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Abstract

An odd hole in a graph is a induced cycle with odd length greater than 3. In an earlier paper (with
Sophie Spirkl), solving a longstanding open problem, we gave a polynomial-time algorithm to test
if a graph has an odd hole. We subsequently showed that, for every t, there is a polynomial-time
algorithm to test whether a graph contains an odd hole of length at least t. In this paper, we give
an algorithm that finds a shortest odd hole, if one exists.



1 Introduction

All graphs in this paper are finite and have no loops or parallel edges. A hole of G is an induced
subgraph of G that is a cycle of length at least four, and an odd hole is a hole of odd length. An
antihole of G is an induced subgraph whose complement graph is a hole.

The class of graphs that have no odd holes and no odd antiholes has been heavily studied since
the 1960s. Indeed, the “strong perfect graph conjecture” of Claude Berge [1] stated that if a graph
and its complement both have no odd holes, then its chromatic number equals its clique number.
Berge’s conjecture was open for many years, until it was proved by two of us, with Robertson and
Thomas [5], in the early 2000s. The corresponding algorithmic question, of finding a polynomial-time
algorithm to test if a graph is perfect, was settled around the same time: two of us, with Cornuéjols,
Liu and Vuškovič [4], gave a polynomial-time algorithm to test if a graph has an odd hole or odd
antihole, and so test for perfection.

Excluding both odd holes and odd antiholes has strong structural consequences. However, if we
just exclude odd holes, then the resulting class of graphs appears to be (in some sense) much less
well-structured. It was only recently that two of us [9] proved that if a graph has no odd holes then
its chromatic number is bounded by a function of its clique number, resolving an old conjecture of
Gyárfás [8]. The complexity of recognizing graphs with no odd holes was also open for some time.
While the algorithm of [4] could test for the presence of an odd hole or antihole in polynomial time,
we were unable to separate the test for odd holes from the test for odd antiholes, and the complexity
of testing for an odd hole remained open. Indeed, there was reason to suspect that a polynomial-
time algorithm might not exist, as Bienstock [2, 3] showed that testing if a graph has an odd hole
containing a given vertex is NP-complete. Surprisingly, the problem was recently resolved in the
positive: with Sophie Spirkl [6], we gave a polynomial-time algorithm to test if a graph has an odd
hole.

For graphs that do contain odd holes, it is natural to ask what we can determine about their
lengths. For example, what can be said about the shortest and longest odd holes in a graph?

It is easy to see that finding a longest odd hole is NP-hard, by reduction from Hamiltonian Path
with a specified start and end vertex (the idea is to subdivide every edge once and add an odd path
between the chosen start and end vertices x and y: a long xy path in the original graph corresponds
to a long odd hole in the new graph). On the positive side, in an earlier paper [7] extending the
methods of [6], we gave for every constant ` a polynomial-time algorithm to test whether a graph G
contains an odd hole of length at least `. Its running time is a polynomial in |G| with degree Θ(`)
(we denote by |G| the number of vertices of a graph G.)

In this paper, we consider the problem of finding a shortest odd hole. Building on our earlier
work with Sophie Spirkl [6], we give an algorithm to find a shortest odd hole, if there is one. Thus,
the main result of the paper is:

1.1 There is an algorithm with the following specifications:

Input: A graph G.

Output: Determines whether G has an odd hole, and if so finds the minimum length of an odd hole.

Running time: O(|G|14).
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We have not tried hard to reduce the exponent 14 to something smaller, and this might be possi-
ble, with extra complications, as was done in the final section of [6]; but the current algorithm is
complicated already, and our first priority is keeping it as simple as we can.

The algorithm of [6] allows us to determine whether a graph has an odd hole. Asking for a
shortest odd hole adds significant additional difficulty. The algorithm of [6] came in three parts:

• First we test whether G contains a “jewel” or “pyramid”; these are two kinds of induced
subgraph that can easily be detected and if one is present, G has an odd hole. Henceforth we
can assume that G contains no jewel or pyramid.

• Now we generate a “cleaning list”, a list of polynomially-many subsets of V (G), such that if
G has an odd hole, then for some shortest odd hole C, one of the sets (X say) is disjoint from
V (C) and contains all “C-major” vertices. (These are the vertices not in V (C) but with several
neighbours in C.) This works in graphs that have no pyramid or jewel.

• Third, for each X in the cleaning list, we test whether G\X has a shortest odd hole C without
C-major vertices. There is an easy algorithm for this, that works in graphs that have no
pyramid or jewel.

How can this be modified to output the minimum length of an odd hole? The test for pyramids and
jewels used in the first step is the main problem: it will detect a pyramid or jewel if there is one, and
thereby find some odd hole, but not necessarily the shortest. We have to replace this with something
else, and then adjust the second and third steps accordingly.

2 Pyramids and jewels

Let us give some definitions before we go on. Let v0, . . . , v3 ∈ V (G) be distinct, and for i = 1, 2, 3
let Pi be an induced path of G between v0 and vi, such that

• P1, P2, P3 are pairwise vertex-disjoint except for v0;

• at least two of P1, P2, P3 have length at least two;

• v1, v2, v3 are pairwise adjacent; and

• for 1 ≤ i < j ≤ 3, the only edge between V (Pi) \ {v0} and V (Pj) \ {v0} is the edge vivj .

We call P1, P2, P3 the constituent paths of the pyramid.

v1

v2
v3

v0

Figure 1: A pyramid. Throughout, dashed lines represent paths, of indeterminate length.
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We call the subgraph induced on V (P1∪P2∪P3) a pyramid, with apex v0 and base {v1, v2, v3}. If
G has a pyramid then G has an odd hole (because two of the paths P1, P2, P3 have the same length
modulo two, and they induce an odd hole).

If X ⊆ V (G), we denote the subgraph of G induced on X by G[X]. If X is a vertex or edge of G,
or a set of vertices or a set of edges of G, we denote by G \X the graph obtained from G by deleting
X. Thus, for instance, if b1b2 is an edge of a hole C, then C \ {b1, b2} and C \ b1b2 are both paths,
but one contains b1, b2 and the other does not. If P is a path, the interior of P is the set of vertices
of the path P that are not ends of P .

We say that G[V (P ) ∪ {v1, . . . , v5}] is a jewel in G if v1, . . . , v5 are distinct vertices, v1v2, v2v3,
v3v4, v4v5, v5v1 are edges, v1v3, v2v4, v1v4 are nonedges, and P is a path of G between v1, v4 such that
v2, v3, v5 have no neighbours in the interior of P . (We do not specify whether v5 is adjacent to v2, v3,
but if it is adjacent to one and not the other, then G also contains a pyramid.)

v1 v2 v3 v4

v5

P

Figure 2: A jewel. Throughout, dotted lines represent possible edges.

Every graph containing a pyramid or jewel has an odd hole, and it was shown in [4] that there is
a polynomial-time algorithm to test if a graph contains a pyramid or jewel. This was central to the
algorithm of [6], but it is no longer useful for us, as it stands.

But the test for jewels is easy to repair. Let us say an odd hole C of G is jewelled if either

• there is a four-vertex path of C with vertices c1-c2-c4-c5 in order, and a vertex c3 ∈ V (G)\V (C)
adjacent to c1 and to c5, and with no neighbours in V (C) \ {c1, c2, c4, c5}; or

• there is a three-vertex path of C with vertices c1-c3-c5 in order, and two more vertices c2, c4 ∈
V (G) \V (C), such that c1-c2-c4-c5 is an induced path, and c2, c4 have no neighbours in V (C) \
{c1, c3, c5}.

There is a jewel in G if and only if there is a jewelled odd hole in G.

2.1 There is an algorithm with the following specifications:

Input: A graph G.

Output: Decides if there is a jewelled odd hole in G, and if so, finds a shortest one.

Running time: O(|G|7).

Proof. We enumerate all five-tuples (c1, . . . , c5) of vertices such that c1-c2-c4-c5 is an induced path
and c3 is adjacent to c1, c5. For each such choice we find a path P of minimum length joining c1, c5
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whose interior contains no neighbours of c2, c3 or c4, if there is one. If P has odd length, we record
the jewelled odd hole c1-c2-c4-c5-P -c1; and if P is even, we record the jewelled odd hole c1-c3-c5-P -c1.
We output the shortest of all the recorded holes, or if there are none, report that no odd hole is
jewelled. This proves 2.1.

(We could make this faster by adding complications to the algorithm, but there would be no gain
in the overall running time of the main algorithm.) So for our shortest odd hole problem, if some
shortest odd hole happens to be jewelled, then the length of the shortest odd hole is the output of
2.1. This turns out to be good enough to replace the old test for jewels. Doing something similar
for pyramids is a much greater challenge, and is the main part of the paper.

3 Handling pyramids

If G contains a pyramid, then some cycle of the pyramid is an odd hole of G. It turns out that we
do not really need to know that G contains no pyramid; it is enough that there is no pyramid which
includes a shortest odd hole of G. If we could arrange that, then the remainder of the old algorithm
could be used verbatim. Unfortunately we were unsuccessful.

