) contains at most

(
n
bn/2c

)
elements, and this bound

is attained by the collection consisting of all subsets of X with cardinality bn/2c. Erdős [6]
generalised Sperner’s Theorem by proving that the largest size of a k-Sperner system in
P(X) is the sum of the k largest binomial coefficients

(
n
i

)
. In this paper, we are interested

in determining the minimum size of a saturated k-Sperner system or an oversaturated k-
Sperner system in P(X). These problems were first studied by Gerbner, Keszegh, Lemons,
Palmer, Pálvölgyi and Patkós [11].

Given integers n and k, let sat(n, k) denote the minimum size of a saturated k-Sperner
system in P(X) where |X| = n. It was shown in [11] that sat(n, k) = sat(m, k) if n and m
are sufficiently large with respect to k. We can therefore define

sat(k) := lim
n→∞

sat(n, k).

We are motivated by the following conjecture of [11].

Conjecture 1 (Gerbner et al. [11]). For all k, sat(k) = 2k−1.

Gerbner et al. [11] observed that their conjecture is true for k = 1, 2, 3. They also proved
that 2k/2−1 ≤ sat(k) ≤ 2k−1 for all k, where the upper bound is implied by the following
construction.

Construction 2 (Gerbner et al. [11]). Let Y be a set such that |Y | = k− 2 and let H be a
non-empty set disjoint from Y . Let X = Y ∪H and define

G := P(Y ) ∪ {S ∪H : S ∈ P(Y )}.

It is easily verified that G ⊆ P(X) is a saturated k-Sperner system of cardinality 2k−1.

In this paper, we disprove Conjecture 1 by establishing the following:

Theorem 3. There exists ε > 0 such that, for all k, sat(k) ≤ 2(1−ε)k.

We remark that the value of ε that can be deduced from our proof is approximately(
1− log2(15)

4

)
≈ 0.023277. The proof of Theorem 3 comes in two parts. First, we give an

infinite family of saturated 6-Sperner systems of cardinality 30 which shows that sat(6) ≤
30 < 25. We then provide a method which, under certain conditions, allows us to combine a
saturated k1-Sperner system of small order and a saturated k2-Sperner system of small order
to obtain a saturated (k1+k2−2)-Sperner system of small order. By repeatedly applying this
method, we are able to prove Theorem 3 for general k. As it turns out, our method yields
the bound sat(k) < 2k−1 for every k ≥ 6. For completeness, we will prove that sat(k) = 2k−1

for k ≤ 5, and so k = 6 is the first value of k for which Conjecture 1 is false.
Similar techniques show that sat(k) satisfies a submultiplicativity condition, which leads

to the following result.
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Theorem 4. For ε as in Theorem 3, there exists c ∈ [1/2, 1−ε] such that sat(k) = 2(1+o(1))ck.

Naturally, we wonder about the correct value of c in Theorem 4.

Problem 5. Determine the constant c for which sat(k) = 2(1+o(1))ck.

We are also interested in oversaturated k-Sperner systems. Given integers n and k, let
osat(n, k) denote the minimum size of an oversaturated k-Sperner system in P(X) where
|X| = n. As we will prove in Lemma 7, osat(n, k) = osat(m, k) provided that n and m are suf-
ficiently large with respect to k. Similarly to sat(k), we define osat(k) := limn→∞ osat(n, k).
Gerbner et al. [11] proved that if |X| ≥ k, then an oversaturated k-Sperner system in P(X)

of minimum size has between 2k/2−1 and O
(

log(k)
k

2k
)

elements. Together with Lemma 7,

this implies

2k/2−1 ≤ osat(k) ≤ O

(
log(k)

k
2k

)
.

We show that the lower bound gives the correct asymptotic behaviour, up to a polynomial
factor.

Theorem 6. For every integer k and set X with |X| ≥ k2 + k there exists an oversaturated
k-Sperner system F ⊆ P(X) such that |F| = O

(
k52k/2

)
. In particular,

osat(k) = 2(1/2+o(1))k.

In Section 2, we prove some preliminary results which will be used throughout the paper.
In particular, we provide conditions under which a saturated k-Sperner system can be de-
composed into or constructed from a sequence of k disjoint saturated antichains. In Section 3
we show that certain types of saturated k1-Sperner and k2-Sperner systems can be combined
to produce a saturated (k1+k2−2)-Sperner system, and use this to prove Theorems 3 and 4.
Finally, in Section 4, we give a probabilistic construction of oversaturated k-Sperner systems
of small cardinality, thereby proving Theorem 6.

Minimum saturation has been studied extensively in the context of graphs [1, 2, 5, 10, 12,
13, 18, 19, 20] and hypergraphs [7, 14, 15, 16]. Such problems are typically of the following
form: for a fixed (hyper)graph H, determine the minimum size of a (hyper)graph G on n
vertices which does not contain a copy of H and for which adding any edge e /∈ G, yields
a (hyper)graph which contains a copy of H. This line of research was first initiated by
Zykov [21] and Erdős, Hajnal and Moon [8]. For more background on minimum saturation
problems for graphs, we refer the reader to the survey of Faudree, Faudree and Schmitt [9].

2 Preliminaries

Given a collection F ⊆ P(X), we say that a set A ⊆ X is an atom for F if A is maximal
with respect to the property that

for every set S ∈ F , S ∩ A ∈ {∅, A}. (1)
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We say that an atom A with |A| ≥ 2 is homogeneous for F . Gerbner et al. [11] proved that
if n,m are sufficiently large with respect to k, then sat(n, k) = sat(m, k). Using a similar
approach, we extend this result to osat(n, k).

