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Abstract. The separation dimension of a graph G is the minimum positive inte-

ger d for which there is an embedding of G into Rd, such that every pair of dis-

joint edges are separated by some axis-parallel hyperplane. We prove a conjecture of

Alon et al. [SIAM J. Discrete Math. 2015] by showing that every graph with max-

imum degree ∆ has separation dimension less than 20∆, which is best possible up

to a constant factor. We also prove that graphs with separation dimension 3 have

bounded average degree and bounded chromatic number, partially resolving an open

problem by Alon et al. [J. Graph Theory 2018].

1. Introduction

This paper studies the separation dimension of graphs and its relationship with max-

imum and average degree. For a graph G, a function f : V (G)→ Rd is separating if for

all disjoint edges vw, xy ∈ E(G) there is an axis-parallel hyperplane that separates the

pair of points {f(v), f(w)} from the pair {f(x), f(y)}. The separation dimension of a

graph G is the minimum positive integer d for which there is a d-dimensional separating

function for G; see [1–5, 12, 16] for recent work on the separation dimension of graphs.

This topic can also be thought of more combinatorially. Edges e and f in a graph

G are separated in a linear ordering of V (G) if both endpoints of e appear before

both endpoints of f , or both endpoints of f appear before both endpoints of e. A

representation of G is a non-empty set of linear orderings of V (G). A representation

R of G is separating if every pair of disjoint edges in G are separated in at least one

ordering in R. It is easily seen that the separation dimension of G equals the minimum

size of a separating representation of G; see [1–4, 6].

A fundamental question is the relationship between separation dimension and maxi-

mum degree. Chandran et al. [6] proved that every graph with maximum degree ∆ has

separation dimension at most 2∆(dlog2 log2 ∆e + 3) + 1. Alon et al. [1] improved this

bound to 29 log∗(∆)∆, and conjectured that a stronger O(∆) bound should hold. We

prove this conjecture.
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2 SEPARATION DIMENSION AND DEGREE

Theorem 1. Every graph with maximum degree ∆ > 1 has separation dimension less

than 20∆.

This linear bound is best possible up to a constant factor, since Alon et al. [1] proved

that almost every ∆-regular graph has separation dimension at least ∆
2 . Theorem 1 is

proved in Section 3.

Section 4 of this paper considers the following natural extremal question, first posed

by Alon et al. [2]: What is the maximum average degree of an n-vertex graph with

separation dimension s? Every graph with separation dimension at most 2 is planar,

and thus has average degree less than 6. For s > 3, Alon et al. [2] proved the best

known upper bound on the average degree of O(logs−2 n), and asked whether graphs

with bounded separation dimension have bounded degeneracy (or equivalently, bounded

average degree). We answer the first open case of this problem.

Theorem 2. There is a constant c such that every graph with separation dimension 3

has average degree at most c.

2. A Colouring Lemma

This section proves a straightforward lemma that shows how to colour a graph so

that each vertex has few neighbours of each colour (Lemma 5). Several previous papers

have proved similar results [6, 9–11, 14, 15]. The proof depends on the following two

standard probabilistic tools. Let [k] := {1, 2, . . . , k}.

Lemma 3 (Lovász Local Lemma [8]). Let E1, . . . , En be events in a probability space,

each with probability at most p and mutually independent of all but at most D other

events. If 4pD 6 1 then with positive probability, none of E1, . . . , En occur.

Lemma 4 (Chernoff Bound [13]). Let X1, . . . , Xn be independent random variables,

where Xi = 1 with probability p and Xi = 0 with probability 1 − p. Let X :=
∑n

i=1Xi.

Then for δ > 0,

P(X > (1 + δ)pn) 6 e−δ
2pn/3.

Lemma 5. For all positive integers k and ∆, for every graph G with maximum degree

at most ∆, there is a partition V1, . . . , Vk of V (G) such that for every vertex v ∈ V (G)

and integer i ∈ [k],

|NG(v) ∩ Vi| < d :=
∆

k
+

√
3∆ log(4k∆2)

k
.

Proof. Independently and randomly colour each vertex with one of k colours. For each

vertex v ∈ V (G) and colour c, let Av,c be the event that at least d neighbours of v are

all assigned colour c. Each event is mutually independent of all but at most k∆2 other

events.