But we can do something like it, which we will begin to explain in this section. If P is a path,
its interior is the set of vertices of P which have degree two in P , and is denoted by P ∗. Let C
be a shortest odd hole of G. A vertex v ∈ V (G) is C-major if there is no three-vertex path of C
containing all the neighbours of v in V (C) (and consequently v /∈ V (C)); and C is clean (in G) if no
vertices of G are C-major. A C-major vertex is big if it has at least four neighbours in V (C). It is
easy to check that

3.1 Let C be a shortest odd hole of G. Let v ∈ V (G) be C-major.

• If v has at most three neighbours in V (C), then v has exactly three neighbours in V (C), and
exactly one pair of them are adjacent.

• If v has exactly four neighbours in V (C), then either exactly one pair of them are adjacent, or
C is jewelled.

Again, let C be a shortest odd hole in G, let u, v ∈ V (C) be distinct and nonadjacent, and let
L1, L2 be the two subpaths of C joining u, v. Suppose that there is a path P of G, with ends u, v,
such that

• |E(P )| < min(|E(L1)|, |E(L2)|); and

• no big C-major vertex belongs to V (P ).

We call P a shortcut for C. If u, v ∈ V (G), dG(u, v) denotes the length of the shortest path of G
between u, v (and dG(u, v) =∞ if there is no such path).

Let H be a pyramid in G, with apex a and base {b1, b2, b3}, and constituent paths P1, P2, P3,
where Pi is between a, bi for i = 1, 2, 3. Suppose that:

• the hole a-P1-b1-b2-P2-a is a shortest odd hole C of G; and

• the length of P3 is strictly less than the length of Pi for i = 1, 2.
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In this case we call H a great pyramid in G, and we call V (P3) \ {a} its heart.
The algorithm breaks into two parts: one will find a shortest odd hole if G contains a great

pyramid, and the other will find a shortest odd hole if G does not contain a great pyramid. More
exactly, we will present two algorithms, as follows (a 5-hole means a hole of length five): the first is
proved in sections 7–9, and the second in section 6.

3.2 There is an algorithm with the following specifications:

Input: A graph G.

Output: Outputs either an odd hole of G, or a statement of failure. If G contains no 5-hole, and
no jewelled shortest odd hole, and G contains a great pyramid, the output will be a shortest odd
hole of G.

Running time: O(|G|14).

3.3 There is an algorithm with the following specifications:

Input: A graph G.

Output: Outputs either an odd hole of G, or a statement of failure. If G contains no 5-hole, no
jewelled shortest odd hole, and no great pyramid, and G contains an odd hole, the output will
be a shortest odd hole of G.

Running time: O(|G|9).

The algorithm of 3.2 was derived from the algorithm in [4] that tests if G contains a pyramid;
and that of 3.3 is very similar to the main algorithm of [6]. We also need one more step:

3.4 There is an algorithm with the following specifications:

Input: A graph G.

Output: Outputs either a 5-hole of G, or a statement of failure. If G contains a 5-hole, the output
will be a shortest odd hole of G.

Running time: O(|G|5).

Proof. We test all five-tuples of vertices of G.

Let us derive the main result from these:

Proof of 1.1. We have input a graph G. We run the algorithms of 3.4, 2.1, 3.2 and 3.3 on G, and
for each record the hole it outputs if there is one. If no hole is recorded, we report that G has no
odd hole; otherwise we output the shortest recorded hole.

To see correctness, there are five possibilities:

• G has no odd hole: then each algorithm will report failure, and the output will be correct.

• G has a 5-hole; then the output of 3.4 is a shortest odd hole.
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• G has no 5-hole, and some shortest odd hole is jewelled: then 2.1 outputs a shortest odd hole.

• G has no 5-hole, and no jewelled shortest odd hole, and G contains a great pyramid: then 3.2
outputs a shortest odd hole.

• G has an odd hole, and has no 5-hole, no jewelled shortest odd hole, and no great pyramid:
then 3.3 outputs a shortest odd hole.

In each of the last four cases, the recorded hole of smallest length is a shortest odd hole. This proves
correctness of the algorithm.

4 Great pyramids

In this section we prove three results very closely related to theorem 4.1 of [4]:

4.1 Suppose that no shortest odd hole of G is jewelled. Let P be a path with minimal interior
such that for some shortest odd hole C of G, P is a shortcut for C. Then the subgraph induced on
V (P ∪ C) is a great pyramid in G with heart P ∗.

Proof. Let P have vertices u-p1- · · · -pk-v in order, where u, v ∈ C, and L1, L2 are as in the definition
of shortcut. Thus P is an induced path, and u, v are distinct and nonadjacent, and so k ≥ 1, and
therefore min(|E(L1)|, |E(L2)|) ≥ 3. If p1 is adjacent to v, then k = 1 and p1 is C-major, but not
big by hypothesis; and the subgraph induced on V (P ∪C) is a great pyramid by 3.1, so the theorem
holds. Thus we may assume that p1 is not adjacent to v, and hence k ≥ 2. By the same argument,
we may assume that no vertex of P ∗ is C-major. Now p1 may have more than one neighbour in
V (C), and the same for pk, so let us choose u, v to maximize dC(u, v).

Assign C an orientation, clockwise say, and for any two distinct vertices x, y in C, let C(x, y)
be the clockwise path in C from x to y. We may assume that L1 = C(u, v). Let C have vertices
c1- · · · -c2n+1 in clockwise order, where c1 = u and cm = v.

(1) P is an induced path of G between u, v; and no vertex of P ∗ belongs to V (C).

The first claim is immediate from the minimality of P ∗. For the second, suppose that pi ∈ V (C) say,
where 1 ≤ i ≤ n. From the symmetry we may assume that pi ∈ L∗1. From the minimality of P ∗, the
path u-p1- · · · -pi is not a shortcut for C, and so its length is at least that one of C(u, pi), C(pi, u).
But C(pi, u) includes L2 and so is longer than u-p1- · · · -pi; and hence C(u, pi) has length at most i.
Simularly C(pi, v) has length at most k − i + 1; but then C(u, v) has length at most k + 1, which is
the length of P , a contradiction. This proves (1).

Since C is odd, we may assume from the symmetry that |E(L1)| < |E(L2)|, and therefore
m ≤ n + 1. From the hypothesis,

k + 1 = dG(u, v) < dC(u, v) = m− 1 ≤ n.

Since k ≥ 2, it follows that m ≥ 5 and so n ≥ 4.
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(2) There are no edges between {p2, . . . , pk−1} and C(v, u)∗.

Suppose not. Then for some j with m + 1 ≤ j ≤ 2n + 1, there exist paths P1, P2 from cj to
u, v respectively, with interior in P ∗, both strictly shorter than P . Suppose first that j = 2n + 1.
Then

dC(c2n+1, v) = min(m, 2n + 1−m) ≥ m− 1 > |E(P )| > |E(P2)|,

contrary to the minimality of P ∗. Thus j ≤ 2n and similarly j ≥ m + 2. In particular, P1, P2 both
have length at least two. Now

|E(P1)|+ |E(P2)| ≤ k + 3 ≤ m ≤ 2n + 2−m ≤ (2n + 2− j) + (j −m).

But |E(P1)| ≥ 2n+2− j from the minimality of P ∗, and similarly |E(P2)| ≥ j−m; so equality holds
throughout. In particular k + 3 = m = n + 1, and cj is adjacent to p2n+1−j and to no other vertex
in P ∗. The lengths of P,L1 differ by exactly one, and since P ∪ L1 is not an odd hole (because it
is shorter than C) it follows that some vertex pi of P ∗ has a neighbour in L∗1. Let pi be adjacent
to ch where 2 ≤ h ≤ m − 1. If i > 1 then the path ch-pi- · · · -pk-cm is not a shortcut over C, from
the minimality of P ∗, and therefore k − i + 2 ≥ m− h = k + 3− h, and so h− i ≥ 1. Similarly (by
exchanging u, v) it follows that if i < k then k− i ≤ m−h−1 = k+2−h, and so h ≤ i+2. The path
Q with vertices ch-pi- · · · -p2n+1−j-cj has length |2n + 1− i− j|+ 2. We claim that |E(Q)| < j − h.
If i ≤ 2n + 1− j then i < k (since otherwise pk is adjacent to both ch, cj and is therefore C-major,
a contradiction), and so

|E(Q)| = |2n + 1− i− j|+ 2 = 2n + 3− i− j ≤ 2n + 3− (h− 2)− j = 2n + 5− h− j < j − h

since j ≥ m + 2 = n + 3. If i > 2n + 1− j, then

|E(Q)| = |2n + 1− i− j|+ 2 = i + j + 1− 2n < j − h

because h ≤ m − 1 = n and i ≤ k = n − 2. Thus in either case |E(Q)| < j − h. Similarly (by
exchanging u, v) it follows that |E(Q)| < 2n+1−h− j, and therefore Q is a shortcut for C, contrary
to the minimality of P ∗. This proves (2).

