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Abstract. Extending results of Christie and Irving, we examine the
action of reversals and transpositions on finite strings over an alphabet
of size k. We show that determining reversal, transposition or signed
reversal distance between two strings over a finite alphabet is NP-hard,
while for ‘dense’ instances we give a polynomial-time approximation
scheme. We also give a number of extremal results, as well as investi-
gating the distance between random strings and the problem of sorting
a string over a finite alphabet.

Introduction

As a result of interest in both modelling large-scale genome changes and
fundamental questions on the combinatorics of sequences, rearrangement
operations, including transpositions, reversals and signed reversals, have
recently been the focus of intense combinatorial, algorithmic and complexity-
theoretic study. These superficially similar sequence operations turn out to
have significantly different properties. Most previous work has concentrated
on applying sequence operations to permutations. However, the analysis
of operations on strings over finite alphabets was raised by Pevzner and
Waterman [26] and investigated by Christie and Irving [9]. The study of
sequence operations on strings may also be of some practical interest; for a
recent example, see, for instance, Skaletesky et al [27] on the roles played
by palindromes and repetitive segments in the Y-chromosome.

The operations under consideration all act on strings α = a1 · · · an of
length |α| = n. The reversal Rij , where i < j, reverses the substring ai · · · aj ,
so that Rij(a1 · · · an) = a1 · · · ai−1ajaj−1 · · · aiaj+1 · · · an. The transposition
Tijk, where i < j < k, exchanges the substrings ai · · · aj and aj+1 · · · ak,
so Tijk(a1 · · · an) = a1 · · · ai−1aj+1 · · · akai · · · ajak+1 · · · an. The pancake
flip or prefix reversal Pi reverses the substring a1 · · · ai, so Pi(a1 · · · an) =
aiai−1 · · · a1ai+1 · · · an. Signed reversals work on strings where each char-
acter has an orientation: we use a to denote the opposite orientation of
a, and note that a = a. The signed reversal Sij is the same as Rij ,
except that the reversed elements change orientation: Sij(a1, . . . , an) =
a1 · · · ai−1aj aj−1 · · · aiaj+1 · · · an.
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As the collections of reversals, transpositions and pancake flips each gen-
erate the symmetric group Sn and are closed under taking inverses, they
therefore induce metrics drev, dtr, dpf on Sn, where dX(α, β) is the minimum
length of a sequence of operations of type X transforming α to β. Signed
reversals generate the larger hyperoctahedral group of signed permutations
and define a metric drev. All these metrics can be defined for strings over
finite alphabets, provided we restrict ourselves to compatible pairs, namely
pairs of strings that have the same number of occurrences of each symbol.

Extremal investigation of sequence operations has concentrated on the
diameter of the symmetric (or, for signed reversals, hyperoctahedral) group.
Bafna and Pevzner [2] showed that the reversal diameter of Sn is n−1, while
Meidanis, Walter, and Dias [25] showed that the signed reversal diameter of
the group of signed permutations is at most n+1. For transpositions, Bafna
and Pevzner [3] showed that the diameter lies between n/2 + 1 and 3n/4.
Eriksson et al [10] improved the upper bound to b(2n− 2)/9c for n ≥ 9. For
pancake flips, Gates and Papadimitriou [14] showed that the diameter lies
between 17n/16 and and (5n+5)/3; Heydari and Sudborough [19] improved
the lower bound to 15n/14. Christie and Irving [9] investigated these prob-
lems for the set of binary strings: they showed that the maximum reversal
and transposition distances between two compatible binary strings of length
n is bn/2c, and noted that there does not appear to be an easy generalization
of these results to strings over alphabets of size k > 2. In section 1, we prove
such a generalization for reversal distance between strings over alphabets of
size k; furthermore, we determine the diameter of every equivalence class of
strings (under the relation of compatibility).

In section 2, we consider the distance between random strings. Two
randomly chosen permutations are typically reversal distance Θ(n) apart [2].
We show that strings from a k-letter alphabet with fixed fractions of letters
of each type are typically at reversal distance Θ(n/ log n). Our arguments
extend to any other class of string operations with a bounded number of
cutpoints at each step and a linear bound on diameter in the permutation
case, such as transpositions or pancake flips.

The complexity of calculating the distance between two permutation de-
pends on the type of operations used. Caprara [7] showed that determining
reversal distance is NP-hard, while Berman and Karpinski [6] (see also [22])
showed that the problem is MAX-SNP hard. The signed reversal distance,
by contrast, can be found in polynomial time: algorithms were given by
Hannenhalli and Pevzner [17], Berman and Hannenhalli [4] and Kaplan,
Shamir and Tarjan [21]. The complexity of finding transposition distance
between permutations remains open. For binary strings, Christie and Irv-
ing [9] showed that reversal distance remains NP-hard for binary strings,
but left open the difficulty of finding transposition distance. In section 3,
we show that signed reversal distance and transposition distance are both
NP-hard for binary strings (and hence for strings over any finite alphabet).
This is the first hardness result for transposition distance; together with the
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difficulty of signed reversal distance, it suggests that these problems may be
harder over finite alphabets.

In section 4, we turn to the problem of approximating the distance be-
tween pairs of strings. Karpinski [22] showed that it is NP-hard to approx-
imate the reversal distance between two permutations to within any factor
less than 1237/1236. A number of authors have given approximation al-
gorithms: Kececioglu and Sankoff [23] gave a 2-approximation algorithm,
Bafna and Pevzner [2] gave a 1.75-approximation algorithm, Christie [8]
gave a 1.5-approximation algorithm and recently Berman, Hannenhalli and
Karpinski [5] gave a 1.375-approximation algorithm. Bafna and Pevzner [3]
have also given a 1.5-approximation algorithm for transposition distance.
For strings over a finite alphabet, Pevzner and Waterman ([26], Problem 4)
raised the problem of finding an approximation algorithm for determining
reversal distance. It follows from Karpinski’s results [22] and the results
of section 2 that it is NP-hard to approximate reversal distance between
strings to within any factor better than 1237/1236. However, we show that
for dense instances (pairs of strings at distance Ω(n)) there is a polynomial
time approximation scheme. Similar results hold for approximating signed
reversal, prefix reversal or transposition distance between two strings, and
we conjecture that analogous results should hold for calculating the distance
between permutations.

For permutations, a sorting algorithm suffices to determine the distance
between an arbitrary pair of strings—just relabel the entries of both so that
one string is sorted. For strings over a finite alphabet this equivalence fails,
and sorting is strictly a special case of finding distance. In Section 5, we show
that the number of reversals required to sort a ternary string can be found in
polynomial time. We also give some elementary bounds on reversal sorting
over an arbitrary finite alphabet; these restrict any instance of sorting to a
finite range of values. We conjecture that, for fixed k, these problems can
be solved for k-ary alphabets in polynomial time.