Lemma 7. Fix k. If n,m > 22k−1
, then sat(n, k) = sat(m, k) and osat(n, k) = osat(m, k).

Proof. Fix n > 22k−1
and let X be a set of cardinality n. Suppose that F ⊆ P(X) is an

oversaturated k-Sperner system of cardinality at most 2k−1. We know that such a family
exists by Construction 2. We will show that, for sets X1 and X2 such that |X1| = n− 1 and
|X2| = n + 1, there exists F1 ⊆ P(X1) and F2 ⊆ P(X2) such that

(a) |F1| = |F2| = |F|,

(b) F1 and F2 have the same number of (k + 1)-chains as F ,

(c) F1 and F2 are oversaturated k-Sperner systems.

We observe that this is enough to prove the lemma. Indeed, by taking F to be a saturated
k-Sperner system or an oversaturated k-Sperner system in P(X) of minimum order, we will
have that

max{sat(n− 1, k), sat(n + 1, k)} ≤ sat(n, k) and

max{osat(n− 1, k), osat(n + 1, k)} ≤ osat(n, k).

Since n was an arbitrary integer greater than 22k−1
, the result will follow by induction.

We prove the following claim.

Claim 8. Given a set X and a collection F ⊆ P(X), if |X| > 2|F|, then there is a homoge-
neous set for F .

Proof. We observe that every atom A for F corresponds to a subcollection FA := {S ∈ F :
A ⊆ S} of F such that FA 6= FA′ whenever A 6= A′. This implies that the number of atoms
for F is at most 2|F|. Therefore, since |X| > 2|F|, there must be a homogeneous set H for
F .

By Claim 8 and the fact that |X| > 22k−1 ≥ 2|F|, there exists a homogeneous set H for
F . Let x1 ∈ H and x2 /∈ X and define X1 := X \ {x1} and X2 := X ∪ {x2}. Let

F1 := {S ∈ F : S ∩H = ∅} ∪ {S \ {x1} : S ∈ FH}, and

F2 := {S ∈ F : S ∩H = ∅} ∪ {S ∪ {x2} : S ∈ FH}.

Since H is homogeneous for F , there does not exist a pair of sets in F which differ only
on x1. Thus, for i ∈ {1, 2} there is a natural bijection from Fi to F which preserves set
inclusion. Hence, (a) and (b) hold. Now, let i ∈ {1, 2} and Ti ∈ P(Xi) \ Fi and define

T := (Ti \ (H ∪ {x2})) ∪ {x1}.
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Then T ∈ P(X) \ F since H is a non-singleton atom and T ∩H = {x1}, and so there exists
A1, . . . , Ak ∈ F and t ∈ {0, . . . , k} such that

A1 ( · · · ( At ( T ( At+1 ( · · · ( Ak.

Since T ∩ H 6= H, we must have Aj ∩ H = ∅ for j ≤ t and so A1, . . . , At ∈ Fi and
A1 ( · · · ( At ( Ti. Also, since T ∩ H 6= ∅, we have Aj ∩ H = H for j ≥ t + 1. Setting
A′j := (Aj ∪ {x2}) ∩Xi, we see that A′j ∈ Fi for j ≥ t + 1 and that Ti ( A′t+1 ( · · · ( A′k.
Thus, (c) holds.

The rest of the results of this section are concerned with the structure of saturated k-
Sperner systems. The next lemma, which is proved in [11], implies that for any saturated
k-Sperner system there can be at most one homogeneous set. We include a proof for com-
pleteness.

Lemma 9 (Gerbner et al. [11]). If F ⊆ P(X) is a saturated k-Sperner system and H1 and
H2 are homogeneous for F , then H1 = H2.

Proof. Suppose to the contrary that H1 and H2 are homogeneous for F and that H1 6= H2.
Then, since each of H1 and H2 are maximal with respect to (1), we have that H1 ∪ H2 is
not homogeneous for F . Therefore, there is a set S ∈ F which contains some, but not all,
of H1 ∪H2. Without loss of generality, we have S ∩H1 = H1 and S ∩H2 = ∅ since H1 and
H2 are homogeneous for F . Now, pick x ∈ H1 and y ∈ H2 arbitrarily and define

T := (S \ {x}) ∪ {y}.

Clearly T cannot be in F since T ∩H1 = H1 \ {x} and H1 is homogeneous for F . Since F
is saturated, there must exist sets A1, . . . , Ak ∈ F and t ∈ {0, . . . , k} such that

A1 ( · · · ( At ( T ( At+1 ( · · · ( Ak.

Since H1 and H2 are homogeneous for F , and neither H1 nor H2 is contained in T , we get that
At ( T \ (H1∪H2) ⊆ S. Similarly, At+1 ) S. However, this implies that {A1, . . . , Ak}∪{S}
is a (k + 1)-chain in F , a contradiction.

By Lemma 9, if F is a saturated k-Sperner system for which there exists a homogeneous
set, then the homogeneous set must be unique. Throughout the paper, it will be useful to
distinguish the elements of F which contain the homogeneous set from those that do not.

Definition 10. Let F ⊆ P(X) be a saturated k-Sperner system and let H be homogeneous
for F . We say that a set S ∈ F is large if H ⊆ S or small if S∩H = ∅. Let F large and F small

denote the collection of large and small sets of F , respectively. Thus, F = F small ∪ F large.