(3) Either c1 is the only neighbour of p1 in C, or c1, c2 are the only neighbours of p1 in C, or
m = n + 1 and c1, c2n+1 are the only neighbours of p1 in C. The analogous statement holds for pk.

Suppose first that p1 has two nonadjacent neighbours x, z ∈ V (C). Since p1 is not C-major, we may
assume that C(x, z) has length 2 and contains all neighbours of p1 in C. Let y be the middle vertex
of C(x, z); then u ∈ {x, y, z}, and since m ≥ 5, it follows that v 6= x, y, z. Now p1-z-C(z, x)-x-p1 is a
hole C ′ of the same length as C, and hence is a shortest odd hole. Suppose that pi is big C ′-major
for some i ∈ {2, . . . , k}. Since pi is not C-major, pi is adjacent to p1, and so i = 2; and pi has three
neighbours in C, since it has four in C ′; and they are consecutive since p2 is not C-major, and so C ′

is jewelled by 3.1, a contradiction. This proves that p1 does not have two nonadjacent neighbours in
V (C), and the same holds for pk.

Since p1 is adjacent to c1, we may assume it is also adjacent to c2n+1, for otherwise the claim
holds. Suppose that m ≤ n. Then dC(c2n+1, cm) > dC(c1, cm), contrary to the choice of u, v (maxi-
mizing min(|E(L1)|, |E(L2)|). Hence m = n + 1. This proves (3).
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(4) We may assume that there are no edges between P ∗ and C(v, u)∗.

Suppose there are edges between P ∗ and C(v, u)∗. From (2) and (3), we may assume that p1 is
adjacent to c2n+1 and m = n+ 1. Let P ′ be the path c2n+1-p1- · · · -pk-v. Then P ′ is another shortcut
for C, with the same interior as P . Hence there is symmetry between c1, c2n+1, and from (2) applied
under this symmetry we deduce that there are no edges between {p2, . . . , pk−1} and C(u, v)∗. Conse-
quently there are no edges between P ∗ and V (C) except for p1c1, p1c2n+1 and possibly edges incident
with pk. By (3), and the symmetry between c1, c2n+1, we may assume that pk has no neighbours in
V (C) except cn+1 and possibly cn. Suppose that pk is adjacent to cn. The holes

p1- · · · -pk-cm-cm−1- · · · -c1-p1

p1- · · · -pk-cm-cm+1- · · · -c2n+1-p1

are both shorter than C and hence have even length; and so (k + 1) + (n − 1) = k + n and
k + 1 + (2n + 1 − (n + 1)) = k + 1 + n are both even, which is impossible. Hence cn+1 is the
only neighbour of pk in V (C); and so G[V (C ∪ P )] is a great pyramid. This proves (4).

(5) There are no edges between {p2, . . . , pk−1} and C(u, v).

Suppose the claim is false; then there exists j with 2 ≤ j ≤ m − 1, and paths P1, P2 from cj to
u, v respectively, with interior in P ∗, and both strictly shorter than P . Since

|E(P1)|+ |E(P2)| ≤ k + 3 ≤ m < j + (m− j + 1)

it follows that either P1 has length < j or P2 has length < m−j+1, and from the symmetry we may
assume the first. By the minimality of P ∗, P1 is not a shortcut, and so its length is exactly j − 1.
Thus cj is adjacent to ph, where h = j−2. By the same argument the only edge between {p1, . . . , ph}
and {cj , . . . , cm} is the edge phcj ; and so by (4), the union of P1 and the path C(cj , c1) is a hole C ′

say. Thus C ′ is a shortest odd hole. Suppose that pi is big C ′-major, for some i ∈ {h + 1, . . . , k}.
Then pi is adjacent to one of p1, . . . , ph, and therefore i = h + 1; and i has three neighbours in
V (C), consecutive; and so it has exactly four in V (C ′), and therefore C ′ is jewelled, by 3.1, a
contradiction. From the minimality of P ∗, it follows that ph- · · · -pk-cm is not a shortcut for C ′, and
so k − h + 1 ≥ dC′(ph, cm) = m − j + 1, that is, k + 2 ≥ m since h = j − 2, a contradiction. This
proves (5).

Note that c2n+1, c1, c2 are all different from cm−1, cm, cm+1, since k ≥ 2. From (2), (3) and (5) it
follows that the only edges between P ∗ and V (C) are p1c1, pkcm, possibly one edge from p1 to one
of c2, c2n+1, and possibly one edge from pk to one of cm−1, cm+1. If neither or both of the possible
extra edges are present, there is an odd hole shorter than C, a contradiction; so exactly one of the
possible extra edges is present. But then G[V (C ∪ P )] is a great pyramid. This proves 4.1.

4.2 Let G be a graph such that no shortest odd hole in G is jewelled. Let C be a shortest odd hole
in G, and let P be a path of G with ends u, v ∈ V (C), such that |E(P )| = dC(u, v), and no vertex in
P ∗ is big C-major. Let L1, L2 be the paths of C joining u, v, where |E(L1)| = |E(P )|. Then either
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• P ∪ L2 is a shortest odd hole of G, or

• there is a great pyramid in G with heart a proper subset of P ∗, or

• G[V (P ∪ C)] is a great pyramid with heart P ∗.

Proof. We proceed by induction on the length of P . The result is true if P has length at most
two, so we may assume that P has length at least three. We may assume that G contains no great
pyramid with heart a proper subset of P ∗; so in particular, for every shortest odd hole C ′, every
C ′-major vertex in P ∗ is big C ′-major; and by 4.1 there is no shortcut for C ′ with interior a proper
subset of P ∗.

In particular, P is an induced path. Suppose that P ∪ L2 is not a shortest odd hole. Then
some vertex of L∗2 is equal to or adjacent to some vertex of P ∗. Let P have vertices u-p1- · · · -pk-v
in order, and let C have vertices c1-c2- · · · -c2n+1-c1, where c1 = u. We may assume that ck+2 = v
since P,L1 have the same length; and so k ≤ n − 1, since L1 is shorter than L2. Choose j with
k+ 3 ≤ j ≤ 2n+ 1 such that cj is equal or adjacent to some vertex ph in P ∗. Thus there are induced
paths P1, P2 between cj and u, v respectively, with interior in P ∗, such that P1 has length at most
h + 1 and P2 has length at most k + 2− h. Consequently |E(P1)|+ |E(P2)| ≤ k + 3.

Suppose that P1 is a shortcut for C. Then P ∗1 = P ∗, and by 4.1, it follows that G[V (P1 ∪ C)] is
a great pyramid with heart P ∗, and the theorem holds. So we may assume that P1 is not a shortcut
for C, and so the length of P1 is at least dC(u, cj) = min(2n + 2− j, j − 1). But the length of P1 is
at most that of P , and so at most k + 1; and j − 1 > k + 1 since j > k + 2. Consequently P1 has
length at least 2n + 2− j, and so h + 1 ≥ 2n + 2− j. Similarly, by exchanging u, v we may assume
that P2 has length at least j − k − 2, and so k + 2− h ≥ j − k − 2. Adding, we deduce that

k + 3 ≥ 2n− k ≥ 2(k + 1)− k = k + 2.

Hence, either h + 1 = 2n + 2 − j, or k + 2 − h = j − k − 2. From the symmetry between u, v
we may assume the first holds with equality and the second holds with an error of at most 1. So
h+1 = 2n+2− j and k+2−h ≤ j−k−1. Since P1 has length at most h+1 and at least 2n+2− j,
it follows that P1 has length exactly h + 1 = 2n + 2− j; and so P1 is an induced path with vertices
c1-p1- · · · -ph-cj in order. (In particular, ph 6= cj , and j 6= 2n + 1.)

Suppose that the length of P1 is less than the length of P . No vertex of P ∗1 is big C-major, so
from the inductive hypothesis, the union of P1 and the path c1-c2- · · · -cj is a shortest odd hole C ′

say. Suppose that one of ph+1, . . . , pk, say pi, is big C ′-major. Since pi is not big C-major, pi has
a neighbour in {p1, . . . , ph}, and hence i = h + 1. But pi has at least four neighbours in V (C ′),
and so it has at least three in V (C ∩ C ′). They are consecutive since pi is not C-major; but this
contradicts 3.1 applied to C ′. This proves that none of ph+1, . . . , pk is big C ′-major. But then the
path ph-ph+1- · · · -pk-ck+2 is a shortcut for C ′, since dC′(ph, ck+2) is the minimum of j−k−1, h+k+1,
and both the latter are greater than k−h+1. This is a contradiction, and so the length of P1 equals
that of P ; that is, h = k. But h+ 1 = 2n+ 2− j and so j = 2n+ 1− k. Since pk is adjacent to both
ck+2 and cj , and pk is not C-major, it follows that j ≤ k + 4, and so 2n + 1 − k ≤ k + 4, that is,
n ≤ k + 1. But we already saw that k ≤ n− 1, and so equality holds, and j = 2n + 1− k = k + 3.