Notation. Our alphabet will generally be the set [k] = {1, 2, . . . , k}. We
consider strings over this alphabet, elements α ∈ [k]∗. We write |α| for the
length of a string. We write L(a1, . . . , ak) for the set of strings of length n
with exactly ai occurrences of i for each i. (Note that the set of permutations
can be thought of as L(1, 1, . . . , 1).)

1. Reversal Diameter for Finite Alphabets

Our approach to finding the reversal diameter of L(a1, . . . , ak) is straight-
forward: we present an algorithm that turns one element of L(a1, . . . , ak)
into any other in at most the desired number of reversals, and we also present
a pair of elements of L(a1, . . . , ak) that are provably at least the desired num-
ber of reversals apart. In order to prove the lower bound, we introduce an
invariant of strings, tilt, which is linear in a certain sense and which cannot
be changed very much by a single reversal. Bafna and Pevzner [2] looked at
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Figure 1. A typical alternating square.

properties of a difference graph to prove lower bounds on reversal distance
between permutations, and Christie and Irving [9] gave algorithmic upper
bounds on the reversal distance between pairs of binary strings. However,
both the graph we use to compute tilt and the algorithm we give for our
upper bound are different from earlier work.

Given a graph G with vertex set V ⊂ Z+ and an edge-weight function
w :
(
V
2

)
→ Z, define the tilt of G to be

t(G) =
∑

i odd, j even

w({i, j})εij , where εij =

{
1 i < j,

−1 i > j.

Tilt is linear, in the following sense: when G and H are weighted graphs on
the same vertex set G, let G + H denote the weighted graph on V whose
edge weight function is the sum of those of G and H. Then

t(G+H) = t(G) + t(H).

An alternating square C on vertices abcd is the weighted graph obtained
from the closed walk abcda by giving the edges ab and cd weight 1 and the
edges bc and da weight −1 (when the edges are not distinct, the weights are
summed; however, we exclude loops).

Lemma 1. If C is an alternating square, then |t(C)| ≤ 2.

Proof. Label C as shown in Figure 1. We argue by contradiction, first
assuming that t(C) ≤ −3; the other case can be argued symmetrically.

When t(C) ≤ −3, at least 3 edges must contribute −1 to t(C). Without
loss of generality let them be ab, bc, and cd. When a is even,

• b > a and b is odd, hence
• c > b and c is even, hence
• d > c and d is odd.

Thus the edge da contributes +1 and t(C) = −2. A similar argument applies
when a is odd. �

Why is this relevant? Given a string α = α1 · · ·αn ∈ [k]n, define the
associated weighted graph G(α) to have vertex set [k] and edge weights

w({i, j}) = |{l : {αl, αl+1} = {i, j}}|
That is, w(e) counts the number of times the edge e is used, in either
direction, by the walk α. We ignore loops, however. When the reversal Rij
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is applied to α, the transitions αi−1αi and αjαj+1 are replaced by αi−1αj
and αiαj+1, while all other transitions remain unchanged. Thus

G(Rij(α)) = G(α) + C,

where C is an alternating square on vertices αiαj+1αjαi−1. It follows that
if β is obtained from α by a sequence of d reversals then

G(β) = G(α) + C1 + C2 + · · ·+ Cd,

where C1, . . . , Cd are alternating squares. Linearity of tilt and Lemma 1
now yield the following.

Lemma 2. When α, β ∈ L(a1, . . . , ak),

drev (α, β) ≥ 1

2

∣∣t (G(α)−G(β)
)∣∣ .

We use this to determine the diameter of L(a1, . . . , ak).

Theorem 3. The reversal diameter of L(a1, . . . , ak) ⊆ [k]n is n−maxi ai.

Proof. Without loss of generality, we assume a1 ≥ a2 ≥ · · · ≥ ak. For the
upper bound, we give a procedure for successively modifying two strings
α = α1 · · ·αn and β = β1 · · ·βk in L(a1, . . . , ak) until both are the same.
Because reversals are involutions on [k]n, we can produce a sequence of the
same total length carrying α to β.

Let α(0) = α and β(0) = β. Given α(i) and β(i), let j be the smallest index

such that α
(i)
j 6= β

(i)
j .

• If β
(i)
j 6= 1, pick a j′ > j such that α

(i)
j′ = β

(i)
j . Let α(i+1) = Rj,j′(α

(i))

and let β(i+1) = β(i).

• If β
(i)
j = 1 (and thus α

(i)
j 6= 1), pick a j′ > j such that β

(i)
j′ = α

(i)
j .

Let β(i+1) = Rj,j′(β
(i)) and let α(i+1) = α(i).

For each i, let γ(i) be the initial segment on which α(i) and β(i) agree. Note

that |γ(i)| is strictly increasing in i, and that furthermore |{j : γ
(i)
j 6= 1}| is

strictly increasing in i. This process must therefore stop after at most

|{j : α
(0)
j 6= 1}| = n− a1

steps.
For the lower bound, we give two strings α, β ∈ L(a1, . . . , ak) at distance

at least n − a1. We actually apply Lemma 2 to α′ = 0α(k + 1) and β′ =
0β(k + 1); since any sequence of reversals taking α to β also takes α′ to β′,
drev (α, β) ≥ drev (α′, β′).

When k is odd, take

α′ = 0(21)a21a1−a2 · · · (k − 1 k − 2)ak−1(k − 2)ak−2−ak−1kak(k + 1)

and

β′ = 01a1(32)a32a2−a3 · · · (k k − 1)ak(k − 1)ak−1−ak(k + 1)
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(a)

0 1 2 3 4 k−2 k−1 k k+1

s s s s s s s s sp p p 1

1 1 1

2a2−1 2a4−1 2ak−1−1

(b)

0 1 2 3 4 5 k−1 k k+1

s s s s s s s s sp p p1

1 1 1

2a3−1 2a5−1 2ak−1

Figure 2. Multiplicities of edges joining vertices of opposite
parity in (a) G(α′) and (b) G(β′) (when k is odd).

The edges joining vertices of opposite parity determine tilt; these are shown
with their multiplicities in Figure 2 (recall that both ij and ji substrings
contribute to w({i, j})). As all relevant edges in G(α′) increase from odd to
even and all relevant edges in G(β′) increase from even to odd,

t
(
G(α′)−G(β′)

)
= (2a2 − 1) + 1 + (2a4 − 1) + 1 + · · ·+ (2ak−1 − 1) + 1

+ 1 + (2a3 − 1) + 1 + (2a5 − 1) + · · ·+ 1 + (2ak − 1)

= 2

k∑
i=2

ai = 2(n− a1).

Lemma 2 now gives the desired lower bound on drev (α, β).
When k is even, the strings

0(21)a21a1−a2 · · · (k k − 1)ak(k − 1)ak−1−ak(k + 1)

01a1(32)a32a2−a3 · · · (k − 1 k − 2)ak−1(k − 2)ak−2−ak−1kak(k + 1)

yield the same bound. �

Remark 1. As we noted earlier, permutations are simply L(1, 1, . . . , 1). In
this case, our argument gives a new proof that the reversal diameter of Sn is
n− 1. If the symbols appearing in α and β are relabeled so that β is taken
to 123 · · ·n, then α is taken to 315274 · · · (with ending depending on the
parity of n). Bafna and Pevzner [2] showed that this permutation and its
inverse are the only permutations at distance n− 1 from the identity.