Lemma 11. Let A ⊆ P(X) be a saturated antichain with homogeneous set H. Then every
set S ∈ P(X) \ A either contains a set in Asmall or is contained in a set of Alarge.
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Proof. Suppose, to the contrary, that S ∈ P(X) \ A does not contain a set of Asmall and is
not contained in a set of Alarge. Since A is saturated, we get that either

(a) there exists A ∈ Alarge such that A ( S, or

(b) there exists B ∈ Asmall such that S ( B.

Suppose that (a) holds. Let y ∈ S \ A and x ∈ H and define T := (A \ {x}) ∪ {y}. Since
H is homogeneous for A and T ∩ H = H \ {x}, we must have T /∈ A. Also, since H is
homogeneous for A, any set T ′ ∈ A containing T would have to contain T ∪ {x} ) A.
Therefore, since A is an antichain, no such set T ′ can exist. Thus, there is a set T ′′ ∈ A such
that T ′′ ( T ⊆ S. Since H is homogeneous for A and T ∩H 6= H, we get that T ′′ ∈ Asmall,
contradicting our assumption on S.

Note that we are also done in the case that (b) holds by considering the saturated
antichain {X \ A : A ∈ A} and applying the argument of the previous paragraph.

2.1 Constructing and Decomposing Saturated k-Sperner Systems

There is a natural way to partition a k-Sperner system F ⊆ P(X) into a sequence of k
pairwise disjoint antichains. Specifically, for 0 ≤ i ≤ k − 1, let Ai be the collection of all

minimal elements of F \
(⋃

j<iAj

)
under inclusion. We say that (Ai)

k−1
i=0 is the canonical

decomposition of F into antichains.
In this section we provide conditions under which a sequence of k pairwise disjoint satu-

rated antichains can be united to obtain a saturated k-Sperner system. Later we will prove
a partial converse: if F ⊆ P(X) is a saturated k-Sperner system with a homogeneous set,
then every antichain of the canonical decomposition of F is saturated. We also provide an
example which shows that this is not necessarily the case if we remove the condition that F
has a homogeneous set.

Definition 12. We say that a sequence (Di)
t
i=0 of subsets of P(X) is layered if, for 1 ≤ i ≤ t,

every D ∈ Di strictly contains some D′ ∈ Di−1 as a subset.

Note that the canonical decomposition of any set system is layered.

Lemma 13. If (Ai)
t
i=0 is a layered sequence of pairwise disjoint saturated antichains, then

every A ∈ Ai is strictly contained in some B ∈ Ai+1

Proof. Let A ∈ Ai. Since Ai+1 is a saturated antichain disjoint from Ai, there exists some
B ∈ Ai+1 such that either B ( A or A ( B. In the latter case we are done, so suppose
B ( A. Since (Ai)

t
i=0 is layered, there exists some A′ ∈ Ai such that A′ ( B. Hence we have

A′ ( B ( A, contradicting the fact that Ai is an antichain and completing the proof.

Lemma 14. If (Ai)
k−1
i=0 is a layered sequence of pairwise disjoint saturated antichains in

P(X), then F :=
⋃k−1

i=0 Ai is a saturated k-Sperner system.
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Proof. Clearly, F is a k-Sperner system since A0, . . . ,Ak−1 are antichains. Let S ∈ P(X)\F
be arbitrary and define t = max{i : S ) A for some A ∈ Ai}. If t ≥ 0, then S strictly
contains some set At ∈ At. As (Ai)

k−1
i=0 is layered, for 0 ≤ i ≤ t− 1, there exist sets Ai ∈ Ai

such that
A0 ( · · · ( At ( S.

Now, if t ≥ k − 2, then since At+1 is a saturated antichain and S does not contain a set
of At+1, there must exist At+1 ∈ At+1 such that S ( At+1. By Lemma 13, we see that for
t + 2 ≤ i ≤ k − 1 there exists Ai ∈ Ai such that

S ( At+1 ( · · · ( Ak−1.

Thus {A0, . . . , Ak−1} ∪ {S} is a (k + 1)-chain, as desired.

In Lemma 14, we require the sequence (Ai)
k−1
i=0 of saturated antichains to be layered. As

it turns out, if each antichain Ai has a homogeneous set, then (Ai)
k−1
i=0 is layered if and only

if
(
Asmall

i

)k−1
i=0

is layered.

Lemma 15. Let (Ai)
k−1
i=0 be a sequence of pairwise disjoint saturated antichains in P(X),

each of which has a homogeneous set. Then (Ai)
k−1
i=0 is layered if and only if

(
Asmall

i

)k−1
i=0

is
layered.

Proof. Suppose that (Ai)
k−1
i=0 is layered and, for some i ≥ 0, let A ∈ Asmall

i+1 be arbitrary.
We show that A contains a set of Asmall

i . Otherwise, since (Ai)
k−1
i=0 is layered, we get that

there is some B ∈ Alarge
i such that B ( A. Therefore, since Ai is an antichain, A cannot be

contained in an element of Alarge
i . By Lemma 11 and the fact that Ai and Ai+1 are disjoint,

we get that A contains a set of Asmall
i , as desired.