Thus we have proved so far that k = n−1, and P ∗ is disjoint from L∗2, and the only edges between
P ∗ and L∗2 are either between pk, ck+3 or between p1, c2n+1, and we are assuming that at least one
of these is present. If both are present then p1- · · · -pk-ck+3-ck+4- · · · -c2n+1-p1 is an odd hole shorter

9



than C, a contradiction. So exactly one is present, say p1c2n+1. From the path c2n+1-p1- · · · -pk-ck+2

and the hole C, it follows that the edge p1c1 is the only edge between P ∗ and {c1, . . . , ck+1}; and so
the subgraph induced on V (C ∪ P ) is a great pyramid with heart P ∗, and the theorem holds. This
proves 4.2.

4.3 Let G be a graph containing no great pyramid, and such that no shortest odd hole in G is
jewelled. Let C be a shortest odd hole in G, and let P be a path of G with ends u, v ∈ V (C), such
that |E(P )| = dC(u, v), and no vertex in P ∗ is big C-major. Let L1, L2 be the paths of C joining
u, v, where |E(L1)| = |E(P )|, and let C ′ be the shortest odd hole P ∪L2. Then every C ′-major vertex
is C-major, and vice versa.

Proof. Let P have vertices u-p1- · · · -pk-v in order, and let C have vertices c1- · · · -c2n+1-c1 in order,
where u = c1 and v = ck+2. Define p0 = u and pk+1 = v. By 4.1, no shortest odd hole has a shortcut.

Suppose that some vertex w of G is C ′-major and not C-major. By 3.1 and since G contains no
great pyramid, it follows that w is big C ′-major. Since w is not C-major, w has a neighbour in P ∗.
Choose h, j ∈ {0, . . . , k + 1} minimum and maximum respectively, such that w is adjacent to ph, pj .

Suppose first that w ∈ L∗1, and w = ci say. Then all neighbours of w in V (C ′) belong to V (P );
and there are at least four such neighbours. Hence j ≥ h + 3. Since the path p0-p1- · · · -ph-ci is
not a shortcut for C, it follows that h + 1 ≥ i− 1; and since ci-pj- · · · -pk+1 is not a shortcut for C,
k + 2− j ≥ k + 2− i. Adding, it follows that 2 ≥ j − h, a contradiction. This proves that w /∈ L∗1,
and consequently no vertex of L∗1 is C ′-major.

Hence there is symmetry between C,C ′, and so if we can prove the first assertion of the theorem,
then the “vice versa” follows from the symmetry.

It follows that w /∈ V (C ∪ C ′). Suppose that j ≥ h + 2. Since the path P ′ with vertices
p0- · · · -ph-w-pj- · · · -pk+1 is not a shortcut for C, j = h + 2; and so w has a neighbour in L∗2, since it
has four neighbours in V (C ′). Hence P ′ ∪ L2 is not a hole, contrary to 4.2. Thus j ≤ h + 1.

If j = h, then w has at least three neighbours in V (L2); and hence exactly three, and they are
consecutive, since w is not C-major; and this contradicts 3.1 applied to C ′. Thus j = h + 1.

Define c2n+2 = c1, and choose r, t ∈ {k + 2, . . . , 2n + 2} minimum and maximum respectively,
such that w is adjacent to cr, ct. Hence t ≤ r + 2 since w is not C-major; and t ≥ r + 1 since w is
big C ′-major. Also t 6= r + 1 by 3.1. Hence t = r + 2. If r = k + 2 then h + 1 = k + 1, and C ′ is
jewelled, a contradiction; so r ≥ k + 3 and similarly r + 2 = t ≤ 2n + 1. So w is nonadjacent to u, v.

Now the path p0-p1- · · · -ph-w-cr is not a shortcut for C, and so h + 2 ≥ min(r − 1, 2n + 2 − r);
but h+ 2 < r− 1 since h+ 1 ≤ k, and so h+ 2 ≥ 2n+ 2− r. Similarly, by exchanging u, v it follows
that k−h+ 2 ≥ r− k. Adding, we deduce that k + 1 ≥ n. But L1 has length k + 1 and L2 is longer,
so 2(k + 1) < 2n + 1, and hence n = k + 1. Also, h + 2 = 2n + 2 − r, that is, h = 2n − r. The
path p0-p1- · · · -ph-w-cr has the same length as the path cr-cr+1- · · · -c2n+2, and less than the path
c1-c2- · · · -cr; so from 4.2, the union of the paths p0-p1- · · · -ph-w-cr and c1-c2- · · · -cr is a shortest odd
hole C ′′ say. Hence ph-ph+1- · · · -pk+1 is not a shortcut for this hole; and so either one of its internal
vertices is C ′′-major, or k + 1 − h ≥ dC′′(ph, pk+1). Now dC′′(ph, pk+1) = min(h + k + 1, r − k).
Certainly k + 1− h < h + k + 1 since h > 0, and k + 1− h < r − k since h = 2n− r and n = k + 1.
Thus there exists i ∈ {h+ 1, . . . , k} such that pi is C ′′-major. But pi has at most three neighbours in
V (C), and so at least one in V (C ′) \ V (C); and so i = h+ 1. So ph+1 has at least two neighbours in
the interior of the path c1- · · · -cr. By exchanging u, v it follows similarly that the union of the paths
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cr+2- · · · -c2n+1-c1- · · · -ck+2 and cr+2-w-ph+1- · · · -pk-ck+2 is a hole, and so ph+1 has no neighbours in
L∗1. Hence ph+1 has at least two neighbours in the set {ck+2, . . . , cr}.

Suppose that ph+1 is adjacent to c` where k + 3 ≤≤ r − 1. Now no internal vertex of the path
p0- · · · -ph-ph+1-cell is C-major; and the length of this path is h+ 2, which is less than min(`−1, 2n+
2 − `) because h + 1 ≤ k ≤ ` − 3 and h = 2n − r < 2n − `. Hence this path is a shortcut for C,
a contradiction. Thus ph+1 has precisely two neighbours in {ck+2, . . . , cr}, the vertices ck+2 and cr.
Consequently h + 1 = k, since P is induced; and r ≤ k + 4, since pk is not C-major. The path
p0- · · · -ph-ph+1-cr has the same length as the path cr- · · · -c2n+1-c1 and less than the path c1- · · · -cr;
yet ph+1 is adjacent to ck+2, contrary to 4.2. This proves 4.3.

5 Heavy edges

We need to use an idea from [6], adapted appropriately. Its proof used other theorems from previous
papers that assumed there were no pyramids or jewels, so we have to adapt their statements and
proofs. Fortunately the changes required are very minor, and we think it is unnecessary to reprint
the old proofs in full. So we will just give statements of the theorems we need, which are variants
of theorems from [4] and [6], and sketch how the proofs should be modified. There are two main
changes:

• These old theorems are about C-major vertices, and use the fact that when there is no pyramid,
all C-major vertices are big. For us, this is not true, since pyramids may be present; but if we
just change the statements of the theorems to refer to big C-major vertices then all is well.

• These old theorems assume that G contains no jewel, but in every case, all that the proof needs
is that no shortest odd hole is jewelled, and this we can assume.

Let us see these old theorems in detail.
Theorem 7.6 of [4] assumes that G has no pyramid or jewel (and its proof uses theorem 7.5 of [4],

which we have to abandon), but the changes of the bullets above repair its proof. Since “normal”
subsets are nonempty, these modifications allow us to prove:

5.1 Let G be a graph in which no shortest odd hole is jewelled. Let C be a shortest odd hole in G,
and let X be a stable set of big C-major vertices. Then there is a vertex v ∈ V (C) adjacent to every
vertex in X.

We need nothing more from [4], but we need some results from [6]. Theorem 3.3 of [6] assumes
that G has no pyramid or jewel, and its proof uses theorem 7.6 of [4]. But again, the changes of the
bullets fix both these problems: use 5.1 above in place of theorem 7.6 of [4], and assume that no
shortest odd hole is jewelled. We obtain:

5.2 Let G be a graph in which no shortest odd hole is jewelled. Let C be a shortest odd hole in G,
and let x, y be nonadjacent big C-major vertices. Then every induced path between x, y with interior
in V (C) has even length.

Theorem 3.4 of [6] assumes that G has no pyramid or jewel, but the changes of the bullets repair
that; and its proof uses theorem 3.3 of [6]. but we can replace it by 5.2 above. We obtain:
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5.3 Let G be a graph with no hole of length five, and in which no shortest odd hole is jewelled,
and let C be a shortest odd hole in G. Let X be a set of big C-major vertices, and let x0 ∈ X be
nonadjacent to all other members of X. Then there is an edge uv of C such that every member of
X is adjacent to one of u, v.

6 The proof of 3.3

In this section we prove 3.3. It is almost identical with the algorithm of section four of [6]. First, we
need a version of theorem 4.2 of [4], the following:

6.1 There is an algorithm with the following specifications:

Input: A graph G.

Output: Either an odd hole of G, or a statement of failure. If G contains no jewelled shortest odd
hole and no great pyramid, and some shortest odd hole in G is clean, the output is a shortest
odd hole of G.

Running time: O(|G|4).