We do not have an analogue of Theorem 3 for transpositions.

Problem 1. What is the transposition diameter of L(a1, . . . , ak)?

There are similar problems for signed reversals, prefix reversals, etc.
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2. Distance between random strings

The diameter of Sn is Θ(n) for each of the families of transformations
we are considering: reversals [24], transpositions [3, 10], pancake flips [14].
The distance between randomly chosen permutations can quickly be seen
to be Θ(n) with high probability, since each family has a bounded number
of cuts per transformation and two random permutations have only about
Poisson(1) adjacencies in common.

For strings taken from a finite alphabet with a positive fraction of the
string devoted to each letter, we have shown above that the diameter un-
der reversals is linear. Cutpoint arguments clearly imply the same for the
other families of operations. In this section we show that the distance be-
tween random strings σ1, σ2 in the same component of [k]n is typically much
smaller: only Θ(n/ log n). First, both σ1 and σ2 are partitioned into sub-
strings of length approximately c log n. With high probability, most of the
resulting pieces appear about the same number of times in σ1 and σ2. For
each family of operations considered, these substrings can be arranged and
any remaining letters aligned in O(n/ log n) operations. Furthermore, with
high probability σ1 and σ2 have no common substrings of length C log n,
where C > c, and thus at least n/(C log n) cuts must be made.

Most of this section examines the anatomy of pairs of random strings.
Our conclusions about distances between typical pairs can be drawn for any
collection of operations with boundedly many cutpoints per operation.

Let p = (p1, . . . , pk) be a rational probability vector satisfying p1 ≥ p2 ≥
· · · ≥ pk and let hi = − log pi. For α = α1 · · ·αm ∈ [k]∗, let h(α) =

∑m
i=1 hαi

be the entropy of α. We also set H = H(p) =
∑

i∈[k] pihi, the entropy of p.

Given a c > 0, define the c-threshold set, Ac, to consist of all words
α = α1 . . . αm ∈ [k]∗ such that h(α) ≥ c log n, but h(α1 . . . αm′) < c log n for
m′ < m. (Much of the notation in this section conceals dependence on n.)

The following are immediate from definitions.

(1) For α ∈ Ac, c log n ≤ h(α) < c log n+ hk.

(2) For α ∈ Ac,
c log n

hk
≤ |α| ≤

⌈
c log n

h1

⌉
.

(3) nc ≤ |Ac| <
nc

pk
.

We also note that

(4)
∑
α∈Ac

e−h(α) = 1.

This simply states that for the random process α1α2 . . . , in which the αi are
chosen independently according to p, the stopping time

T = min{m : h(α1α2 . . . αm) ≥ c log n}
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has Pr(T <∞) = 1.
The next lemma will be useful as we decompose strings into short pieces.

Lemma 4. Let Lc =
∑

α∈Ac |α|e
−h(α) be the expected value of the length of

a random α ∈ Ac determined by successive i.i.d. choices of letters according
to p. Then

Lc =
c log n

H
(1 + o (1)) .

Proof. Consider characters α1, α2, . . . chosen independently from [k] accord-
ing to p. For each i, E[hαi ] = H; let σ2 = Var[hαi ].

Let α− = α1 · · ·αm− and α+ = α1 · · ·αm+ be the initial strings of lengths

m− =
⌈
c logn
H − (log n)2/3

⌉
and m+ =

⌈
c logn
H + (log n)2/3

⌉
, respectively, and

let α = α1 . . . α|α| ∈ Ac. The definition of Ac and Chebyshev’s inequality
now give

Pr
[
|α| ≤ m−

]
= Pr

[
h(α−) ≥ c log n

]
= Pr

[
h(X−)−Hm− > H(log n)2/3 +O(1)

]
(5)

≤ σ2m−

(H(log n)2/3 +O(1))2
= O((log n)−1/3).

Similarly,

Pr
[
|α| > m+

]
= Pr

[
h(X+) < c log n

]
= Pr

[
h(X+)−Hm+ < −H(log n)2/3 +O(1)

]
(6)

≤ σ2m+

(H(log n)2/3 +O(1))2
= O((log n)−1/3).

Since equations (2), (5), and (6) show that |α| is within O((log n)2/3) of

c log n/H with probability at least 1 − O((log n)−1/3) and is always within
a bounded factor of c log n we have:

Ln =
(

1−O((log n)−1/3)
)(c log n

H
+O((log n)2/3)

)
+O

(
log n

(log n)1/3

)
=

c log n

H
(1 + o(1)) .

�

In what follows, we always let n→∞ in such a way that p1n, . . . , pkn are
all integral.

Theorem 5. Fix ε > 0. When σ1 and σ2 are chosen independently and
uniformly from L(p1n, . . . , pkn), then, with probability approaching 1 as n→
∞, σ1 and σ2 can be broken into identical collections of at most (1+ε)

(
Hn
logn

)
substrings.
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Proof. We first consider two strings, ρ1 and ρ2, each consisting of n letters
chosen independently from [k] according to p. We show that ρ1 and ρ2
can be broken into words of approximately equal probability in such a way
that both strings have approximately equal numbers of each type of word.
We then modify ρ1 and ρ2 slightly to obtain σ1 and σ2, each uniformly
distributed in L(a1, . . . , ak); as these modifications do not affect very many
pieces, all discrepancies can be broken into singletons.

Fix a δ ∈ (0, 1) such that 1
1−δ < 1 + ε, and call α ∈ [k]∗ substantial when

α ∈ A1−δ. Each ρj , j = 1, 2, can be broken uniquely into disjoint substantial
words, starting from the left and proceeding down the string. We call those

words βj1, β
j
2, . . . . [We can regard each ρj as the initial segment of length n

from an infinite string chosen according to p, and we extract the βji from

this infinite string. Thus βji is defined for all i.] Let

N =
n

L1−δ
−
√
n.

We claim that, with high probability, each ρj contains at least N substantial
words, while the first N substantial words of each ρj cover at least N −√
n(log n)2 characters. Chebyshev’s inequality, together with equation (2)

give

Pr
[
|βj1|+ · · ·+ |β

j
N | > n

]
≤ Pr

[
|βj1|+ · · ·+ |β

j
N | −NL1−δ > L1−δ

√
n
]

≤ N(O((log n)2))

nL2
1−δ

= O((log n)−1) = o(1)

and

Pr
[
|βj1|+ . . .+ |βjN | < n−

√
n(log n)2

]
≤ Pr

[
|βj1|+ · · ·+ |β

j
N | −NL1−δ < −

√
n(log n)2(1 + o(1))

]
≤ O(N(log n)2)

n(log n)4
= O((log n)−3) = o(1).