We now prove that P(Av,c) 6 (4k∆2)−1. Since P(Av,c) is increasing with deg(v), we

may assume that deg(v) = ∆. Say w1, . . . , w∆ are the neighbours of v. For i ∈ [∆],

let Xi := 1 if wi is coloured c, otherwise let Xi := 0. Then P(Xi) = p := 1
k . Let
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X :=
∑∆

i=1Xi. Then Av,c holds if and only if X > d. Let δ := dk
∆ −1, so d = (1 + δ)p∆.

Then P(Av,c) = P(X > d) = P(X > (1 + δ)p∆). Now

δ2p∆

3
=

1

3

(
dk

∆
− 1

)2

p∆ = log(4k∆2).

By Lemma 4 with n = ∆,

P(Av,c) 6 e
−δ2p∆/3 = (4k∆2)−1,

as claimed. By Lemma 3, with positive probability no event occurs, implying the desired

partition exists. �

3. Proof of Theorem 1

Our proof works by considering sets of orderings with stronger properties than sepa-

ration. We start with a lemma about complete graphs.

Lemma 6. Let G be the complete graph on n vertices including loops. Then for some

integer p 6 10 log n, there are linear orderings <1, . . . , <p of V (G), such that:

(1) every pair of disjoint edges e, f ∈ E(G) are separated in some <i, and

(2) for every vertex v ∈ V (G) and distinct vertices u,w ∈ V (G) \ {v}, for some i ∈ [p]

we have u <i v <i w or w <i v <i u.

Proof. Let p := b10 log nc. For i ∈ [p], let <i be a random linear ordering of V (G).

Let e and f be edges in G with no common endpoint. If neither e nor f are loops,

then the probability that e and f are separated in <i is 1
3 . If e is a loop and f is a

non-loop, then the probability that e and f are separated in <i is 2
3 . If both e and f

are loops, then they are always separated in <i. Thus the probability that e and f are

not separated in <i is at most 2
3 . Hence the probability that (1) fails for e and f is at

most (2
3)p.

Now consider a vertex v ∈ V (G) and distinct vertices u,w ∈ V (G) \ {v}. For each

i ∈ [p] the probability that u <i v <i w or w <i v <i u is 1
3 . Hence the probability (2)

fails for every i ∈ [p] is at most (2
3)p.

By the union bound, the probability that both (1) and (2) fail is at most
(|E(G)|

2

)
(2

3)p+

n
(
n−2

2

)
(2

3)p = (
(
n(n+1)/2

2

)
+n
(
n−2

2

)
)(2

3)p < n4(2
3)p < 1. Thus there exists linear orderings

<1, . . . , <p such that (1) and (2) hold. �

Note that we need Ω(log n) orderings in Lemma 6 because of (2): if p < log2(n−1)−1

then for any vertex v and any set of p orderings, there are distinct vertices x, y are on

the same side of v in each of the orderings.

The following definition is a key to the proof of Theorem 1. A representation <1

, . . . , <p of a graph G is strongly separating if:

(a) for all disjoint edges vw, xy ∈ E(G), for some ordering <i, we have v, w <i x, y or

x, y <i v, w, and

(b) for every edge vw ∈ E(G) and vertex x ∈ V (G) \ {v, w}, we have x <i v, w and

v, w <j x for some i, j ∈ [p].
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We define the strong separation dimension of a graph G to be the minimum number

of linear orderings in a strongly separating representation of G. Clearly the separation

dimension of a graph is at most its strong separation dimension, and it will be helpful

to work with the latter.

Lemma 7. Every graph G with maximum degree ∆ has strong separation dimension at

most the separation dimension of G plus 2∆ + 2.

Proof. Say G has separation dimension d. By Vizing’s Theorem, there is a partition

E1, . . . , E∆+1 of E(G) into matchings. Starting from a separating representation of G

in d dimensions, we now add two orderings <i and <′i for each i ∈ [∆ + 1]. Say Ei =

{v1w1, . . . , vnwn}. Let <i be v1, w1, . . . , vnwn followed by V (G) \ {v1, w1, . . . , vn, wn} in

any ordering. Let <′i be the reverse of <′i. Every edge vw of G is in some Ei. Since

v and w are consecutive in <i, for each vertex x ∈ V (G) \ {v, w}, we have v, w <i x

and x <′i v, w, or v, w <′i x and x <i v, w. Hence we have a strongly separating

representation of G with d+ 2∆ + 2 orderings in total. �

Lemma 8. Let G1, . . . , Gk be the connected components of a graph G. For a ∈ [k], let

pa be the strong separation dimension of Ga. Then G has strong separation dimension

at most max{p1, . . . , pk, 2}. Moreover, there is such a representation such that in each

ordering, V (G1) < V (G2) < · · · < V (Gk) or V (Gk) < V (Gk−1) < · · · < V (G1).