Proof. Here is an algorithm. For every pair of vertices u, v, find a shortest path P (u, v) between
them, if one exists. For every triple u, v, w, test whether the three paths P (u, v), P (v, w), P (w, u) all
exist, and if so whether their union is an odd hole. If we find such a hole, record it. When all triples
have been examined, if no hole has been recorded, report failure, and otherwise output the recorded
hole of smallest length.

To see that this works correctly, we may assume that G contains no jewelled shortest odd hole
and no great pyramid, and some shortest odd hole C in G is clean. Choose vertices u, v, w ∈ V (C),
roughly equally spaced in C; more precisely, such that every component of C \ {u, v, w} contains at
most n − 1 vertices, where C has length 2n + 1. Since there is a path joining u, v, the algorithm
will find a shortest such path P (u, v). We claim that C can be chosen containing P (u, v). By 4.1,
there is no shortcut for C, since G contains no great pyramid. Let L1 be the path of C joining
u, v, not passing through w. Then L1 has length ≤ n, from the choice of u, v, w, and so since
P (u, v) is not a shortcut for C, and none of its vertices are C-major since C is clean, it follows that
L1, P (u, v) have the same length. Let L2 be the second path of C between u, v in C. The union of
L2, P (u, v) is a clean shortest odd hole, by 4.2 and 4.3, and so we may choose C containing P (u, v).
By repeating this for the other two pairs from u, v, w, we see that C can be chosen to include all
of P (u, v), P (v, w), P (w, u) simultaneously. So the union of the three paths joining u, v, w chosen
by the algorithm is a shortest odd hole, and therefore in this case the algorithm correctly records a
shortest odd hole, and therefore will output one.

The running time of the algorithm as described is O(|G|5), because after selecting u, v, w and the
three paths, it takes quadratic time to check whether the three paths make a hole. Here is a (sketch
of) how to get the running time down to O(|G|4), although it makes no difference to the running
time of our main algorithm. For each pair of distinct vertices u, v, mark the vertices that belong to
P (u, v) or have a neighbour in its interior; then for all w, we can compute in linear time whether
P (u, v) ∪ P (v, w) is an induced path, and whether P (w, u) ∪ P (u, v) is an induced path. Then with
all this information (which takes time O(|G|4) to compute) we check whether there is a triple u, v, w
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of distinct vertices such that each pair of the paths P (u, v), P (v, w), P (w, u) makes an induced path;
and checking each triple now takes constant time. This proves 6.1.

Let us say a shortest odd hole C is heavy-cleanable if there is an edge uv of C such that every
big C-major vertex is adjacent to one of u, v. We deduce:

6.2 There is an algorithm with the following specifications:

Input: A graph G.

Output: Either an odd hole of G, or a statement of failure. If G contains no 5-hole, no jewelled
shortest odd hole and no great pyramid, and contains a heavy-cleanable shortest odd hole, the
output is a shortest odd hole.

Running time: O(|G|8).

Proof. List all the four-vertex induced paths c1-c2-c3-c4 of G. For each one, let X be the set of
all vertices of G different from c1, . . . , c4 and adjacent to one of c2, c3. We run 6.1 on G \ X and
record any hole that it outputs. If after examining all 4-tuples, no hole is recorded, report failure,
and otherwise output the recorded hole of smallest length.

To see correctness, we may assume that G has no 5-hole, no jewelled shortest odd hole and no
great pyramid, and contains a heavy-cleanable shortest odd hole C. Thus C is clean in G \ X for
some X that we test; and when we do so, 6.1 outputs a shortest odd hole of G, that we record.
Consequently in this case the algorithm outputs a shortest odd hole of G. This proves 6.2.

6.3 There is an algorithm with the following specifications:

Input: A graph G.

Output: Outputs either an odd hole of G, or a statement of failure. If G contains no 5-hole, no
jewelled shortest odd hole, no great pyramid, and no heavy-cleanable shortest odd hole, and G
has an odd hole, the output will be a shortest odd hole of G.

Running time: O(|G|9).

Proof. This is the algorithm described in section 4 of [6], using 4.1 and 4.2 in place of theorem 4.1
of [6], and using 5.3 in place of theorem 3.4 of [6].

Now we are ready to prove 3.3, which we restate:

6.4 There is an algorithm with the following specifications:

Input: A graph G.

Output: Outputs either an odd hole of G, or a statement of failure. If G contains no 5-hole, no
jewelled shortest odd hole, and no great pyramid, and G contains an odd hole, the output will
be a shortest odd hole of G.
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Running time: O(|G|9).

We are given an input graph G. We apply the algorithms of 6.2 and 6.3 to G, and record the holes
that they output. If no hole is recorded, report failure, and otherwise output the shortest recorded
hole.

To see correctness, we may assume that G contains no 5-hole, no jewelled shortest odd hole, and
no great pyramid. If G has a heavy-cleanable shortest odd hole, 6.2 will output a shortest odd hole.
If G has no odd hole, both algorithms will report failure, and the output is correct. Otherwise G has
an odd hole and has no heavy-cleanable shortest odd hole; and then 6.3 will output a shortest odd
hole. This proves 6.4 and hence 3.3.

7 Cleaning a great pyramid

It remains to prove 3.2, but that requires several lemmas. Let H be a great pyramid in G, with apex
a and base {b1, b2, b3}, and constituent paths P1, P2, P3 where Pi is between a, bi, and P3 is shorter
than P1, P2. Thus G[V (P1 ∪ P2)] is a shortest odd hole, C say. We call the length of P3 the height
of the pyramid.

The idea of the algorithm for 3.2 is, we look for a great pyramid with minimum height, height r
say; then because of 4.1, we know the useful fact that no shortest odd hole of G has a shortcut of
length at most r. We will guess a few important vertices of the great pyramid, and then try to fill in
the paths between them by picking shortest paths in appropriate subgraphs, using the “useful fact”.
But shortcuts for C by definition contain no big C-major vertices, so to apply the useful fact to C,
we need to be sure there are no big C-major vertices in our paths, which is tricky because we do not
know C. Ideally we would first clean to get rid of all big C-major vertices, but it turns out that a
partial cleaning via 5.3 is enough, because of a convenient property of big C-major vertices that we
prove in 7.1 below.

Let v be big C-major, and let {i, j, k} = {1, 2, 3}. We say that v has type (Pi, Pj) if

• v has at least three neighbours in V (Pi) \ {a};

• v has exactly two neighbours in V (Pj) and they are adjacent; and

• v has no neighbours in V (Pk) \ {a}.

7.1 Let H be a great pyramid, with notation as above, and let v be big C-major. Then either
v has at least two neighbours in {b1, b2, b3}, or v has type (Pi, Pj) where (i, j) is one of the pairs
(1, 2), (2, 1), (1, 3), (2, 3).

Proof. We may assume that v has at most one neighbour in {b1, b2, b3}. Let `i = |E(Pi)| for
i = 1, 2, 3.

(1) There exists k ∈ {1, 2, 3} such that v has no neighbour in V (Pk) \ {a}.

Suppose that v has a neighbour in V (Pi) \ {a} for all i ∈ {1, 2, 3}. For i = 1, 2, 3, choose a minimal
path P ′i between v and bi with interior in P ∗i . Let |E(P ′i )| = `′i for i = 1, 2, 3. Then at least two of
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`′1, `
′
2, `
′
3 ≥ 2, so these three paths are the constituent paths of a pyramid. Hence some two of them

induced an odd hole C ′, say P ′i , P
′
j . Since C ′ is not shorter than C, it follows that `′i + `′j ≥ `1 + `2.

But `′i ≤ `i for i = 1, 2, 3, and hence `i + `j ≥ `1 + `2. Since `3 < `1, `2, it follows that {i, j} = {1, 2};
and P ′1 has the same length as P1, so v has a unique neighbour in V (P1) \ {a}, the neighbour of a in
P1. The same holds for P2; but then v has at most three neighbours in V (C), and they all belong to
a three-vertex subpath of C, contradicting that v is C-major. This proves (1).

(2) v has neighbours in exactly two of the sets V (Pi) \ {a} (i = 1, 2, 3).

By (1) there are most two such values of i. Suppose that there is at most one; then for some
i ∈ {1, 2, 3}, all neighbours of v in V (H) belong to V (Pi). So i ∈ {1, 2} (because v is C-major), and
we may assume that i = 1. Thus v has at least three neighbours in V (P1), Let P ′1 be the induced
path between a, b1 with interior in P ∗1 ∪ {v} that contains v, with length `′1 say. So `′1 < `1 because
the neighbours of v in V (P1) do not all lie in a three-vertex subpath; and `′1 ≥ 2, so the three paths
P ′1, P2, P3 define a pyramid, and hence some two of P ′1, P2, P3 induce an odd hole C ′. But every two
of `′1, `2, `3 sum to less than `1 + `2, since `′1 < `1 and `3 < `1, `2, a contradiction. This proves (2).