For each α ∈ A1−δ, let Nα,j be the number of pieces of type α among the
first N substantial words of ρj . We use the following Chernoff-type inequal-
ity (see Janson,  Luczak, and Ruciński [20], p. 26): if X ∼ binomial(n, p),
then for t > 0,

Pr[|X − EX| > t] ≤ 2 exp

(
− t2

np+ t
3

)
.
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Since Nα,j is binomial(N, e−h(α)),

Pr[|Nα,j − E(Nα,j)| ≥ nδ/2 log n]

≤ 2 exp

− nδ(log n)2

2
(
Hn(1+o(1))
(1−δ) logn

(
1

n1−δ

)
+ nδ/2 logn

3

)


= 2 exp
(
−Ω

(
(log n)3

))
= o

(
1

n1−δ

)
.

Now sum over α ∈ A1−δ and j = 1, 2. Equation (3) implies

Pr

[
max
α,i
|Nα,i − E(Nα,i)| < nδ/2 log n

]
→ 1 as n→∞.

Thus, we can with high probability match up all except

nδ/2 log n|A1−δ| = O
(
n1−δ/2 log n

)
of the first N substantial words in ρ1 with (distinct) counterparts among
the first N substantial words of ρ2.

We now modify ρ1 and ρ2 to obtain uniformly distributed elements σ1
and σ2 of L(a1, . . . , ak). For i ∈ [k], let Ni,j denote the number of i′s in ρj .
Since Ni,j is a binomial(n, pi) random variable, Chebyshev gives

Pr
[
|Ni,j − pin| >

√
n log n

]
≤ pi(1− pi)n

(log n)2n
= O((log n)−2),

so

Pr

[
max
i,j
|Ni,j − pin| <

√
n log n

]
→ 1 as n→∞.

To generate σ1 and σ2, we must reallocate some sites containing overrepre-
sented characters to currently underrepresented ones. Take as many sites
as necessary uniformly from each overrepresented letter, and fill the en-
tire collection of sites thus selected with an assignment of the appropriate
multiset of characters uniformly chosen from the possible assignments. With
high probability, we need only change O(

√
n log n) characters—and thus will

break at most that many of the substantial-word matches we built between
ρ1 and ρ2.

Now break all unmatched substantial words (including those past position
N that were never considered, those among the firstN that we tried to match
but failed, and those whose matches were broken by character modifications)
in both σ1 and σ2 into single characters. Let N∗ be the resulting number of
fragments in each string. With high probability as n→∞,

N∗ = N +O
(√

n(log n)2 + n1−δ/2(log n)2 +
√
n(log n)2

)
=

Hn

(1− δ) log n
(1 + o(1)) ≤ (1 + ε)Hn,

for n sufficiently large. �
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Theorem 6. Fix δ > 0. Choose σ1 and σ2 independently and uniformly
from L(p1n, . . . , pkn). For i = 1, 2, let Si be the multiset of all substrings of
σi that belong to A1+δ. Then

Pr[|S1 ∩ S2| ≥ n1−δ(log n)]→ 0 as n→∞.

Proof. For α ∈ [k]∗, let qα be the probability that α occurs as an initial
substring of a string σ chosen uniformly from L(p1n, . . . , pkn). We can
generate such a σ by sampling without replacement from a bag containing
pin copies of i. From this it is easy to see that, for c fixed and α ∈ Ac,

(7) qα ≤
|α|∏
i=1

(
pαi

(
n

n− |α|

))
= e−h(α)(1 + o(1)) ≤ n−c(1 + o(1)).

[The o(1) estimate follows from equation (3).] Thus the probability that α
appears as a substring of σ starting at any given position is also at most
n−c(1 + o(1)).

Since there are only n − O(log n) possible starting positions in σ1 for a
substring in of weight at least 1 + δ, we trivially have |S1| ≤ n. Similarly,
there are n − O(log n) possible starting positions in σ2 for a substring in
A1+δ. Let N be the number of locations i for which the corresponding
substring is an element of S1; clearly N ≥ |S1 ∩ S2|. By equation (7), for
any given S1,

E[N |S1] ≤ n
∑
α∈S1

qα ≤ n1−δ(1 + o(1)),

so
E[N ] ≤ n1−δ(1 + o(1)),

and Markov’s inequality gives

(8) Pr[N > n1−δ log n] = o(1).

�

The following theorem combines the previous results to give bounds on
the distance between random strings.

Theorem 7. Fix ε > 0, and choose σ1 and σ2 uniformly and independently
from L(p1n . . . , pkn). Then each of the following statements holds with prob-
ability approaching 1 as n→∞:

a) 1−ε
2

(
Hn
logn

)
≤ drev (σ1, σ2) ≤ (1 + ε)

(
Hn
logn

)
.

b) 1−ε
3

(
Hn
logn

)
≤ dtr (σ1, σ2) ≤ 2(1+ε)

3

(
Hn
logn

)
.

c) (1− ε)
(
Hn
logn

)
≤ dpf (σ1, σ2) ≤ 2(1 + ε)

(
Hn
logn

)
.

Proof. For the upper bounds, we need only apply results on the diameter of
Sn under the various operations to the decomposition of σ1 and σ2 into at
most N∗ = (1 + ε) Hn

logn identical pieces that Theorem 5 provides with high

probability. Meidanis, Walter, and Dias [24] show that the signed reversal
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diameter of SN∗ is at most N∗ + 1, while Eriksson et al [10] bounded the
transposition diameter of SN∗ by b(2N∗ − 2)/3c for N∗ > 9, and Gates and
Papadimitriou [14] showed that the signed pancake-flipping diameter of SN∗
is at most 2N∗ + 3.

The lower bounds are nearly as simple. Fix a δ > 0 such that 1−ε < 1
1+δ .

We call a word α ∈ A1+δ unusual, while a word α ∈ A3 is termed implausible.
Equations (3) and (7) guarantee that

Pr[σ1 and σ2 share an implausible substring] ≤ n2
(
n3

pk

)(
(1 + o(1))

n3

)2

= O(n−1).

Equation (2) implies that, with probability 1 − O(1/n), all common sub-

strings of σ1 and σ2 have length at most
⌈
3 logn
h1

⌉
. If we (temporarily) define

the weight of a word α ∈ [k]∗ to be h(α)/ log n then we can compute as fol-
lows. By Theorem 6, there are, with high probability, fewer than n1−δ log n
sites in each string to start common unusual substrings. Equation (8) now

implies that with high probability at most n1−δ(log n)
⌈
3 logn
h1

⌉
= o(n) char-

acters are contained in common substrings of weight greater than 1 + δ
(and their combined weight is also o(n)). Any sequence of operations taking
σ1 to σ2 must cut the remaining characters into words of weight less than
1+δ. The entire string, without the unusual common substrings, has weight
(H − o(1))n/ log n, and so there must be at least (1 + o(1)) Hn

(1+δ) logn cuts.