Proof. Let p := max{p1, . . . , pk, 2}. For a ∈ [k], let {<a1, . . . , <ap} be a strongly sep-

arating representation of Ga. For j ∈ [p − 1], let <j be the ordering of V (G) with

V (G1) <j · · · <j V (Gk), where V (Ga) is internally ordered according to <aj , for a ∈ [k].

Finally, let <p be the ordering of V (G) with V (Gk) <p · · · <p V (G1), where V (Ga) is

internally ordered according to <ap, for a ∈ [k]. Thus {<1, . . . , <p} is a representation of

G, which we now show is strongly separating. Consider disjoint edges vw, xy ∈ E(G).

If vw and xy are in the same component, then (a) holds by assumption. Otherwise,

vw and xy are in distinct components, implying that v, w <1 x, y or x, y <1 v, w, and

again (a) holds. Now consider an edge vw ∈ E(G) and vertex x ∈ V (G) \ {v, w}. If vw

and x are in the same component, then (b) holds by assumption. So we may assume

that vw ∈ E(Ga) and x ∈ V (Gb) for distinct a, b ∈ [k]. If a < b then v, w <1 x and

x <p v, w. If b < a then v, w <p x and x <1 v, w. Thus (b) holds, and {<1, . . . , <p} is

strongly separating. �

Note that every connected graph with at least three vertices has strong separation

dimension at least 2, so Lemma 8 implies that for every graph G with at least three

vertices in some component, the strong separation dimension of G equals the maximum

strong separation dimension of the components of G.

For a graph G and disjoint sets A,B ⊆ V (G), let G[A,B] be the bipartite subgraph

of G with vertex set A ∪B and edge set {vw ∈ E(G) : v ∈ A,w ∈ B}.

Lemma 9. Fix integers s, t, k > 2, where k is even. Let G be a graph, and let V1, . . . , Vk
be a partition of V (G), such that G[Vi] has strong separation dimension at most s for

each i ∈ [k], and G[Vi, Vj ] has strong separation dimension at most t for all distinct

i, j ∈ [k]. Then G has strong separation dimension at most 2s+ (k − 1)t+ 20 log k.
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Proof. Let G0 :=
⋃k
i=1G[Vi]. Let H be the complete graph with vertex set [k]. Let

E1, . . . , Ek−1 be a partition of E(H) into perfect matchings, which exists since k is even.

For i ∈ [k − 1], let Gi :=
⋃
ab∈Ei

G[Va, Vb]. Note that V (Gi) = V (G) for i ∈ [0, k − 1],

and that G = G0 ∪G1 ∪ · · · ∪Gk−1.

Since s, t > 2, by Lemma 8, G0 has strong separation dimension at most s, and Gi
has strong separation dimension at most t for each i ∈ [k − 1]. This gives s + (k − 1)t

orderings of V (G). Moreover, by Lemma 8, for each of the s orderings of G0, we have

V1 < · · · < Vk or Vk < · · · < V1. For each such ordering of G0 of the form V1 < · · · < Vk,

add the extra ordering Vk < · · · < V1 to the representation of G. And for each such

ordering of G0 of the form Vk < · · · < V1, add the extra ordering V1 < · · · < Vk to the

representation of G. In these extra orderings, each set Vi inherits its ordering from the

original. (So the extra ordering is not simply the reverse of the original.) This gives

2s+ (k − 1)t orderings of V (G).

For each i ∈ [k], let
−→
Vi be an arbitrary linear ordering of Vi. Let

←−
Vi be the reverse

ordering. Let H+ be the complete graph on vertex set [k] including loops. By Lemma 6,

for some p 6 10 log k, there is a representation {<1, . . . , <p} of H+ such that:

(1) each pair of disjoint edges e, f ∈ E(H+) are separated in some <i, and

(2) for every vertex v ∈ V (H+) and for all distinct vertices u,w ∈ V (H+) \ {v}, for

some i ∈ [p] we have u <i v <i w or w <i v <i u.