Now, suppose that
(
Asmall

i

)k−1
i=0

is layered. Given i ≥ 0 and S ∈ Alarge
i+1 , we show that S

contains a set of Ai, which will complete the proof. If not, then since Ai is saturated and
disjoint from Ai+1, there must exist T ∈ Ai such that S ( T . Since Ai+1 is an antichain, S
cannot be strictly contained in a set of Alarge

i+1 , and so neither can T . Therefore, by Lemma 11,

there is a set A ∈ Asmall
i+1 contained in T . However, since

(
Asmall

i

)k−1
i=0

is layered, there exists

A′ ∈ Asmall
i such that A′ ( A. But then, A′ ( T , which contradicts the assumption that Ai

is an antichain. The result follows.

It is natural to wonder whether a converse to Lemma 14 is true. That is: if F is
a saturated k-Sperner system, can we decompose F into a layered sequence of k pairwise
disjoint saturated antichains? The following example shows that this is not always the case.

Example 16. Let X := {x1, x2, x3}, Y := {y1, y2, y3} and Z := X ∪ Y . We define

B0 := {{xi, xj} : i 6= j} ∪ {{xi, yi} : i ∈ {1, 2, 3}} ∪ {{xk, yi, yj} : i, j, k distinct } ∪ {Y },

B1 := {X, {x1, x2, y1}, {x1, x3, y3}, {x2, x3, y2}, {x1, y1, y3}, {x2, y1, y2}, {x3, y2, y3},

{x1, x2, y2, y3}, {x1, x3, y1, y2}, {x2, x3, y1, y3}}.
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Then (Bi)1i=0 is a layered sequence of disjoint antichains. In fact, (Bi)1i=0 is the canonical
decomposition of F := B0 ∪B1. Clearly B1 is not saturated as B1 ∪ {Y } is an antichain. We
claim that F is a saturated 2-Sperner system.

Consider any S ∈ P(Z) \ F . We will show that F ∪ {S} contains a 3-chain. It is easy to
check that every element of B0 \ {Y } is contained in a set of B1. Hence if S is contained in
some set B ∈ B0 \ {Y }, then F ∪ {S} contains a 3-chain. In particular, this completes the
proof when |S| ∈ {0, 1, 2}. Similarly, since (Bi)1i=0 is layered, if S contains some set B ∈ B1,
then F ∪ {S} contains a 3-chain. Therefore, we are done if |S| ∈ {4, 5, 6}.

It remains to consider the case that |S| = 3. Since X, Y ∈ F , we must have |S ∩ Y | = 2,
or |S ∩ X| = 2. If |S ∩ Y | = 2, we have S ∈ {{x1, y1, y2}, {x2, y2, y3}, {x3, y1, y3}}. This
implies that S is contained in a set B ∈ B1 and contains a set B′ ∈ B0∩P(X). If |S∩X| = 2,
then S contains some set {xi, xj} ∈ B0. Also, it is easily verified that S is contained in a set
of B1. Thus, F is a saturated 2-Sperner system.

However, for saturated k-Sperner systems with a homogeneous set, the converse to
Lemma 14 does hold; we can partition F into a layered sequence of k pairwise disjoint
saturated antichains.

Lemma 17. Let F ∈ P(X) be a saturated k-Sperner system with homogeneous set H and
canonical decomposition (Ai)

k−1
i=0 . Then Ai is saturated for all i.

Proof. Fix i and let S ∈ P(X) \ Ai. Let x ∈ H and define

T := (S \H) ∪ {x}.

Then T /∈ F since T ∩ H = {x} and H is homogeneous for F . Therefore, there exists
{A0, . . . , Ak−1} ⊆ F and t ∈ {0, . . . , k} such that

A0 ( · · · ( At−1 ( T ( At ( · · · ( Ak−1.

By definition of the canonical decomposition, we must have Aj ∈ Aj for all j. Also, since
H is homogeneous for F and T ∩ H /∈ {∅, H}, we must have At−1 ⊆ T \ H ⊆ S and
At ⊇ T ∪H ⊇ S. Therefore,

A0 ( · · · ( At−1 ⊆ S ⊆ At ( · · · ( Ak−1.

Since S 6= Ai, we must have either Ai ( S or S ( Ai depending on whether or not i < t.
Therefore, Ai is saturated for all i.

3 Combining Saturated k-Sperner Systems

Our first goal in this section is to prove that, under certain conditions, a saturated k1-Sperner
system F1 ⊆ P(X1) and a saturated k2-Sperner system F2 ⊆ P(X2) can be combined to
yield a saturated (k1 + k2− 2)-Sperner system in P(X1 ∪X2). We apply this result to prove
Theorem 3. Afterwards, we prove that sat(k) = 2k−1 for k ≤ 5. We conclude the section
with a proof of Theorem 4.
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Lemma 18. Let X1 and X2 be disjoint sets. For i ∈ {1, 2}, let Fi ⊆ P(Xi) be a saturated
ki-Sperner system which contains {∅, Xi} and let Hi ⊆ Xi be homogeneous for Fi. If G is
the set system on P(X1 ∪X2) defined by

G :=
{
A ∪B : A ∈ F small

1 , B ∈ F small
2

}
∪
{
S ∪ T : S ∈ F large

1 , T ∈ F large
2

}
,

then G is a saturated (k1 + k2− 2)-Sperner system which contains {∅, X1 ∪X2} and H1 ∪H2

is homogeneous for G.

Proof. It is clear that G contains {∅, X1 ∪X2} and that H1 ∪H2 is homogeneous for G. We
show that G is a saturated (k1 + k2 − 2)-Sperner system.