Since v is big C-major, it has two nonadjacent neighbours in one of V (P1), V (P2), by 3.1; and
by exchanging P1, P2 if necessary, we may assume that v has two nonadjacent neighbours in V (P1).
By (2) there exists a unique j ∈ {2, 3} such that v has a neighbour in V (Pj) \ {a}. Let R1 be the
induced path between v, a with interior in P ∗1 , and let S1 be the induced path between v, b1 with
interior in P ∗1 . Define Rj , Sj similarly. Thus V (R1) ∩ V (S1) = {v}, and R1 ∪ S1 is an induced path
between a, b1, but this need not be true for Rj , Sj since v might not have two nonadjacent neighbours
in V (Rj). Let {j, k} = {2, 3}.

(3) We may assume that v has at least two neighbours in V (Pj).

Suppose that v has a unique neighbour u ∈ V (Pj). Since v has a neighbour in V (Pj) \ {a}, it
follows that u 6= a, and v, a are nonadjacent.

Suppose first that j = 2. There is a pyramid with apex u and constituent paths u-v-S1-b1,
(R2 \ v)∪P3, and S2 \ v. Some two of these three paths induce an odd hole, and so the sum of their
lengths is at least `1 + `2. The last two sum to `2 + `3 < `1 + `2; and the first and third sum to
|E(S1)|+ |E(S2)| < `1 + `2 since |E(S1)| < `1 − 3 and |E(S2)| ≤ `2. Thus the sum of the lengths of
u-v-S1-b1 and (R2 \ v) ∪ P3 is at least `1 + `2; and so

|E(S1)|+ |E(R2)|+ `3 ≥ `1 + `2.

In particular, |E(R2)| has length at least three, since |E(S1)| ≤ `1 − 2 and |E(P3)| ≤ `2 − 1. So
u is nonadjacent to a. On the other hand, there is a pyramid with apex v and constituent paths
S1, R1 ∪ P3, and S2; so some two of the lengths of these sum to at most `1 + `2. But the first two
sum to at most `1 + `3 < `1 + `2, and the first and third sum to at most (`1− 2), since S1 has length
at most `1 − 2; so the lengths of R1 ∪ P3 and S2 sum to at least `1 + `2. Thus

|E(R1)|+ `3 + |E(S2)| ≥ `1 + `2.

Summing with the previous displayed inequality, we deduce

|E(S1)|+ |E(R2)|+ |E(R1)|+ 2`3 + |E(S2)| ≥ 2(`1 + `2).
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But |E(R1)|+ |E(S1)| ≤ `1, and |E(R2)|+ |E(S2)| = `2 + 2, and so

2 + 2`3 ≥ `1 + `2.

It follows that `3 + 1 = `1 = `2, since `3 < `1, `2; and equality holds throughout. In particular,
|E(R1)|+ |E(S1)| = `1, and so v has only three neighbours in V (P1), and they are consecutive. But
this contradicts 3.1.

This proves that j = 3. Here are three holes, all shorter than C and hence even:

R1 ∪R3; v-S1-b1-b3-S3-v; a-P2-b2-b3-P3-a.

(To see that the second is a hole we use that v has at most one neighbour in {b1, b2, b3}.) Let us
add a fourth cycle to this list, the odd cycle b1-b2-b3-b1. The symmetric difference of the edge sets
of these four cycles is the hole

a-P2-b2-b1-S1-v-R1-a,

and so the latter is odd, and yet it is shorter than C (because v is C-major), a contradiction. This
proves (3).

(4) v does not have two nonadjacent neighbours in V (Pj).

Suppose it does. Again, there are two cases, depending whether j = 2 or 3. Suppose first that
j = 2. There is a pyramid with apex v and constituent paths S1, S2, R1 ∪ P3, and by the usual
argument we deduce that

|E(R1) + `3 + |E(S2)| ≥ `1 + `2.

From the symmetry between P1, P2, it also follows that

|E(R2) + `3 + |E(S1)| ≥ `1 + `2.

Adding, we deduce that

|E(R1)|+ |E(S1)|+ |E(R2)|+ |E(S2)|+ 2`3 ≥ 2(`1 + `2).

Since |E(Ri)|+ |E(Si)| ≤ `i for i = 1, 2, it follows that 2`3 ≥ `1 + `2, a contradiction.
Thus j = 3. The pyramid with apex v and constituent paths S1, R1 ∪ P2, S3 tells us that

|E(R1)|+ `2 + |E(S3)| ≥ `1 + `2.

But the pyramid with apex v and constituent paths S1, R3 ∪ P2, S3 tells us that

|E(S1)|+ |E(R3)|+ `2 ≥ `1 + `2.

Adding, and using that |E(Ri)|+ |E(Si)| ≤ `i for i = 1, 3, we deduce that `1 + 2`2 + `3 ≥ 2(`1 + `2),
which simplifies to `3 ≥ `1, a contradiction. This proves (4).

From (3) and (4), v has exactly two neighbours in V (Pj), and they are adjacent. Thus v has
type (P1, Pj). This proves 7.1.

16



We apply 7.1 to prove the following, which will enable us to partially clean a great pyramid.
More exactly, given the base and apex, it will enable us to “guess” a set of vertices that includes all
the big C-major vertices and is disjoint from Pi ∪ P3 for some i ∈ {1, 2}.

7.2 Let G be a graph with no hole of length five, and in which no shortest odd hole is jewelled. Let
H be a great pyramid in G, with notation as before. Then there are three vertices v0, v1, v2 of G, and
i ∈ {1, 2}, with the following properties:

• every big C-major vertex is adjacent to one of v0, v1, v2;

• v1, v2 ∈ V (C) are distinct and adjacent, and either v0 /∈ V (H) or v0 ∈ {v1, v2};

• there are at most two vertices in P ∗i ∪ P ∗3 that are different from v1, v2 and adjacent to one of
v0, v1, v2.

Proof. If every big C-major vertex is adjacent to one of b1, b2, then we may take v0 = v1 = b1
and v2 = b2 and the theorem is satisfied. So we may assume that some big C-major vertex v0 is
nonadjacent to both b1, b2. By exchanging P1, P2 if necessary, we may assume by 7.1 that v0 has
type (P1, P2) or (P1, P3). Thus v0 has exactly two neighbours in V (P2 ∪ P3) and they are adjacent,
say p, q. By 5.3, there is an edge v1v2 of C such that v0 is adjacent to one of v1, v2, and every big
C-major vertex is adjacent to one of v0, v1, v2. Choose such an edge v1v2 with v1, v2 6= a if possible.

(1) If a ∈ {v1, v2} then v0 is adjacent to a, and so one of p, q equals a and the other is adja-
cent to a.

Suppose that v0 is nonadjacent to a, and that a = v1 say, and let v3 be the neighbour of v2 in
C different from v1. It follows that v0 is adjacent to v2. From the choice of v1v2, we cannot replace
v1v2 by v2v3, and so there is a big C-major vertex w adjacent to a and nonadjacent to v2, v3, v0. But
then v0-v2-v1-w is an induced path, contrary to 5.2. This proves (1).

Let X be the set of vertices of P ∗2 ∪P ∗3 that have a neighbour in {v0, v1, v2} and are not in {v1, v2}.
We will show that |X| ≤ 2. There are several cases, depending on the position of the edge v1v2 of
C. Since v0 is adjacent to one of v1, v2, and v0 is nonadjacent to b1, b2, it follows that v1v2 6= b1b2,
and so v1v2 is an edge of one of P1, P2. If v1, v2 ∈ V (P1) \ {a}, then X ⊆ {p, q}. If v1 = a and
v2 ∈ V (P1) \ {a}, then by (1), X consists of at most the two neighbours of a in P2 ∪ P3. If v1 = a
and v2 ∈ V (P2 \ {a}), then by (1) X consists of at most the neighbour of a in P3 and the neighbour
of v2 in P2. Finally, if v1, v2 ∈ V (P2 \ {a}), then since v0 is adjacent to one of v1, v2, it follows that
one of p, q equals one of v1, v2, say p = v1, and q is adjacent to p; and so X consists of at most the
neighbour of v1 in C different from v2, and the neighbour of v2 in C different from v1. This proves
7.2.

8 Jumps off a great pyramid

Let us use the same notation as in the last section: thus H is a great pyramid, with apex a, and
constituent paths P1, P2, P3, where Pi has ends a, bi for i = 1, 2, 3, and P3 is shorter than P1, P2. let
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C be the shortest odd hole G[V (P1 ∪ P2)], and let Pi have length `i for i = 1, 2, 3. We remark that
`1, `2 have the same parity (since C has odd length), and `3 has the other parity (since otherwise
the hole G[V (P1 ∪ P3)] would have odd length and be shorter than C). Let us say H is optimal if
there is no great pyramid in G with smaller height. In this section we develop some results about
short paths in G that join vertices in V (H), when H is optimal. We begin with:

8.1 Suppose that no shortest odd hole in G is jewelled, and let H be an optimal great pyramid in
G, with height `3. Then no shortest odd hole in G has a shortcut of length at most `3.