For each i ∈ [p], introduce two orderings <+
i and <−i of V (G) constructed from <i:

in the first replace each vertex i ∈ V (H+) by
−→
Vi , and in the second replace each vertex

i ∈ V (H+) by
←−
Vi . Together with the previous orderings, this gives a total of at most

2s+ (k − 1)t+ 20 log k orderings of V (G).

We now check that each pair of disjoint edges vw and xy in G are separated in some

ordering. Say v ∈ Vi, w ∈ Vj , x ∈ Va and y ∈ Vb.
If i = j and a = b, then vw and xy are both in G0, and are thus separated in some

ordering arising from G0. So we may assume that i 6= j or a 6= b. Without loss of

generality, i 6= j.

If {i, j} = {a, b} then ij ∈ E` for some ` ∈ [k − 1], implying vw and xy are both in

G`, and are thus separated in some ordering arising from G`. So we may assume that

{i, j} 6= {a, b}. Thus ij and ab are distinct edges of H+, where ab is possibly a loop.

If {i, j} ∩ {a, b} = ∅ then ij and ab are separated in some ordering <h arising from

H+, implying that vw and xy are also separated (in both <+
h and <−h ). So we may

assume that {i, j} ∩ {a, b} 6= ∅. Without loss of generality, i = a.

First suppose that a = b (= i). Then xy ∈ E(G0) and v ∈ V (G0). Thus for some

ordering <α of G0, we have v <α x, y. By construction, Vj <α Vi or Vi <α Vj . If

Vj <α Vi then w <α v <α x, y. Otherwise, Vi <α Vj . Then in the extra ordering

associated with <α, we have w < v < x, y. In both cases, vw and xy are separated.

So we may assume that a 6= b. Thus j 6= b, as otherwise {i, j} = {a, b}. By property

(2) above, for some r ∈ [p] we have j <r i <r b or b <r i <r j. Without loss of

generality, j <r i <r b. Since v < x in
−→
Vi or in

←−
Vi , in one of <+

r and <−r , we have

w < v < x < y, implying vw and xy are separated.
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It remains to show that for every edge vw ∈ E(G) and vertex x ∈ V (G) \ {v, w}, we

have x < v,w in some ordering and v, w < x in another ordering. Since vw ∈ E(Gi) for

some i ∈ [0, k − 1], and x ∈ V (Gi), this property holds by assumption. �

We now prove Theorem 1, which says that every graph with maximum degree ∆ has

separation dimension less than 20∆. Recall that Chandran et al. [6] proved the upper

bound of 2∆(dlog2 log2 ∆e+ 3) + 1, which is less than 20∆ if ∆ 6 217. So it suffices to

assume that ∆ > 217. In this case, to enable an inductive proof, we prove the following

strengthening.

Lemma 10. For ∆ > 217, every graph with maximum degree at most ∆ has strong

separation dimension at most 20∆(1−∆−1/5).

Proof. We proceed by induction on ∆. In the base case, suppose that 217 6 ∆ 6 232.

Let G be a graph with maximum degree ∆. By Lemma 7 and the result of Chandran

et al. [6] mentioned above, the strong separation dimension of G is at most

2∆(dlog2 log2 ∆e+ 4) + 3 = 18∆ + 3 6 20∆(1−∆−1/5).

So we may assume that ∆ > 232. Let G be a graph with maximum degree ∆. Let k

be the largest even integer at most ∆1/4. Let

d := (1 + k−1)
∆

k
.

By Lemma 5, there is a partition V1, . . . , Vk of V (G) such that for every vertex v ∈ V (G)

and integer i ∈ [k],

|NG(v) ∩ Vi| <
∆

k
+

√
3∆ log(4k∆2)

k
< d,

where the final inequality holds since k 6 ∆1/4 and ∆ > 232. Thus G[Vi] and G[Vi, Vj ]

have maximum degree at most d for all distinct i, j ∈ [k].

Now d > ∆
k > ∆3/4 > 224 and d < ∆. By induction, G[Vi] and G[Vi, Vj ] both

have strong separation dimension at most 20d(1 − d−1/5) for all distinct i, j ∈ [k].