A single reversal makes at most two cuts, a single transposition makes at
most three cuts, and a single pancake flip makes at most one cut, giving the
results above. �

We conjecture that, in each case, the expected value of d(σ1, σ2)/(n/ log n)
tends to a constant; we also leave open the further problem of determining
this constant.

3. Complexity

The complexity of sorting permutations by reversals or transpositions has
been extensively studied. Kececioglu and Sankoff [23] conjectured that sort-
ing reversals by permutations (MIN-SBR) is NP-hard, and this was proved
by Caprara [7]. Berman and Karpinski [6] showed that sorting by reversals
is MAX-SNP hard; Karpinski [22] showed that for any ε > 0 it is NP-
hard to approximate reversal distance within a factor 1237/1236 − ε. A
number of authors have given approximation algorithms: Kececioglu and
Sankoff [23] gave a 2-approximation algorithm, Bafna and Pevzner [2] gave
a 1.75-approximation algorithm, Christie [8] gave a 1.5-approximation al-
gorithm and recently Berman, Hannenhalli and Karpinski [5] gave a 1.375-
approximation algorithm.
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The problem of sorting signed permutations by reversals turns out to be
polynomial time, as was shown by Hannenhalli and Pevzner [17]. Faster al-
gorithms were found by Berman and Hannenhalli [4] and by Kaplan, Shamir
and Tarjan [21].

The complexity of sorting by transpositions remains unknown, although
Bafna and Pevzner [3] have given a 1.5-approximation algorithm.

Christie and Irving [9] considered the complexity of reversal distance and
transposition distance for strings over finite alphabets. They showed that
reversal distance is NP-hard for binary strings, although a binary string can
be sorted in polynomial time. They also showed that binary strings can be
sorted by transpositions in polynomial time, but left open the complexity of
transposition distance.

We begin this section by giving another proof of Christie and Irving’s [9]
result that reversal distance is NP-hard for strings over binary alphabets;
this of course implies that determining reversal distance is NP-hard for any
finite alphabet. Using a similar argument we also show that, surprisingly,
signed reversal distance is also NP-hard for signed strings over finite alpha-
bets. We then prove that sorting by transpositions is NP-hard for binary
strings.

Theorem 8. Reversal distance is NP-hard for binary strings.

Proof. We give a reduction from sorting permutations by reversals. Given
a permutation π = π(1) · · ·π(n), we define the string λ(π) by

λ(π) = (10π(1)1)2n · · · (10π(n)1)2n.

We call the substrings (10π(i)1)2n the blocks of λ(π). Each block consists

of 2n subblocks, each of the form 10π(i)1. Clearly, λ(π) can be constructed
from π in polynomial time.

Given permutations π1 and π2, it is easy to see that

drev (λ(π1), λ(π2)) ≤ drev (π1, π2) ,

since a sequence of reversals mapping π1 to π2 maps to a sequence of reversals
on the corresponding sequence of blocks (10π1(j)1)2n in λ(π1) (note that each
block is invariant under reversals).

Now let t = drev (λ(π1), λ(π2)). If t < drev (π1, π2), then consider a se-
quence of t reversals taking λ(π1) to λ(π2). Since the reversal diameter of

Sn is less than n we have t < n. Now consider a block (10π1(i)1)2n. This
contains 2n subblocks: since the t reversals cut the string in at most 2t < 2n
places, there must be one subblock Ii that does not get cut. It follows that
Ii must get mapped to a segment of the block (10π1(i)1)2n = (10π2(i

′)1)2n,
where i′ = π−12 π1(i).

Thus the segments I1, . . . , In, which occur in order in λ(π1), are re-
arranged by the sequence of t reversals to occur in λ(π2) in the order
Iπ−1

1 π2(1)
, . . . , Iπ−1

1 π2(n)
. Considering the action of the reversals just on the

segments I1, . . . , In implies that there exists a sequence of t reversals which
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rearranges id to π−11 π2. Since drev
(
id, π−11 π2)

)
= drev (π1, π2), this is a con-

tradiction.
We therefore have drev (λ(π1), λ(π2)) = drev (π1, π2), and so we have a

reduction from reversal distance for permutations to reversal distance for
binary strings. �

As noted above, signed permutations can be sorted in polynomial time [17,
4, 21]. By contrast, over finite alphabets, the problem of finding signed
reversal distance is NP-hard.

Theorem 9. Signed reversal distance is NP-hard for binary strings.

Proof. As in the previous theorem, we reduce from MIN-SBR. Given a per-
mutation π = π(1) · · ·π(n), we encode π by

λ(π) = (10π(1)11 0
π(1)

1)2n · · · (10π(n)11 0
π(n)

1)2n.

Since each block is invariant under reversal,

drev (λ(π1), λ(π2)) ≤ drev (π1, π2) .

Arguing as before, we deduce that

drev (λ(π1), λ(π2)) = drev (π1, π2) .

Thus signed reversal distance is NP-hard. �

As we have seen, signed reversal distance is NP-hard for strings with
repeated symbols. We show now that the difficulty remains even if we allow
only two occurrences of each symbol.

Theorem 10. Signed reversal distance is NP-hard for strings in which there
is at most one positive and one negative occurrence of each symbol.

Proof. We prove this by reduction from MIN-SBR. We map each instance
π(1) · · ·π(n) to the string S = π(1)π(1) · · ·π(n)π(n). The signed distance
from this to T = 11 · · ·nn is clearly at most the reversal distance from
π(1) · · ·π(n) to 1 · · ·n (note that ii is reversal-invariant). On the other
hand, any sequence of signed reversals taking S to T yields a corresponding
sequence of reversals taking π(1) · · ·π(n) to 1 · · ·n by restricting attention
to the (unsigned) action of the signed reversals on the elements of S that
initially have positive orientation and then ignoring signs. The two dis-
tances are therefore equal and so it is NP-hard to determine signed reversal
distance. �

We remark that if only O(log n/ log logn) repeats in total are allowed
then signed reversal distance is solvable in polynomial time, since we can
systematically examine all possible pairings between symbols of the same
type; on the other hand, it is NP-hard to determine signed reversal distance
with Ω(nε) repeats, since we can encode instances of MIN-SBR of size nε

using the methods of Theorem 10 and then pad out with additional variables
occurring once each and in the same order at the end of each string.
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Theorem 11. Transposition distance is NP-hard for binary strings.

Proof. We prove the result first for strings over the alphabet {0, 1, 2, 3} by
reduction from the NP-hard problem 3-PARTITION [13], which we quote
here:

INSTANCE: Positive integers n and N and positive integers a1, . . . , a3n,
with N/4 < ai < N/2 for every i.

QUESTION: Is there a partition of the ai into n (multi)sets of size 3,
each summing to N .

The problem 3-PARTITION is strongly NP-hard [13]: that is, there is a
polynomial p(n) such that it is still NP-hard when all the ai are at most
p(n). Our reduction is polynomially bounded for instances of this type.