First, let us show that G does not contain a chain of length k1 + k2 − 1. Suppose that
{A1, . . . , Ar} is an r-chain in G. We can assume that A1 = ∅ and Ar = X1 ∪X2. Define

I1 := {i : Ai ∩X1 ( Ai+1 ∩X1}, and

I2 := {i : Ai ∩X2 ( Ai+1 ∩X2}.
Clearly, I1 ∪ I2 = {1, . . . , r − 1}. Also, for i ∈ {1, 2}, since Fi is a ki-Sperner system, we
must have |Ii| ≤ ki − 1. Let t be the maximum index such that At ∩X1 ∈ F small

1 . Note that
t exists and is less than r since A1 = ∅ and Ar = X1 ∪ X2. By construction of G, At ∩ X2

is a small set for F2 and, for i ∈ {1, 2}, At+1 ∩ Xi is a large set for Fi. This implies that
t ∈ I1 ∩ I2 and so

r − 1 = |I1 ∪ I2| = |I1|+ |I2| − |I1 ∩ I2| ≤ k1 + k2 − 3

as required.
Now, let S ∈ P(X1 ∪X2) \ G. We show that G ∪ {S} contains a (k1 + k2 − 1)-chain. Fix

x1 ∈ H1 and x2 ∈ H2 and define

T := (S \ (H1 ∪H2)) ∪ {x1, x2}.

For i ∈ {1, 2}, let Ti := T ∩Xi. Then Ti /∈ Fi since Ti ∩Hi = {xi}. Therefore, there exists
Ai

1, . . . , A
i
ki
∈ Fi and ti ∈ {1, . . . , ki − 1} such that

∅ = Ai
1 ( · · · ( Ai

ti
( Ti ( Ai

ti+1 ( · · · ( Ai
ki

= Xi

Note that Ai
j ∈ F small

i for j ≤ ti and Ai
j ∈ F

large
i for j ≥ ti+1. This implies that A1

t1
∪A2

t2
( S

and A1
t1+1 ∪ A2

t2+1 ) S. Therefore,

A1
1 ∪ A2

1 ( A1
1 ∪ A2

2 ( · · · ( A1
1 ∪ A2

t2
( A1

2 ∪ A2
t2
( · · · ( A1

t1
∪ A2

t2
( S

( A1
t1+1 ∪ A2

t2+1 ( A1
t1+1 ∪ A2

t2+2 ( · · · ( A1
t1+1 ∪ A2

k2
( A1

t1+2 ∪ A2
k2

( · · · ( A2
k1
∪ A2

k2

and so G ∪ {S} contains a (k1 + k2 − 1)-chain. The result follows.

Remark 19. If F1, F2 and G are as in Lemma 18, then

|G| =
∣∣F small

1

∣∣ ∣∣F small
2

∣∣+
∣∣∣F large

1

∣∣∣ ∣∣∣F large
2

∣∣∣ .
9



3.1 Proof of Theorem 3

We apply Lemma 18 to prove Theorem 3. The first part of the proof of Theorem 3 is to
exhibit an infinite family of saturated 6-Sperner systems with cardinality 30 < 25.

Proposition 20. For any set X such that |X| ≥ 8, there is a saturated 6-Sperner system
F ⊆ P(X) with a homogeneous set such that

∣∣F small
∣∣ =

∣∣F large
∣∣ = 15.

Proof. Let X be a set such that |X| ≥ 8. Let x1, x2, y1, y2, w and z be distinct elements of
X and define H := X \ {x1, x2, y1, y2, w, z}. We apply Lemma 14 to construct a saturated
6-Sperner system F ⊆ P(X) of order 30. Naturally, we define A0 = {∅} and A5 := {X}.
Also, define

A1 := {{x1}, {x2}, {y1}, {w}, H ∪ {y2, z}}, and

A4 := {X \ A : A ∈ A1}.
It is easily observed that A1 and A4 are saturated antichains. We define A2 and A3 by

first specifying their small sets. Define

Asmall
2 := {{xi, yj} : 1 ≤ i, j ≤ 2} ∪ {{w, z}}, and

Asmall
3 := {{x1, y1, w}, {x1, y1, z}, {x2, y2, w}, {x2, y2, z}}.

Given any collection B ⊆ P(X), a set S ⊆ X is said to be stable for B if S does not contain
an element of B. For i = 2, 3, define Alarge

i to be the collection consisting of all maximal
stable sets of Asmall

i and let Ai := Asmall
i ∪Alarge

i . Note that every element of Alarge
i contains

H. It is clear that Ai is an antichain for i = 2, 3. Moreover, Ai is saturated since every set
A ∈ P(X) either contains an element of Asmall

i or is contained in an element of Alarge
i .

One can easily verify that
(
Asmall

i

)5
i=0

is layered. Therefore, by Lemma 15, (Ai)
5
i=0 is a

layered sequence of pairwise disjoint saturated antichains. By Lemma 14, F :=
⋃5

i=0Ai is a
saturated 6-Sperner system. Also,

∣∣F small
∣∣ =

5∑
i=0

∣∣Asmall
i

∣∣ = (1 + 5 + 9 + 0) = 15, and

∣∣F large
∣∣ =

5∑
i=0

∣∣∣Alarge
i

∣∣∣ = (0 + 9 + 5 + 1) = 15,

as desired.

We remark that the construction in Proposition 20 is similar to one which was used in [11]
to prove that sat(k, k) ≤ 15

16
2k−1 for every k ≥ 6.

