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Abstract

In 1990, motivated by applications in the social sciences, Thomas Schwartz made a conjecture about
tournaments which would have had numerous attractive consequences. In particular, it implied that
there is no tournament with a partition A,B of its vertex set, such that every transitive subset of A is
in the out-neighbour set of some vertex in B, and vice versa. But in fact there is such a tournament,
as we show in this paper, and so Schwartz’ conjecture is false. Our proof is non-constructive and
uses the probabilistic method.



1 Introduction

The goal of this paper is to disprove a popular conjecture of Schwartz [12], but before that we need
to introduce some terminology and notation. If G is a tournament, let V (G) and N−G (v) = N−(v)
denote respectively the set of vertices of G and the set of in-neighbours of vertex v ∈ V (G). Suppose
that φ is a function such that φ(H) is defined and satisfies φ(H) ⊆ V (H) for every non-null proper
subtournament H of G. We say a subset A ⊆ V (G) is φ-retentive if A 6= ∅ and φ(G|N−(a)) ⊆ A
for each a ∈ A.

Let G be the class of all non-null finite tournaments. A tournament solution is a function φ with
domain G, and with ∅ 6= φ(G) ⊆ V (G) for each G ∈ G. Let τ be the tournament solution defined
inductively as follows. Assume that τ(G) is defined for all non-null proper subtournaments of G.
Then τ(G) is the union of all minimal τ -retentive subsets of V (G). (We see that τ(G) is nonempty,
since V (G) is τ -retentive.) τ(G) is called the tournament equilibrium set.

In 1990, Thomas Schwartz [12] proposed the following conjecture.

1.1 (Schwartz’ conjecture.) In every non-null tournament there is a unique minimal τ -retentive
set.

In this paper, we give a counterexample to Schwartz’ conjecture (with about 10136 vertices).
Indeed, we give a series of weakenings of Schwartz’ conjecture, and disprove the weakest.

2 Background

Tournament solutions are of great interest in social choice theory, where tournaments are induced by
pairwise majority comparisons and various tournament solutions have been proposed in the literature
[11]. Schwartz—a political scientist—motivated τ using a well-defined cooperative recontracting
process.

Over the years, Schwartz’ conjecture has been extensively studied [6, 10, 11, 8, 2, 3]. For instance,
it is known that Schwartz’ conjecture is equivalent to τ having any one of several desirable properties
of tournament solutions, including monotonicity, independence of unchosen alternatives, and the
“strong superset property”. These equivalences were shown by induction on the tournament order
and imply that if Schwartz’ conjecture holds for all tournaments with at most n vertices, then τ has
all the above-mentioned properties in these tournaments.

A strengthening of Schwartz’ conjecture was disproved by Houy, who found a counterexample
with 11 vertices [8]. By means of an exhaustive computer analysis, this counterexample was later
shown to be of minimum cardinality [3]. The same analysis did not yield a counterexample to
Schwartz’ conjecture itself in all tournaments with less than 13 vertices and billions of random tour-
naments with up to 50 vertices. (Counterexamples to Houy’s strengthening were encountered quite
frequently during this random search.) Brandt et al. studied retentiveness for different underlying
tournament solutions and proved a weaker variant of Schwartz’ conjecture [4].

Recently, Brandt proposed a conjecture on tournaments and showed that it is implied by Schwartz’
conjecture [2]. Two weaker variants of this conjecture have been proved by Dutta [5] and Brandt,
respectively. The latter statement was shown by reducing it to a large, but finite, number of cases
that were checked using a computer. It is easy to see that Brandt’s conjecture implies the first
weakening we disprove (3.2) and is therefore also false.
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3 Results

A subset X of the vertex set of a tournament G is transitive if it can be ordered X = {x1, . . . , xn}
such that xixj is an edge for all i, j with 1 ≤ i < j ≤ n; and if so, x1 is the source of X. For a
tournament G, let β(G) be the set of all vertices v of G such that v is the source of some maximal
transitive subset of V (G). Then β is a tournament solution. (This is called the Banks set, after
Jeffrey S. Banks [1].)

We need the following lemma of Schwartz [12], and we give the proof for the reader’s convenience.

3.1 τ(G) ⊆ β(G), and every β-retentive subset of V (G) is τ -retentive, for every tournament G.

Proof. We prove the first assertion by induction on |V (G)|. Let x ∈ τ(G); we must show that
x ∈ β(G). If N−(x) = ∅, then x belongs to β(G) as required, so we may assume that N−(x) is
nonempty. Consequently τ(G|N−(x)) is nonempty; choose w ∈ τ(G|N−(x)). Let A be a minimal τ -
retentive set containing x. It follows that w ∈ A, and so A\{x} is nonempty. From the minimality of
A, it follows that A\{x} is not τ -retentive, and so there exists y ∈ A\{x} such that x ∈ τ(G|N−(y)).

From the inductive hypothesis, τ(G|N−(y)) ⊆ β(G|N−(y)), and so there is a maximal transitive
subset X0 of N−(y) with source x. Thus X0∪{y} is transitive; let X be a maximal transitive subset
of V (G) including X0 ∪ {y}. It follows from the maximality of X0 that no vertex of X \X0 belongs
to N−(y), and so every vertex in X \X0 different from y is an out-neighbour of y and hence of x.
Consequently x is the source of X, and so x ∈ β(G). This proves the first assertion.