Given an instance of 3-PARTITION with weights a1, . . . , a3n bounded by
p(n), consider the strings

S = 2n+130a1130a213 · · · 30a3n13

and

T = (20N13)n233n+1.

Note that if this instance of 3-PARTITION is solvable then dtr (S, T ) ≤ 3n,
since we can successively generate each segment 20N132 of T by moving
three intervals 0ai1 between an adjacent pair of 2s. On the other hand,
suppose that dtr (S, T ) ≤ 3n. Note that, among the adjacencies in S, the
sequence must destroy n adjacencies of form 22, 3n adjacencies of form
30, 3n adjacencies of form 13 and 2n adjacencies of form 01, a total of 9n
adjacencies. It follows that there must be exactly 3n transpositions in the
sequence, and furthermore that no transposition cuts an adjacency 00. The
blocks 0ai of zeros in S are therefore preserved in T and so constitute a
solution to 3-partition.

We have shown that dtr (S, T ) = 3n if and only if our instance of 3-
PARTITION has a solution. Since the lengths of S and T are bounded by
a polynomial in n, it follows that it is NP-hard to determine transposition
distance over alphabets of size 4.

To show that transposition distance is NP-hard for binary strings, we use
an encoding similar to that in Theorem 8. Given a string ε = ε1 · · · εn with
ε ∈ {0, 1, 2, 3}, we encode it as

λ(ε) = (10ε1+11)3n · · · (10εn+11)3n.

For strings ε and ε′ of length n, since dtr (ε, ε′) ≤ n−1 and each transposition
cuts the string in three places, arguing as before we find that

dtr
(
λ(ε), λ(ε′)

)
= dtr

(
ε, ε′
)
.

Composing these two reductions, both of which are polynomially computable
for instances whose components are of polynomially bounded magnitude,
sends instances of 3-PARTITION to instances of transposition distance for
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binary strings. We conclude that transposition distance for binary strings
is NP-hard. �

Let us note that the reductions from MIN-SBR employed in Theorems 8
and 9 are distance-preserving. Since MIN-SBR is NP-hard to approximate
to within any factor better than 1237/1236 [22] it follows that reversal dis-
tance and signed reversal distance for binary strings are also NP-hard to
approximate to within better than 1237/1236. We conjecture that, for some
ε > 0, it is NP-hard to approximate transposition distance for binary strings
to within a factor better than 1 + ε.

4. An Approximation Algorithm for Dense Instances

For many NP-hard approximation problems, it is also NP-hard to find an
approximate solution that is correct to within a small multiplicative factor.
However, it is sometimes easier to handle dense cases of these problems. For
instance, although there is a an algorithm that approximates Max Cut to
within a factor 1.138 [15], it is NP-hard to approximate to within a factor
better than 17/16 [18]. On the other hand, for dense instances of Max Cut
(instances G with Ω(|G|2) edges or minimum degree Ω(|G|)), it is possible to
find a polynomial-time approximation scheme [11, 12]. Similar results exist
for a number of other NP-hard problems (see, for instance, [1, 22]).

Our aim in this section is to describe a polynomial-time approximation
scheme for dense instances of reversal distance for strings over a finite alpha-
bet. This requires us to define a notion of ‘density’ for instances of reversal
distance: for c > 0, we say that an instance (σ, τ) with |σ| = |τ | = n is
c-dense if drev (σ, τ) ≥ cn. We show below that, for any fixed k and any
ε > 0, there is a linear time algorithm that approximates reversal distance
between k-ary strings of length n to within an additive error εn. It follows
that, for fixed k, and any c > 0 and ε > 0, there is a linear time algorithm
that approximates reversal distance of c-dense instances to within a factor
1 + ε.

We first prove a simple lemma concerning the effect of deletions on reversal
distance.

Lemma 12. Suppose that σ and τ are compatible strings and that σ′ and
τ ′ are compatible strings obtained by deleting m elements from each string.
Then

|drev
(
σ′, τ ′

)
− drev (σ, τ) | ≤ 2m.

Proof. To see that

drev (σ, τ) ≤ drev
(
σ′, τ ′

)
+ 2m,

consider an optimal sequence of reversals taking σ′ to τ ′. These same re-
versals can be applied to σ and τ , always placing cuts that occur in sites
where letters have been deleted to the left of those letters. The two-reversal
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sequence shown below suffices to move an individual letter to a new location
without changing the rest of the string:

A|xB|C → A|B|xC → ABxC.

Thus we can correct the reinserted letters with at most 2m additional re-
versals. A similar argument shows that

drev
(
σ′, τ ′

)
≤ drev (σ, τ) + 2m.

�

The existence of a polynomial-time approximation scheme follows imme-
diately from the following theorem.

Theorem 13. For each fixed k and every ε > 0 there is a linear time algo-
rithm that approximates reversal distance between k-ary strings of length n
to within an additive error of εn and outputs a sequence of reversals achiev-
ing this bound.

Proof of theorem. The main idea of the proof is to break up the problem
instance into “good” subinstances of a finite number of types, each of which
can be sorted optimally. The subinstances can then be recombined at small
cost.

Given ε < 1/10, let K = d100/εe and let α1, . . . , αL be an enumeration of
the L = kK k-ary strings of length K. Let f : [L] → Rk count the number
of each digit present in the strings αi: thus (f(i))j is equal to the number

of times j occurs in αi. We now build a mapping f̃ : RL → Rk by setting
f̃(a1, . . . , aL) =

∑L
i=1 aif(i). Thus if we break a string X into segments of

length K, obtaining ai segments of type αi for each i, then f̃(a1, . . . , aL)
counts the number of occurrences of each character in the original string X.

For d ≥ 1, we write Ud for the unit simplex in Rd given by the convex hull
of the origin and the d standard unit basis vectors. Let D = {x1, . . . , xM} ⊆
Uk satisfy the following two conditions:

• D is an ε/4-net in Uk. That is, every point in Uk is distance less
than ε/4 from some xi ∈ D.
• All the coordinates of each xi ∈ D are rational.

For i = 1, . . . ,M , let Xi = f−1(xi) be the affine subspace in RL that maps
to xi and let Ei be an ε/4K-net in Xi∩UL, where we choose Ei so that each
point has all coordinates rational.

By deleting at most (ε/4)n elements from the string σ, we obtain a string
σ′ of length n′ < n such that, for some i, σ′ has (xi)jn

′ occurrences of
the digit j for 1 ≤ j ≤ k. Delete the same collection of characters from τ
to obtain τ ′. Then σ′ and τ ′ are compatible strings; furthermore, we may
assume that both σ′ and τ ′ have length a multiple of K.

Now break each of σ′ and τ ′ into segments of length K. Deleting at most
εn′/4K segments from each of σ′ and τ ′, we may assume that we have strings
σ′′ and τ ′′, each broken into n′′ ≥ (1 − ε)n′/K segments of length K such
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that σ′′ has n′′aj copies of αj and τ ′′ has n′′bj copies of αj for each j, where a
and b both belong to Ei. By the definition of Ei, σ

′′ and τ ′′ are compatible.
Furthermore, by Lemma 12, |drev (σ′′, τ ′′)− drev (σ, τ) | < εn/2.