Proof. Suppose there is such a shortcut, P say; then by 4.1, there is a great pyramid such that all
vertices of its shortest constituent path (except the apex) belong to P ∗, and so there are at most
`3− 1 of them. Hence the great pyramid has height at most `3− 1, contradicting that H is optimal.
This proves 8.1.

8.2 Suppose that no shortest odd hole in G is jewelled, and let H be an optimal great pyramid in G.
In the notation above let X be the set of all big C-major vertices, together with all vertices adjacent
or equal to b1 or to b2. Let P ′3 be a shortest path between a, b3 with interior in V (G)\X. Then P ′3, P3

have the same length, and the subgraph induced on V (P1 ∪ P2 ∪ P ′3) is an optimal great pyramid.

Proof. Since no vertex in P ∗3 is C-major, it follows that P ∗3 contains no vertex in X, and so P ′3 has
length at most that of P3. We claim that P1, P2, P

′
3 are the constituent paths of a pyramid. If so,

then it is a great pyramid, and so P3, P
′
3 have the same length since H is optimal. So we only need

to show the claim that P1, P2, P
′
3 are the constituent paths of a pyramid. Suppose not; then some

vertex of P ′∗3 belongs to or has a neighbour in one of V (P1) \ {a}, V (P2) \ {a}. Choose a minimal
subpath Q of P ′3 between b3 and some vertex q with a neighbour in one of V (P1) \ {a}, V (P2) \ {a}.
From the symmetry we may assume that q has a neighbour in V (P1) \ {a}.

(1) q has no neighbour in V (P2) \ {a}.

Suppose it does. Then since q is nonadjacent to b1, b3, there is a pyramid with apex q and con-
stituent paths the path Q, and for i = 1, 2 an induced path between q, bi with interior in P ∗i . Since Q
has length less than `3, and the other two constituent paths have lengths at most `1, `2 respectively,
this contradicts that H is an optimal great pyramid. This proves (1).

Let p be the neighbour of q in P1 that is closest in P1 to b1. Let R1, S1 be the two subpaths of
P1, between p, a and between p, b1 respectively.

(2) Either |E(Q)|+ 1 = `3, or |E(Q)| ≥ |E(S1)| − 1.

Certainly |E(Q)| ≤ `3−1, since Q is a proper subpath of P ′3; suppose that |E(Q)| < `3−1. Then the
path b2-b3-Q-q-p has length at most `3, and so is not a shortcut for C, by 8.1. But none of its vertices
are big C-major, and hence its length is at least dC(b2, p). Thus either |E(Q)|+ 2 ≥ |E(S1)|+ 1, or
|E(Q)|+ 2 ≥ |E(R1)|+ `2. Suppose the second holds. Since |E(Q)| ≤ `3− 1 ≤ `2− 2, it follows that
|E(R1)| = 0, a contradiction. So the first holds. This proves (2).
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Let Q′ be the subpath of P ′3 between q, a.

(3) |E(Q′)| ≥ |E(R1)| − 1.

Suppose not. The path p-q-Q′-a has length at most `3, since |E(Q′)| ≤ |E(P ′3)| − 1 ≤ `3 − 1, and so
it is not a shortcut for C, by 8.1. Hence its length is at least dC(p, a). But E(Q′)|+ 1 ≤ `3 < `2, and
so |E(Q′)|+ 1 ≥ |E(R1)|. This proves (3).

(4) |E(Q)|+ 1 < `3.

Suppose that |E(Q)|+1 = `3. Then q is adjacent to a, since Q is a subpath of P ′3; and so |E(Q′)| = 1.
From (3) (or since q is not C-major) it follows that |E(R1)| ≤ 2. Suppose that |E(R1)| = 2. Then
the hole

a-q-p-S1-b1-b2-P2-a

is a shortest odd hole, and since the path b2-b1-Q-q has length at most `3, it is not a shortcut over
this hole. Since b2-b1-Q-q has length at most `3 < `2, it follows that |E(Q)| ≥ |E(S1)|+ 1 = `1 − 1,
which is impossible since `3 < `1. Thus |E(R1)| = 1. But then the hole

b3-Q-q-p-S1-b1-b2

has length `1 + `3, and since this is less than the length of C, and `1, `3 have opposite parity, this is
a contradiction. This proves (4).

(5) |E(Q′)| = |E(R1)| − 1.

From (2) and (4) we deduce that |E(Q)| ≥ |E(S1)| − 1, and adding the inequality of (3), it fol-
lows that |E(P ′3)| ≥ `1 − 2. But |E(P ′3)| ≤ `3, and so `3 ≥ `1 − 2. Since `3 < `1 and `1, `3 have
opposite parity, it follows that `3 = `1 − 1. We have

(|E(P ′3)| − `3) + (`3 − `1) + 2 = (|E(Q)| − (|E(S1)| − 1)) + (|E(Q′)| − (|E(R1)| − 1)).

Since `3 = `1 − 1, we deduce that

(`3 − |E(P ′3)|) + (|E(Q)| − (|E(S1)| − 1)) + (|E(Q′)| − (|E(R1)| − 1)) = 1.

In particular, |E(Q)| − (|E(S1)| − 1) ≤ 1. But Q,S1 have lengths of the same parity, since the
subgraph induced on V (Q ∪ S1) is a hole of length less than C; so |E(Q)| = |E(S1)|, and hence

(`3 − |E(P ′3)|) + (|E(Q′)| − (|E(R1)| − 1)) = 0.

Thus P ′3 has length `3, and |E(Q′)| = |E(R1)| − 1. This proves (5).

By (5), the path p-q-Q′-a has the same length as R1. Since the length of the path p-q-Q′-a is at
most `3, no proper subset of its interior is a shortcut for any shortest odd hole; so by 4.2, either

a-P2-b2-b1-S1-p-q-Q′-a
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is a shortest odd hole C ′ say, or G[V (C ∪Q′)] is a great pyramid with heart V (Q′) \ {a}. In the first
case, the path b2-b3-Q-q is a shortcut for C ′, since none of its internal vertices are big C ′-major; and
yet its length is |E(Q)|+ 1 ≤ `3, a contradiction to 8.1. So the second holds, and G[V (C ∪Q′)] is a
great pyramid H ′ with heart V (Q′) \ {a}. But |V (Q′) \ {a}| < |V (P3) \ {a}|, so the height of H ′ is
less than the height of H, contrary to the optimality of H. This proves 8.2.

8.3 Suppose that no shortest odd hole in G is jewelled, and let H be an optimal great pyramid in G.
In the notation as before let X be the set of all big C-major vertices, together with all vertices adjacent
or equal to a vertex in {b1}∪(V (P3)\{a}). Let c2 ∈ V (P2) such that the subpath R2 of P2 between c2, a
has length at most min(`3, (1+`2)/2). Let R′2 be a shortest path between a, c2 with interior in V (G)\X.
Then R′2, R2 have the same length, and the subgraph induced on V (P1∪P3)∪(V (P2)\V (R2))∪V (R′2)
is an optimal great pyramid.

Proof. Since no vertex of R∗2 belongs to X, it follows that the length of R′2 is at most that of R2.

(1) We may assume (for a contradiction) that the interior of R′2 is not anticomplete to P ∗1 .

Suppose it is; then it is also anticomplete to (V (P1) ∪ V (P2)) \ {a}. Choose an induced path
P ′2 between b2, a with interior in (V (P2)\V (R2))∪V (R′2). We see that P1, P

′
2, P3 are the constituent

paths of a pyramid H ′, and so some two of these three paths have sum of lengths at least `1 + `2.
But P ′2 has length at most `2, and P3 has length `3 < `1, `2, so the sum of the lengths of P1, P

′
2 is

at least `1 + `2. Consequently P ′2 has length at least `2, and so exactly `2. Hence R′2 has the same
length as R2, and H ′ is a great pyramid, and the theorem holds. This proves (1).

From (1) we may choose a minimal subpath Q of R′2, with ends c2, q say, such that q has a
neighbour in P ∗1 . Choose p ∈ P ∗1 adjacent to q such that the subpath of P1 between p, b1 is minimal,
and let S1 be this subpath. Let R1 be the subpath of P1 between p and a. Now no vertex in V (Q)
is big C-major; and

dC(c2, p) = min(|E(R2)|+ |E(R1)|, |E(S1)|+ 1 + `2 − |E(R2)|).

Since |E(R2)|+ |E(R1)| > |E(Q)|+ 1 (because R2 has length more than Q), and |E(S1)|+ 1 + `2 −
|E(R2)| > |E(Q)|+ 1 (because |E(S1)| ≥ 1 and `2 − |E(R2)| > |E(R2)| − 2 ≥ |E(Q)| − 1), it follows
that the path c2-Q-q-p is a shortcut for C. But every shortcut has length at least `3 + 1, from 4.1
and the optimality of H, and yet Q has length less than `3, a contradiction. This proves 8.3.