For the proof of Theorem 3 we require that

sat(k) ≤ 2 sat(k − 1). (2)

This was proved in [11] using the fact that if F ⊆ P(X) is a saturated (k−1)-Sperner system
and y /∈ X, then F ∪ {A ∪ {y} : A ∈ F} is a saturated k-Sperner system in P(X ∪ {y}).

10



Proof of Theorem 3. First, we prove that the result holds when k is of the form 4j + 2 for
some j ≥ 1. In this case, we repeatedly apply Lemma 18 and Proposition 20 to obtain a
saturated k-Sperner system F on an arbitrarily large ground set X such that∣∣F small

∣∣+
∣∣F large

∣∣ = 15j + 15j = 2 · 15j.

Therefore, if k = 4j + 2, then sat(k) ≤ 2 · 15j.
For k of the form 4j+2+s for j ≥ 1 and 1 ≤ s ≤ 3, apply (2) to obtain sat(k) ≤ 2s sat(4j+

2) ≤ 2s+1 · 15j. Thus, we are done by setting ε slightly smaller than
(

1− log2(15)
4

)
.

3.2 Bounding sat(k) From Below

One can easily deduce from the proof of Theorem 3 that sat(k) < 2k−1 for all k ≥ 6. For
completeness, we prove that sat(k) = 2k−1 for k ≤ 5.

Proposition 21. If k ≤ 5, then sat(k) = 2k−1.

Proof. Fix k ≤ 5. The upper bound follows from Construction 2, and so it suffices to prove
that sat(k) ≥ 2k−1. Let X be a set with n := |X| > 22k−1

and let F ⊆ P(X) be a saturated
k-Sperner system of minimum order. By Claim 8 and the fact that |X| > 22k−1 ≥ 2|F|, there
is a homogeneous set H for F .

Let (Ai)
k−1
i=0 be the canonical decomposition of F . By Lemma 17, we get that Ai is a

saturated antichain for each i. Also, since (Ai)
k−1
i=0 is layered, by Lemma 13 we see that

every element of Ai has cardinality between i and n− k + i + 1. (3)

Our goal is to to show that for k ≤ 5, every saturated antichain Ai which satisfies (3)
must contain at least

(
k−1
i

)
elements. Clearly this is enough to complete the proof of the

proposition. Note that it suffices to prove this for i < k
2

since {X \A : A ∈ Ai} is a saturated
antichain in which every set has size between k − i − 1 and n − i. Since k ≤ 5, this means
that we need only check the cases i = 0, 1, 2. In the case i = 0, we obtain |A0| ≥ 1 =

(
k−1
0

)
trivially.

Next, consider the case i = 1. Let A be the largest set in A1 such that H ⊆ A. Then, by
(3), we must have |A| ≤ n− k + 2 and so |X \ A| ≥ k − 2. Fix an element x of H and, for
each y ∈ X \A, define Ay := (A\{x})∪{y}. Since A1 is saturated, H is homogeneous for F ,
and A is the largest set in A1 containing H, there must be a set By ∈ A1 such that By ( Ay.
However, since A1 is an antichain, By * A, and so By \ A = {y}. In particular, By 6= By′

for y 6= y′. Therefore, |A1| ≥ |{A} ∪ {By : y ∈ X \ A}| ≥ 1 + |X \ A| ≥ k − 1 =
(
k−1
1

)
, as

desired.
Thus, we are finished except for the case i = 2 and k = 5. Suppose to the contrary that

|A2| <
(
4
2

)
= 6. We begin by proving the following claim.

Claim 22. For every vertex y ∈ X \H, there is a set Sy ∈ Alarge
2 containing y.

11



Proof. Let x ∈ H be arbitrary and consider the set T := {x, y}. Then T is not contained in
A2 since H is homogeneous for F . Also, no strict subset of T is in A2 by (3). Since A2 is
saturated, there must be some Sy ∈ Alarge

2 containing T , which completes the proof.

Let us argue that
∣∣∣Alarge

2

∣∣∣ ≥ 3. By (3), each set A ∈ Alarge
2 has at most n − 2 elements.

So, by Claim 22, if
∣∣∣Alarge

2

∣∣∣ < 3, then it must be the case that Alarge
2 = {A1, A2} where

A1∪A2 = X. Therefore, since each of |A1| and |A2| is at most n−2, we can pick {w1, w2} ⊆
A1 \A2 and {z1, z2} ⊆ A2 \A1. Given x ∈ H and 1 ≤ i, j ≤ 2, we have that {x,wi, zj} /∈ A2

since H is homogeneous for F . Note that {x,wi, zj} is not contained in either A1 or A2,
and so by Lemma 11 and (3) we must have {wi, zj} ∈ A2. However, this implies that
|A2| ≥ |{{wi, zj} : 1 ≤ i, j ≤ 2} ∪ {A1, A2}| = 6, a contradiction.

So, we get that
∣∣∣Alarge

2

∣∣∣ ≥ 3. Note that {X \ A : A ∈ A2} is also a saturated antichain

in which every set has cardinality between 2 and n − 2. Thus, we can apply the argument

of the previous paragraph to obtain
∣∣Asmall

2

∣∣ ≥ 3. Therefore, |A2| =
∣∣Asmall

2

∣∣ +
∣∣∣Alarge

2

∣∣∣ ≥ 6,

which completes the proof.