It is therefore sufficient to solve the following problem to within an addi-
tive constant εn:

• INPUT: Two elements a and b of Ei and two compatible strings σ
and τ such that

– |σ| = |τ | = n, where K|n.
– When broken into segments of length K, σ falls into ain/K

copies of Si for each i.
– When broken into words of length K, τ falls into bin/K copies

of Si for each i.
• OUPUT: An optimal sequence of reversals taking σ to τ .

This breaks up into a constant number of separate problems, one for
each choice of a, b ∈ Ei. We show that each of these problems has a good
approximation algorithm.

Fix i and let a, b ∈ Ei. Let n0 be an integer such that all entries of n0a
and n0b are integers. Note that we can rearrange the n/K segments of σ and
τ into any order with at most 4n/K ≤ εn/25 reversals. We can therefore
assume that the segments of σ and τ are in any order we choose, with cost
at most εn/25.

For j ≥ 1, let Aj be the collection of strings of length n0jK constructed
from n0jal copies of αl for each l, in any order; similarly, let Bj be the set
of strings with n0jbl copies of αl for each l, again in any order. Let

dj = min{drev (α, β) : α ∈ Aj , b ∈ Bj}.

Clearly, for j, j′ ≥ 1,

(9) dj+j′ ≤ dj + dj′ ,

since strings from Aj and Aj′ can be concatenated to form strings in Aj+j′ .
Thus dj is subadditive and therefore dj/j tends to a limit r∞. Let j0 be large

enough so that |dj/j − r∞| ≤ ε/4 for j ≥ j0, and let α(0) ∈ Aj0 , β(0) ∈ Bj0
be strings with drev

(
α(0), β(0)

)
= dj0 ≤ j0r∞ + εj0/4.

Now for m ≥ 1, given strings α ∈ Am and β ∈ Bm, we can rearrange
α in blocks of size K to give α′ with bm/j0c copies of α(0) and at most
a constant number of additional segments; similarly we can rearrange β
to get β′ with bm/j0c copies of β(0) and at most a constant number of
additional segments. Each of these rearrangements takes at most n/K ≤
εn/100 reversals. Furthermore,

drev
(
α′, β′

)
≤
⌊
m

j0

⌋
drev

(
α(0), β(0)

)
+O(1) =

mdj0
j0

+O(1),
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and we can write down an explicit sequence of reversals taking α to β in
this time. Finally, note that

drev (α, β) ≥ mr∞ ≥
mdj0
j0
− εm

4
≥ mdj0

j0
− εn

K
,

so our approximation is correct to within εn. �

The following corollary is an immediate consequence of the theorem.

Corollary 14. For every fixed k and c > 0, there is a polynomial-time
approximation scheme for c-dense instances of reversal distance for k-ary
strings.

Note that a similar argument gives a polynomial-time approximation
scheme for dense instances of transposition distance over finite alphabets.
The same approach also works for prefix reversals, except that (9) is replaced
by

dj+j′ ≤ dj + dj′ +O(1),

as we work on the concatenation AB by working first on A, then reversing
the entire string and working on B. This implies that dj/j approaches some
limit r∞ (for instance, as an easy corollary of a result of Hammersley [16]),
and the rest of the argument goes through with minor modification.

Given these results for strings over finite alphabets, it is natural to ask
what happens for permutations. Recall that for permutations, it suffices
to consider MIN-SBR, the problem of sorting, for which each instance is a
single permutation. We say that a permutation σ of length n is c-dense if
there are at least cn integers i with 1 ≤ i < n such that |σ(i)−σ(i+1)| > 1.
It follows that c-dense strings necessarily require Ω(n) reversals to sort. We
conjecture that dense permutations exhibit the same behavior as dense pairs
of strings.

Conjecture 1. For every c > 0, there is a polynomial-time approximation
scheme for c-dense instances of sorting permutations by reversals.

We also conjecture that similar statements hold for sorting permutations
by prefix reversals and sorting permutations by transpositions.

5. Sorting strings over finite alphabets

Any algorithm for determining the number of reversals necessary to sort a
permutation suffices to determine the reversal distance between an arbitrary
pair of permutations: the distance between π1 and π2 is the same as that
between π1π

−1
2 and id. For strings from a finite alphabet, there is no such

correspondence. There is, however, some hope that this special case of the
distance problem might be easier than the full one. Indeed, Christie and
Irving [9] show that the number of reversals required to sort a binary string
σ is one less than the number of 0-blocks in the string 0σ, which can of
course easily be determined in polynomial time. (An i-block is a maximal
non-empty substring consisting entirely of copies of the character i.) We give
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below a similarly simple criterion for determining the number of reversals
required to sort a ternary string, along with some elementary bounds over
an arbitrary finite alphabet.

For the remainder of this section, we generally prepend a 0 and append
a k − 1 to all strings in {0, 1, . . . , k − 1}∗. These added characters are not
allowed to move, but are included when we count blocks. We also generally
replace each i-block with a single copy of the character i in example strings.
The string resulting from applying both operations to σ is called the standard
form of σ. Note that the number of reversals required to sort the standard
form of σ is identical to the number required to sort σ.

We call a reversal optimal if it reduces the number of blocks by 2. Every
optimal reversal is of the form . . . a|b . . . a|b . . . . Conversely, whenever the
string contains a repeated transition—that is, some substring containing two
distinct characters occurs more than twice in the string—an optimal reversal
is possible.

It will be convenient to categorize transitions between pairs of consec-
utive characters by the unordered pair of characters involved. There are
then three types of transitions: 01/10, 02/20, and 12/21. For example,
01212101202 contains three 01/10 transitions, two 02/20 transitions, and
five 12/21 transitions.

Define a 02-block to be a maximal substring consisting only of 0’s and 2’s
and containing at least one of each. Call a 02-block odd if it contains an
odd number of blocks of 0’s and 2’s; otherwise, call it even.

For example, the standard form of the string 0122000002222112111020 is
012021210202, which has two 02-blocks; the first is odd and the second is
even.

Lemma 15. Let σ be a ternary string whose standard form has b blocks.
If b is odd (even), then σ has an even (odd) number of 02/20 transitions,
while the numbers of 01/10 and 12/21 transitions are both odd (even).

Proof. Consider the standard form of σ to be a walk on the vertices {0, 1, 2}.
Since the walk begins at 0 and ends at 2, the vertices 0 and 2 have odd
degree, while vertex 1 has even degree. Thus the numbers of 01/10 and
12/21 transitions are of the same parity, which is opposite to that of both
the number of 02/20 transitions and the total number of transitions. �

We say that a string σ satisfies the matching odd block condition if σ has
at least one 02-block, all 02-blocks of S are odd and all 02-blocks of S have
the same initial character.