Since 20d(1 − d−1/5) > 2, by Lemma 9, G has strong separation dimension at most

20(k+1)d(1−d−1/5)+20 log k, which is at most 20(k+2)d(1−d−1/5). All that remains

is to prove that

(k + 2)d(1− d−1/5) 6 ∆(1−∆−1/5). (1)

Suppose for the sake of contradiction that (1) does not hold. Substituting for d and

since k + 4 > (k + 2)(1 + k−1),

(k + 4)
∆

k
(1− d−1/5) > (k + 2)(1 + k−1)

∆

k
(1− d−1/5) > ∆(1−∆−1/5).

Thus

(1 + 4k−1)(1− d−1/5) > 1−∆−1/5.

Hence

4k−1 + ∆−1/5 > (1 + 4k−1)d−1/5 > d−1/5.
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Since k > 4
5∆1/4 and d < 3

2∆3/4,

5∆−1/4 + ∆−1/5 >

(
3

2
∆3/4

)−1/5

,

which is a contradiction since ∆ > 232. Hence (1) holds, which completes the proof. �

4. Proof of Theorem 2

This section shows that graphs with separation dimension 3 have bounded average

degree. Much of the proof works in any dimension, so we present it in general. We

include proofs of the following two folklore lemmas for completeness.

Lemma 11. Every graph with average degree at least 2d contains a subgraph with min-

imum degree at least d.

Proof. Deleting a vertex of degree less than d maintains the property that the average

degree is at least 2d. Thus, repeatedly deleting vertices of degree less than d produces

a subgraph with average degree at least 2d and minimum degree at least d. �

Lemma 12. Every graph with minimum degree at least 2d contains a bipartite spanning

subgraph with minimum degree at least d.

Proof. For a partition A,B of V (G), let e(A,B) be the number of edges between A and

B. Let A,B be a partition of V (G) maximising e(A,B). If some vertex v in A has

fewer than d neighbours in B, then v has more than d neighbours in A, implying that

e(A \ {v}, B ∪ {v}) > e(A,B), which contradicts the choice of A,B. Thus each vertex

in A has at least d neighbours in B, and by symmetry, every vertex in B has at least d

neighbours in A. The result follows. �

Let G be a bipartite graph with bipartition (A,B). A representation {<1, . . . , <d} of

G is consistent if for every edge vw ∈ E(G) with v ∈ A and w ∈ B, we have v <i w for

all i ∈ [d]. A representation {<1, . . . , <d} of G is A-homogeneous if there are integers

a1, . . . , ad ∈ {−1,+1}, such that for every vertex v ∈ A, there is a linear ordering <v of

NG(v), with the property that for i ∈ [d],

• if ai = 1 then NG(v) is ordered in <i according to <v, and

• if ai = −1 then NG(v) is ordered in <i according to <′v,

where <′v is the reverse of <v. The definition of B-homogeneous is analogous.

Lemma 13. Suppose that for some positive integers d and t, there is a graph G with

average degree at least 2d+2(2d+1t)2d−1
and separation dimension at most d. Then there

is a bipartite subgraph G′ of G with bipartition (A′, B′), with minimum degree at least

t, such that G′ has a d-dimensional consistent separating representation that is A′-

homogeneous or B′-homogeneous.

Proof. Let {<1, . . . , <d} be a separating representation of G. By Lemma 12, G contains

a bipartite spanning subgraph G1 with average degree at least 2d+1(2d+1t)2d−1
. Then

{<1, . . . , <d} is a separating representation of G1. Let (A1, B1) be the bipartition of

G1.
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For each edge vw ∈ E(G1) with v ∈ A1 and w ∈ B1, let f(vw) =

(f1(vw), . . . , fd(vw)), where fi(vw) := 1 if v <i w, and fi(vw) := −1 if w <i v (for

i ∈ [d]). Since f takes at most 2d values, there is a set E2 ⊆ E(G1) with f(vw) = f(xy)

for all vw, xy ∈ E2, and |E2| > |E(G1)|/2d. Let G2 be the spanning subgraph of G1

with edge set E2. Thus G2 has average degree at least 2(2d+1t)2d−1
. For i ∈ [d], if

fi(vw) = −1 for vw ∈ E2, then replace <i by <′i. Thus {<1, . . . , <d} is a consistent

separating representation of G2. This property is maintained for all subgraphs of G2.

By Lemma 11, G2 contains a subgraph G3 with minimum degree at least (2d+1t)2d−1
.

Let A3 := A2 ∩ V (G3) and B3 := B2 ∩ V (G3). Thus (A3, B3) is a bipartition of G3.