It is possible that a similar approach may prove fruitful for improving the lower bound
on sat(k) from 2k/2−1 to 2(1+o(1))ck for some c > 1/2. That is, one may first decompose a
saturated k-Sperner system F ⊆ P(X) of minimum size into its canonical decomposition
(Ai)

k−1
i=0 and then bound the size of |Ai| for each i individually. Since there are only k

antichains in the decomposition and the bound on |F| that we are aiming for is exponential
in k, one could obtain a fairly tight lower bound on sat(k) by focusing on a single antichain
of the decomposition. Setting i =

⌊
k
2

⌋
in (3), we see that it would be sufficient to prove that

there exists c > 1/2 such that every saturated antichain A with a homogeneous set such that
every element of A has cardinality between

⌊
k
2

⌋
and n−

⌈
k
2

⌉
+1 must satisfy |A| ≥ 2(1+o(1))ck.

The problem of determining whether such a c exists is interesting in its own right.

3.3 Asymptotic Behaviour of sat(k)

To prove Theorem 4, we require the following fact, which is proved in [11].

Lemma 23 (Gerbner et al. [11]). For any n ≥ k ≥ 1 and set X with |X| = n there is a
saturated k-Sperner system F ⊆ P(X) such that |F| = sat(n, k) and {∅, X} ⊆ F .

Proof. Let F ⊆ P(X) be a saturated k-Sperner system such that |F| = sat(n, k). We let
(Ai)

k−1
i=0 denote the canonical decomposition of F and define

F ′ := (F \ (A0 ∪ Ak−1)) ∪ {∅, X}.

It is clear that F ′ ⊆ P(X) is a saturated k-Sperner system and |F ′| ≤ |F| = sat(n, k), which
proves the result.

12



Proof of Theorem 4. We show that, for all k, `,

sat(k + `) ≤ 4 sat(k) sat(`). (4)

Letting f(k) := 4 sat(k), we see that (4) implies that f(k + `) ≤ f(k)f(`) for every k, `. It
follows by Fekete’s Lemma that f(k)1/k converges, and so sat(k)1/k converges as well.

For n > 22k+`−2
, let X and Y be disjoint sets of size n and let Fk ⊆ P(X) and F` ⊆ P(Y )

be saturated k-Sperner and `-Sperner systems of cardinalities sat(k) and sat(`), respectively.
By Claim 8, we can assume that Fk and F` have homogeneous sets and, by Lemma 23, we can
assume that {∅, X} ⊆ Fk and {∅, Y } ⊆ F`. We apply Lemma 18 and Remark 19 to obtain a
saturated (k+`−2)-Sperner system G ⊆ P(X ∪Y ) of order at most |Fk||F`| = sat(k) sat(`).
Therefore, by (2), we have

sat(k + `) ≤ 4 sat(k + `− 2) ≤ 4|G| ≤ 4 sat(k) sat(`)

as required.

4 Oversaturated k-Sperner Systems

In this section we construct oversaturated k-Sperner systems of small order. We first state
a lemma, from which Theorem 6 follows, and then prove the lemma itself.

Lemma 24. Given k ≥ 1, let X be a set of cardinality k2 + k. Then for all t such that
1 ≤ t ≤ k2 + k there exist non-empty collections Ft, Gt ⊆ P(X) that have the following
properties:

(a) For every F ∈ Ft and G ∈ Gt, |F |+ |G| ≥ k,

(b) |Ft|+ |Gt| = O
(
k22k/2

)
,

(c) For every S ⊆ X such that |S| = t, there exists some F ∈ Ft and some G ∈ Gt such that
F ( S and G ∩ S = ∅.

We apply Lemma 24 to prove Theorem 6.

Proof of Theorem 6. First, let X be a set of cardinality k2 + k. For t ∈ {1, . . . , k2 + k}, let
Ft and Gt be as in Lemma 24. For each F ∈ Ft ∪ Gt, choose F1, . . . , Fi ∈ P(X) such that

F1 ( · · · ( Fi ( F

where i := min{k − 1, |F |}. We let CF := F ∪ {F1, . . . , Fi} and define

G :=
⋃

1≤t≤k2+k

({T : T ∈ CF for some F ∈ Ft} ∪ {X \ T : T ∈ CG for some G ∈ Gt}) .

13



For each t ≤ k2 + k and F ∈ Ft∪Gt, we have |CF | ≤ k. Thus, by Property (b) of Lemma 24,

|G| ≤
k2+k∑
t=1

k(|Ft|+ |Gt|) = O
(
k52k/2

)
.

We will now show that for any S ∈ P(X)\G there is a (k+1)-chain in G∪{S} containing
S, which will imply that G is an oversaturated k-Sperner system. Let S ⊆ X and define
t := |S|. By Property (c) of Lemma 24, there exists F ∈ Ft such that F ( S and G ∈ Gt
such that G ∩ S = ∅. This implies that S ( X \ G. By Property (a) of Lemma 24 we get
that

CF ∪ {X \ T : T ∈ CG} ∪ {S}

contains a (k + 1)-chain in G ∪ {S} containing S.
Now, suppose that |X| > k2 + k. Let Y ⊆ X such that |Y | = k2 + k and define

H := X \ Y . As above, let G ⊆ P(Y ) be an oversaturated k-Sperner system of cardinality
at most O

(
k52k/2

)
. Define G ′ ⊆ P(X) as follows:

G ′ := {T : T ∈ G} ∪ {T ∪H : T ∈ G}.