For the second assertion, let A ⊆ V (G) be β-retentive, and let a ∈ A. From the first assertion,
τ(G|N−(a)) ⊆ β(G|N−(a)); and since A is β-retentive, β(G|N−(a)) ⊆ A. Thus τ(G|N−(a)) ⊆ A,
and so A is τ -retentive. This proves the second assertion, and so proves 3.1.

Our first weakening of 1.1 is:

3.2 (First weakening.) In every tournament G, every two β-retentive sets intersect.

Proof that 1.1 implies 3.2. Let A1, A2 be β-retentive subsets of V (G). By 3.1, A1, A2 are both
τ -retentive, and hence both include a minimal τ -retentive set. Since there is only one such set by
1.1, and it is nonempty, it follows that A1 ∩A2 6= ∅. This proves 3.2.

If T is a subset of V (G) where G is a tournament, we say that v ∈ V (G) \ T dominates T if
vt ∈ E(G) for every t ∈ T , and if no such a vertex v exists, we say that T is undominated in G.

3.3 (Second weakening.) Let (A,B) be a partition of the vertex set of a tournament G. Then
one of A,B includes a transitive subset which is undominated in G.

Proof that 3.2 implies 3.3. Assume that 3.2 holds, let G be a tournament and let (A,B) be
a partition of V (G). Take a second copy G′ of G on a disjoint vertex set, and let (A′, B′) be the
corresponding partition. Now make a tournament H from the disjoint union of G,G′ as follows; for
v ∈ V (G) and v′ ∈ V (G′), let v′v ∈ E(H) if either v ∈ A and v′ ∈ A′, or v ∈ B and v′ ∈ B′; and
otherwise let vv′ ∈ E(H).

We apply 3.2 to H, and deduce that one of V (G), V (G′) is not β-retentive in H, and from the
symmetry we may assume that V (G) is not β-retentive in H. Consequently, there exists v ∈ V (G),
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and a maximal transitive subset T of N−H (v), with source some u ∈ V (G′). From the symmetry
we may assume that v ∈ A. It follows that T ∩ V (G′) ⊆ A′, since every vertex of T ∩ V (G′) is an
in-neighbour of v. In particular, u ∈ A′. Since u is the source of T , similarly every vertex of T ∩V (G)
belongs to A. Let X = (T ∪ {v}) ∩ V (G). Suppose that some x ∈ V (G) \ X dominates X. Since
T ∩ V (G′) ⊆ A′, either xy ∈ E(H) for all y ∈ T ∩ V (G′), or yx ∈ E(H) for all y ∈ T ∩ V (G′), and
in either case T ∪ {x} is a transitive subset of N−H (v), contrary to the maximality of T . Thus X is
undominated in G. This proves 3.3.

Now, we give a counterexample to 3.3, which therefore provides a counterexample to all the
previous conjectures. The idea is somewhat related to a proof by Laffond and Laslier [9]. We need
the following lemma, due to Erdős and Moser [7] (logarithms are to base two), and we include a
proof, for the reader’s convenience.

3.4 For every integer n ≥ 2 there is a tournament with n vertices in which every transitive subset
has cardinality less than 1 + 2 log(n).

Proof. Let k be the smallest integer at least 1 + 2 log(n). Take a set V of n vertices, and for each
pair {u, v} of distinct members of V , make one of uv, vu an edge, independently with probability
1/2, forming a tournament G. Let Q denote the expected number of subsets of V of cardinality k
that are transitive in G. For every sequence x1, . . . , xk of k distinct members of V , the probability
that xixj is an edge for all i, j with 1 ≤ i < j ≤ k is 2−k(k−1)/2. Since there are fewer than nk such
sequences (because k > 1), it follows that

Q < nk2−k(k−1)/2 ≤ 1.

Consequently there is a positive probability that G has no transitive subset of cardinality k. This
proves the lemma.

Now for the counterexample. Let k be a positive even integer large enough that 2k/2 > k3 (for
instance, k = 30), and let n = 2k/2. By 3.4, there is a tournament G1 with n vertices, in which every
transitive subset has cardinality less than 1 + 2 log(n) = k + 1, and consequently at most k. Let
A = V (G1). For each transitive subset X ⊆ A, let vX be a new vertex, and let B be the set of all
these new vertices. So |B| ≤ nk, and therefore 2 log(|B|) ≤ 2k log(n) = k2.

By 3.4, there is a tournament G2 with vertex set B in which every transitive subset has cardinality
less than 1 + 2 log |B|, and hence at most k2. We construct a tournament G from the disjoint union
of G1 and G2 as follows. For each a ∈ A and each b ∈ B, let ba ∈ E(G) if a ∈ X, where X ⊆ A is
the transitive subset of A with b = vX , and let ab ∈ E(G) otherwise. We observe:

• Every transitive subset X of A is dominated in G; because vX ∈ B dominates X.

• Every transitive subset Y of B is dominated in G. To see this, note first that |Y | ≤ k2, and
since each vertex in Y has at most k out-neighbours in A, it follows that there are at most
k3 < n vertices in A that are adjacent from some vertex in Y . Consequently some vertex in A
dominates Y .

It follows that G,A,B do not satisfy 3.3.
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