Without loss of generality, |A3| > |B3|.
For each vertex v ∈ A3, by the Erdős-Szekeres Theorem [7] applied d − 1 times,

there is a subset Mv of NG3(v) that is monotone with respect to <1 in each ordering

<2, . . . , <d, and

|Mv| > (degG3
(v))1/2d−1

> 2d+1t.

Let g(v) = (g2(v), . . . , gd(v)), where gi(v) := 1 if Mv is forward in <i, and gi(v) := −1 if

Mv is backward in <i, for i ∈ [2, d]. Since g takes at most 2d−1 values, there is a subset

A4 of A3 such that g(v) = g(x) for all v, x ∈ A4, and |A4| > |A3|/2d−1. Let a1 := 1 and

for i ∈ [2, d], let ai := gi(v) for v ∈ A4. For v ∈ A4, let <v be the ordering of Mv in

<1. Let B4 :=
⋃
v∈A4

Mv. Let G4 be the bipartite subgraph with bipartition (A4, B4),

where E(G4) := {vw : v ∈ A4, w ∈ Mv}. By construction, {<1, . . . , <d} is an A4-

homogeneous consistent separating representation of G4. This property is maintained

for all subgraphs of G4.

Note that every vertex in A4 has degree at least 2d+1t in G4, and that

|V (G4)| = |A4|+ |B4| 6 |A4|+ |B3| 6 |A4|+ |A3| 6 (1 + 2d−1)|A4| 6 2d|A4|.

Hence G4 has average degree

2|E(G4)|
|V (G4)|

>
2d+1t|A4|

2d|A4|
= 2t.

By Lemma 11, G4 contains a subgraph G5 with minimum degree at least t. Let

A5 := A4 ∩ V (G5). Then {<1, . . . , <d} is an A5-homogeneous consistent separating

representation of G5. �

We now prove Theorem 2.

Lemma 14. Every graph with separation dimension 3 has average degree less than 229.

Proof. Suppose for the sake of contradiction that there is a graph with separation dimen-

sion 3 and average degree at least 229 = 23+2(23+14)23−1
. By Lemma 13, without loss of

generality (possibly exchanging the roles of A and B), there is a bipartite graph G with

bipartition (A,B), with minimum degree at least 4, such that G has a 3-dimensional

A-homogeneous consistent separating representation {<1, <2, <3}. Thus there are in-

tegers a1, a2, a3 ∈ {−1,+1}, such that for every vertex v ∈ A, there is a linear ordering

<v of NG(v), with the property that for i ∈ [3],

• if ai = 1 then NG(v) is ordered in <i according to <v, and

• if ai = −1 then NG(v) is ordered in <i according to <′v.
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By symmetry (since we may reverse all orders <v), we may assume that at least two

of a1, a2, a3 are +1. Reordering leaves two cases: a1 = a2 = a3 = 1, or a1 = a2 = 1 and

a3 = −1.

Case 1. a1 = a2 = a3 = 1: Let v be a vertex in A. Let b, c be neighbours of v

with b <v c. Since a1 = a2 = a3 = 1, we have v <i b <i c for each i ∈ [3]. Let x be

a neighbour of b other than v (which exists since G has minimum degree at least 3).

Then vc and bx are separated in no ordering, which is a contradiction.

Case 2. a1 = a2 = 1 and a3 = −1: For each vertex v ∈ A, mark the rightmost edge

incident with v according to the ordering <v of NG(v). Since G has at least 2|V (G)|
edges and at most |V (G)| edges are marked, G contains a cycle C of unmarked edges.

As shown above, C is not a 4-cycle. So |C| > 6.

Let v be the leftmost vertex in C in <1. Let b and c be the neighbours of v in C.

Without loss of generality, b <v c. Since a1 = a2 = 1 and a3 = −1, we have that

v <1 b <1 c and v <2 b <2 c and v <3 c <3 b. Let w be the neighbour of b in C, such

that w 6= v. Note that v, w ∈ A and b, c ∈ B. Since b is between v and c in <1 and <2,

the edges vc and wb are not separated in <1 and <2. Thus vc and wb are separated in

<3, implying v <3 c <3 w <3 b by consistency. By the choice of v and by consistency,

v <1 w <1 b <1 c. And by consistency, v <2 w <2 b or w <2 v <2 b.