Consider any set S ∈ P(X)\G ′. Let S ′ = S ∩Y . We have, by definition of G, that there is a
(k+1)-chain C in G∪{S ′} containing S ′. Adding H to every superset of S ′ in C and replacing
S ′ by S in C gives us a (k + 1)-chain in G ′ ∪ {S} containing S. The result follows.

To prove Lemma 24, we use a probabilistic approach.

Proof of Lemma 24. Throughout the proof, we assume that k is sufficiently large and let X
be a set of cardinality k2 + k. Let 1 ≤ t ≤ k2 + k be given. We can assume that t ≤ k2+k

2

since, otherwise, we can simply define Ft := Gk2+k−t and Gt := Fk2+k−t. We divide the proof
into two cases depending on the size of t.

Case 1: t ≤ k2+k
8

.

We define Ft := {∅} and let Gt be a uniformly random collection of 2k/2 subsets of X,
each of cardinality k. Given S ⊆ X of cardinality t, the probability that S is not disjoint
from any set of Gt is(

1−
k−1∏
i=0

(
k2 + k − t− i

k2 + k − i

))2k/2

≤

(
1−

(
k2 − t

k2

)k
)2k/2

≤

(
1−

(
7

8
− 1

8k

)k
)2k/2

≤ e−( 7
8
− 1

8k)
k
2k/2 < e−(1.1)

k

.

Therefore, the expected number of subsets of X of cardinality t which are not disjoint from
any set of Gt is at most

(
k2+k

t

)
e−(1.1)

k
, which is less than 1. Thus, with non-zero probability,

every S ⊆ X of cardinality t is disjoint from some set in Gt.
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Case 2: k2+k
8

< t ≤ k2+k
2

.

Define p := t
k2+k

and let a be the rational number such that ak =
⌊
−k log

√
2

log(p)
+ 1
⌋
. Then,

since 1
8
≤ p ≤ 1

2
, we have

1/6 ≤ a ≤ 1/2 + 1/k < 4/7. (5)

Now, let Ft be a collection of
⌈
8e8k22k/2

⌉
subsets of X, each of cardinality ak, chosen

uniformly at random with replacement. Similarly, let Gt be a collection of
⌈
e2k22k/2

⌉
subsets

of X, each of cardinality (1− a)k, chosen uniformly at random with replacement. We show
that, with non-zero probability, every S ⊆ X of size t contains a set of Ft and is disjoint
from a set of Gt.

Given S ⊆ X of size t = p(k2 + k), the probability that S does not contain a set of Ft is
at most (

1−
ak−1∏
i=0

(
p(k2 + k)− i

k2 + k − i

))|Ft|

≤

(
1−

(
p(k2 + k)− k

k2

)ak
)|Ft|

=

(
1−

(
1− 1− p

pk

)ak

pak

)|Ft|

. (6)

Observe that
(

1− 1−p
pk

)
≥ e−

2(1−p)
pk for large enough k. So,

(
1− 1−p

pk

)ak
≥ e

−2a(1−p)
p which is

at least e−8 since a < 4/7 and p ≥ 1/8. Thus, the expression in (6) is at most(
1− e−8pak

)|Ft| ≤ e−e
−8pak|Ft| ≤ e−e

−8pak(8e8k22k/2) = e−p
ak8k22k/2 .

Using our choice of a and the fact that p ≥ 1/8, we can bound the exponent by

pak8k22k/2 ≥ p

(
− log

√
2

log(p)
+ 1

k

)
k
8k22k/2 = p8k2 ≥ k2.

Therefore, the expected number of subsets of X of size t which do not contain a set of Ft is
at most (

k2 + k

t

)
e−k

2

< 2k2+ke−k
2

which is less than 1. Thus, with positive probability, every subset of X of cardinality t
contains a set of Ft.

The proof that, with positive probability, every set of cardinality t is disjoint from a set
of Gt is similar; we sketch the details. First, let us note that

a ≥ − log
√

2

log(p)
≥ 1 +

log
√

2

log(1− p)
(7)

since p ≤ 1/2. For a fixed set S ⊆ X of size t = p(k2 + k), the probability that S is not
disjoint from any set of Gt is at most1−

(1−a)k−1∏
i=0

(
(1− p)(k2 + k)− i

k2 + k − i

)|Gt| ≤ (1−
(

(1− p)(k2 + k)− k

k2

)(1−a)k
)|Gt|
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=

(
1−

(
1− p

(1− p)k

)(1−a)k

(1− p)(1−a)k

)|Gt|
(8)

Now,
(

1− p
(1−p)k

)
≥ e

−2p
(1−p)k for large enough k. So,

(
1− p

(1−p)k

)(1−a)k
≥ e

−2(1−a)p
(1−p) , which is

at least e−2 since a ≥ 1/6 and 1
8
≤ p ≤ 1

2
. Therefore, the expression in (8) is at most(

1− e−2(1− p)(1−a)k
)|Gt| ≤ e−e

−2(1−p)(1−a)k|Gt| ≤ e−e
−2(1−p)(1−a)k(e2k22k/2)

= e−(1−p)
(1−a)kk22k/2 .

By (7), we can bound the exponent by

(1− p)(1−a)kk22k/2 ≥ (1− p)

(
− log

√
2

log(1−p)

)
k
k22k/2 ≥ k2.

As with Ft, we get that the expected number of sets of cardinality t which are not disjoint
from a set of Gt is less than one. The result follows.
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Hajnal und Moon, Wiss. Z. Techn. Hochsch. Ilmenau 12 (1966), 253–256.
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