Theorem 16. Let σ be a ternary string containing all 3 possible characters
whose standard form has b blocks. Then the minimal number of reversals re-
quired to sort σ is

⌈
b−3
2

⌉
, unless σ satisfies the matching odd block condition,

in which case sorting σ requires
⌈
b−3
2

⌉
+ 1 reversals.



REVERSALS AND TRANSPOSITIONS OVER FINITE ALPHABETS 21

Proof. We note first that each reversal can reduce the number of blocks by at
most 2. Thus

⌈
b−3
2

⌉
is necessarily a lower bound for the number of reversals

required to sort σ.
When b is even, Lemma 15 ensures that σ does not satisfy the matching

odd block condition. It is not difficult to sort directly in this case. As
long as there are repeated transitions, perform optimal reversals—which do
not change the parity of the block number. Since there are only 6 possible
transitions over the 3-letter alphabet, the resulting string σ′ has at most 6
transitions. Let b′ be the number of blocks in σ′. As 3 ≤ b′ ≤ 7 and b′ is
even, it is true that b′ = 4 or b′ = 6. The only possible structures for b′ are
shown below, along with an optimal reversal sorting of each:

0|10|2→ 0012,

0|21|2→ 0122,

0|10|212→ 001|21|2→ 001122,

0|1210|2→ 001|21|2→ 001122,

0|210|12→ 001|21|2→ 001122.

Hence we can sort σ in b−b′
2 +

⌈
b′−3
2

⌉
=
⌈
b−3
2

⌉
reversals, matching the ele-

mentary lower bound.
Now assume b is odd, but σ does not satisfy the matching odd block

condition. We proceed in order through each of the following steps.

• Use optimal reversals internal to single 02-blocks to reduce any 02-
blocks with 4 or more blocks to either 2 or 3 sub-blocks:

· · · 0|20|2 · · · → · · · 0022 · · · .

These reversals do not change the parities of the 02-blocks. After
this stage, all remaining 02 blocks have one of the following forms:
02, 20, 202, or 020.
• Because σ did not originally satisfy the matching odd block condition

and we have not changed the parities or types of any 02-blocks, either
there are odd 02-blocks of both types or there are even 02-blocks. In
the case that there are odd 02-blocks with different initial characters,
we reduce them via an optimal reversal to two even 02-blocks:

· · · 02|0 · · · 2|02 · · · → · · · 022 · · · 002 · · ·

After this step, we may assume that there are even 02-blocks present.
• An even 02-block and an odd 02-block can be reduced with an opti-

mal reversal to a single even 02-block:

· · · 2|02 · · · 2|0 · · · → · · · 22 · · · 200 · · ·

or

· · · 20|2 · · · 0|2 · · · → · · · 200 · · · 22 · · · .
We repeat this step until all remaining odd 02-blocks are eliminated.



22 A.J. RADCLIFFE, A.D. SCOTT, AND E.L. WILMER

• As long as there are at least three even 02-blocks, some pair must
match and an optimal reversal can eliminate both.
• We now have at most two even 02-blocks remaining. By Lemma 15,

the number of even 02-blocks must be even. If the last two match,
they can be eliminated in a single optimal reversal. If not, we are in
one of the cases

0 · · · 02 · · · 20 · · · 2 or 0 · · · 20 · · · 02 · · · 2.

In the first case, the final 2-block must be preceded by a 1-block
(since we have eliminated all other 02 transitions); in the second, the
initial 0-block must be followed by a 1-block. Once we fill in those
and the 1-blocks that must border the even 02-blocks, it becomes
clear that for either case there is an optimal reversal that reverses one
of the even 02-blocks, after which both 02-blocks can be eliminated.

0 · · · 02 · · · 1|201 · · · 1|2 or 0|1 · · · 120|1 · · · 02 · · · 2.

Once all 02/20-transitions have been eliminated, there are only 01/10- and
12/21-transitions. By Lemma 15, there is an odd number of each. Apply
optimal reversals until the number of each is reduced to one. Since the string
starts with 0 and ends with 2, the remaining transitions must be 01 and 12,
and the string is sorted.

Finally, assume that σ satisfies the matching odd block condition. An
easy case analysis shows that any string resulting from the application of an
optimal reversal to σ also satisfies the matching odd block condition, and so
cannot be completely sorted. Thus at least one non-optimal reversal must
be used when sorting σ, and the number of reversals required to do so is
strictly greater than b−3

2 .
In order to sort σ, first apply optimal reversals until a string σ′ contain-

ing no repeated transitions is obtained and let b′ be the number of blocks
of σ′. We know that the string σ′ still satisfies the matching odd block
condition and thus is not sorted, so 4 ≤ b′ ≤ 7. We also know the number
of 02/20 transitions is even, so by Lemma 15 the numbers of 01/10 and
12/21 transitions are both odd, and b′ = 7 is impossible. Thus, b′ = 5. The
only possible types of 5-block strings are shown below, each with an optimal
reversal sorting:

0|120|2→ 00|21|2→ 00122,

0|20|12→ 00|21|2→ 00122.

We have sorted σ in
⌈
b−5
2

⌉
+ 2 =

⌈
b−3
2

⌉
+ 1 reversals. �

Remark 2. In the b odd case, naive choices of optimal reversals can get
one into trouble. For instance, the string 021021202 does not satisfy the
matching odd block condition and so can be sorted in 3 reversals. Applying
the optimal reversal 0[210]21202 results in 001221202, which does satisfy the
matching odd block condition—and thus itself requires 3 reversals.
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What about strings from larger alphabets? We can combine earlier obser-
vations to determine the number of reversals required to sort a string from
a k-ary alphabet up to a finite error (whose magnitude depends on k).

Theorem 17. Let σ be a k-ary string whose standard form contains all k
letters and has b blocks, and let t be the number of reversals required to sort
σ. Then ⌈

b− k
2

⌉
≤ t ≤

⌈
b− k

2

⌉
+
k(k − 1)

4
+ 1.

Proof. The lower bound is clear; each reversal can reduce the number of
blocks by at most 2. For the upper bound, we first use optimal reversals to
reduce to a string σ′ with r blocks and no repeated transitions; r must have
the same parity as b. By Theorem 3, σ′ can be sorted in at most r −

⌈
r
k

⌉
steps. We’ve shown that

t ≤ b− r
2

+

⌈
r − k

2

⌉
+

(
r −

⌈ r
k

⌉
−
⌈
r − k

2

⌉)
≤
⌈
b− k

2

⌉
+

(
1

2
− 1

k

)
r +

k

2
.

Now substitute r ≤
(
k
2

)
+ 1 to obtain the desired inequality. �

Conjecture 2. For each fixed k, the number of reversals required to sort
k-ary strings can be determined in time polynomial in string length.

It also seems plausible that there are polynomial-time algorithms for de-
termining the number of operations required to sort k-ary strings using
transpositions or pancake flips.
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