Let b′ be the rightmost neighbour of w in <w. Thus wb′ is marked. Since w is between

v and b in <1 and <3, the edges vb and wb′ are not separated in <1 and <3. Thus vb

and wb′ are separated in <2. Since a2 = +1 and b′ is the rightmost neighbour of w in

<w, we have b <2 b
′. Thus v <2 w <2 b <2 b

′ or w <2 v <2 b <2 b
′. In both cases, vb

and wb′ are not separated in <2, which is a contradiction. �

Alon et al. [2] state that it is open whether graphs with bounded separation dimension

have bounded chromatic number. Since separation dimension is non-decreasing under

taking subgraphs, Lemma 14 implies:

Corollary 15. Every graph with separation dimension 3 is 229-colourable.

Recall that Alon et al. [2] proved that every n-vertex graph with separation dimension

s > 2 has average degree O(logs−2 n). Their proof is by induction on s. Applying

Theorem 2 in the base case leads to the following result:

Corollary 16. For s > 3, every n-vertex graph with separation dimension s has average

degree O(logs−3 n).

For each s > 4, it remains open whether graphs of separation dimension at most s

satisfy analogues of Lemma 14 and Corollary 15.
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[9] Zoltán Füredi and Jeff Kahn. On the dimensions of ordered sets of bounded

degree. Order, 3(1):15–20, 1986. doi: 10.1007/BF00403406. MR: 850394.

[10] Hugh Hind, Michael Molloy, and Bruce Reed. Colouring a graph frugally.

Combinatorica, 17(4):469–482, 1997. doi: 10.1007/BF01195001. MR: 1645682.

[11] Ross J. Kang and Tobias Müller. Frugal, acyclic and star colourings of graphs.

Discrete Appl. Math., 159(16):1806–1814, 2011. doi: 10.1016/j.dam.2010.05.008.

[12] Sarah J. Loeb and Douglas B. West. Fractional and circular

separation dimension of graphs. European J. Combin., 69:19–35, 2018.

doi: 10.1016/j.ejc.2017.09.001.

[13] Michael Mitzenmacher and Eli Upfal. Probability and computing. Cambridge

University Press, 2005. doi: 10.1017/CBO9780511813603.

[14] Michael Molloy and Bruce Reed. Asymptotically optimal frugal colouring.

J. Combin. Theory Ser. B, 100(2):226–246, 2010. doi: 10.1016/j.jctb.2009.07.002.

[15] Alex Scott and David R. Wood. Better bounds for poset dimension and

boxicity, 2018. arXiv: 1804.03271.

[16] Emile Ziedan, Deepak Rajendraprasad, Rogers Mathew, Mar-

tin Charles Golumbic, and Jérémie Dusart. The induced separation di-

mension of a graph. Algorithmica, 80(10):2834–2848, 2018. doi: 10.1007/s00453-

017-0353-x.

http://doi.org/10.1007/978-3-319-12340-0_7
http://doi.org/10.1007/978-3-319-12340-0_7
http://www.ams.org/mathscinet-getitem?mr=MR3295860
http://doi.org/10.1007/s00453-015-0050-6
http://doi.org/10.1007/s00453-015-0050-6
http://www.ams.org/mathscinet-getitem?mr=MR3492062
https://dmtcs.episciences.org/4031/
http://doi.org/10.1016/j.disc.2011.06.005
http://www.ams.org/mathscinet-getitem?mr=MR2832135
http://www.numdam.org/item?id=CM_1935__2__463_0
http://www.numdam.org/item?id=CM_1935__2__463_0
https://www.renyi.hu/~p_erdos/1975-34.pdf
https://www.renyi.hu/~p_erdos/1975-34.pdf
http://www.ams.org/mathscinet-getitem?mr=MR0382050
http://doi.org/10.1007/BF00403406
http://www.ams.org/mathscinet-getitem?mr=MR850394
http://doi.org/10.1007/BF01195001
http://www.ams.org/mathscinet-getitem?mr=MR1645682
http://doi.org/10.1016/j.dam.2010.05.008
http://doi.org/10.1016/j.ejc.2017.09.001
http://doi.org/10.1017/CBO9780511813603
http://doi.org/10.1016/j.jctb.2009.07.002
http://arxiv.org/abs/1804.03271
http://doi.org/10.1007/s00453-017-0353-x
http://doi.org/10.1007/s00453-017-0353-x

	1. Introduction
	2. A Colouring Lemma
	3. Proof of MaxDegree
	4. Proof of AvgDeg
	References