8.4 Let H be an optimal great pyramid in G. In the notation as before let X be the set of all big
C-major vertices, together with all vertices adjacent or equal to a vertex in {b1}∪ (V (P3) \ {a}). Let
c2 ∈ V (P2) such that the subpath S2 of P2 between c2, b2 has length at most min(`3, `2/2). Let S′2 be
a shortest path between c2, b2 with interior in V (G) \X. Then S′2, S2 have the same length, and the
subgraph induced on V (P1 ∪ P3) ∪ (V (P2) \ V (S2)) ∪ V (S′2) is an optimal great pyramid.

Proof. As in the proof of 8.3, we may assume that S′∗2 is not anticomplete to P ∗1 , and so we can
choose a minimal subpath Q of P ′2, with ends c2, q say, such that q has a neighbour in P ∗1 . Choose

20



p ∈ P ∗1 adjacent to q such that the subpath of P1 between p, b1 is minimal, and let S1 be this subpath.
Let R1 be the subpath of P1 between p and a. Now no vertex in V (Q) is big C-major; and

dC(c2, p) = min(|E(R1)|+ `2 − |E(S2)|, |E(S1)|+ 1 + |E(S2)|).

Since |E(R1)|+`2−|E(S2)| > |E(Q)|+1 (because |E(R1)| ≥ 1 and `2−|E(S2)| ≥ |E(S2)| > |E(Q)|),
and |E(S1)|+ 1 + |E(S2)| > |E(Q)|+ 1 (because |E(S1)| ≥ 1 and |E(S2)| > |E(Q)| ) it follows that
the path c2-Q-q-p is a shortcut for C. But every shortcut has length at least `3 + 1, from 4.1 and
the optimality of H, and yet Q has length less than `3, a contradiction. This proves 8.3.

8.5 Suppose that no shortest odd hole in G is jewelled, and let H be an optimal great pyramid in G.
In the notation as before let X be the set of all big C-major vertices, together with all vertices adjacent
or equal to a vertex in {b1} ∪ V (P3). Suppose that `2 ≥ 2`3; and let R2, S2 be subpaths of P2 both of
length `3, with one end a and b2 respectively. Let their other ends be c2, d2 respectively. Let m2 be the
vertex of P2 such that the subpath of P2 between m2, a has length d`2/2e. Let C2, D2 be the subpaths
of P2 between m2, c2 and between m2, d2 respectively. Let C ′2 be a shortest path between m2, c2 with
interior in V (G) \X, and let D′2 be a shortest path between m2, d2 with interior in V (G) \X. Then
C ′2, C2 have the same length, and D′2, D2 have the same length, and and the subgraph induced on
V (P1 ∪ P3) ∪ (V (P2) \ V (C2 ∪D2)) ∪ V (C ′2 ∪D′2) is an optimal great pyramid.

Proof. Suppose not; then as before, some vertex of one of C ′2, D
′
2 has a neighbour in P ∗1 , and we

can choose a minimal subpath Q of one of C ′2, D
′
2, with ends m2, q say, such that q has a neighbour

in P ∗1 . Thus Q has length at most d`2/2e − `3 − 1. Choose an induced path P ′2 between q, b2 with
interior in V (Q ∪ S2). Thus P ′2 has length at most

|E(Q)|+ b`2/2c ≤ `2 − `3 − 1 ≤ `2 − `3 − 1.

Now there are three cases, depending whether q has one neighbour, two nonadjacent neighbours, or
just two adjacent neighbours in V (P2).

(1) q does not have a unique neighbour in V (P1).

Suppose it does, p say. Let R1 be the subpath of P1 between p and a, and let S1 be the sub-
path of P1 between p, b1. There is a pyramid with apex p and constituent paths S1, R1 ∪ P3 and
p-q-P ′2-b2, so some two of these paths have sum of lengths at most `1 + `2. The first two lengths sum
to `1 + `3 < `1 + `2; and the first and third sum to at most

(`1 − 1) + (`2 − `3) < `1 + `2;

and the last two sum to at most

(|E(R1|+ `3) + (`2 − `3) < `1 + `2,

a contradiction. This proves (1).

(2) q does not have two nonadjacent neighbours in V (P1).
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Suppose it does. Since q is not C-major, there is a three-vertex subpath of P1, with ends r1, s1,
where a, r1, s1, b1 are in order in P1, such that q is adjacent to r1, s1, and possible the vertex of P1

between them, and has no other neighbours in V (P1). Thus s1 6= b1 since q is nonadjacent to b1, but
possibly r1 = a. Let R1 be the subpath of P1 between r1, a, and let S1 be the subpath between s1, b1.
There is a pyramid with apex q and constituent paths q-s1-S1-b1, q-r1-R1-a-P3, and P ′2. Some two
of these paths have lengths summing to at least `1 + `2. But the first two sum to `1 + `3 < `1 + `2;
the first and third sum to at most (E(S1)| + 1) + (`2 − `3 − 1) < `1 + `2; and the second and third
sum to at most

(1 + |E(R1)|+ `3) + (`2 − `3 − 1) < `1 + `2,

a contradiction. This proves (2).

From (1) and (2), it follows that q has exactly two neighbours in V (P1) and they are adjacent.
Let them be r1, s1, where a, r1, s1, b1 are in order in P1. Let R1 be the subpath of P1 between r1, a,
and let S1 be the subpath between s1, b1. Let P ′′2 be an induced path between a, q with interior in
V (R2 ∪ C2 ∪Q); and hence with length at most

d`2/2e+ |E(Q)| ≤ (d`2/2e) + (d`2/2e − `3 − 1) ≤ `2 − `3.

There is a pyramid with apex a and constituent paths R1, a-P3-b3-b1-S1-s1, and P ′′2 ; and some two
of them have lengths that sum to at least `1 + `2. But the first two lengths sum to `1 + `3 < `1 + `2;
the first and third sum to at most

|E(R1)|+ (`2 − `3) < `1 + `2;

and the second and third sum to at most

(`3 + 1 + |E(S1)|) + (`2 − `3) < `1 + `2

since |E(S1)| ≤ `1− 2 (because q, a are nonadjacent). This is a contradiction, and so proves 8.5.

9 Locating a great pyramid

If X ⊆ V (G), we define N [X] to be the set of all vertices that either belong to X or have a neighbour
in X, and N(X) = N [X] \X. If X = {x} we write N [x] for N [{x}] and so on. Now we are ready
to prove 3.2, which we restate:

9.1 There is an algorithm with the following specifications:

Input: A graph G.

Output: Outputs either an odd hole of G, or a statement of failure. If G contains no 5-hole, and
no jewelled shortest odd hole, and G contains a great pyramid, the output will be a shortest odd
hole of G.

Running time: O(|G|14).
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Proof. We enumerate all 12-tuples (a, b1, b2, b3, c2, d2,m2, v0, v1, v2, v3, v4) of vertices of G such that
a, b1, b2, b3 are distinct and b1, b2, b3 are pairwise adjacent. For each one we carry out the following
steps:

Step 1: Let Y be N [{v0, v1, v2}] \ {v1, v2, v3, v4}.

Step 2: Let X1 = Y ∪N [b1, b2]. Choose a shortest path Q3 between a, b3 with interior in V (G)\X1.
(If there is no such path, move on the next 12-tuple.)

Step 3: Let X2 = Y ∪ N [{b1}] ∪ N [V (Q3) \ {a}]. Choose a shortest path R2 between a, c2 with
interior in V (G) \X2, and a shortest path S2 between b2, d2 with interior in V (G) \X2. (If
there are no such paths, move on.)

Step 4: Let X3 = Y ∪ N [V (Q3)]. Choose a shortest path C2 between c2,m2 with interior in
V (G) \X3, and a shortest path D2 between d2,m2 with interior in V (G) \X3 (and if there
are no such paths, move on).

Step 5: Let X4 = N [V (R2 ∪C2 ∪D2 ∪S2 ∪Q3) \ {a}], and choose a shortest path Q1 between a, b1
with interior in V (G) \X4 (if there is no such path, move on).

Step 6: Check whether the union of Q1, R2, C2, D2, S2 and the edge b1b2 is an odd hole, and if so,
record it.

After examining all 12-tuples, if no hole is recorded we report failure, and otherwise output the
shortest of the recorded holes.

To prove correctness, since the output is either failure or an odd hole, we only need check that
when G contains a great pyramid, the output will be a shortest odd hole of G. Thus, let H be an
optimal great pyramid, with apex a and base {b1, b2, b3}. Let its constituent paths be P1, P2, P3 in
the usual notation. By 7.2 there are three vertices v0, v1, v2 of G, and i ∈ {1, 2}, with the following
properties:

• every big C-major vertex is adjacent to one of v0, v1, v2;

• v1, v2 ∈ V (C) are distinct and adjacent, and either v0 /∈ V (H) or v0 ∈ {v1, v2};

• there are at most two vertices in P ∗i ∪ P ∗3 that are different from v1, v2 and adjacent to one of
v0, v1, v2.

By exchanging b1, b2 (and therefore P1, P2) we may assume that i = 2; choose v3, v4 ∈ V (C) such
that every vertex in P ∗2 ∪ P ∗3 that is different from v1, v2 and adjacent to one of v0, v1, v2 is one of
v3, v4.

Let Pi have length `i for i = 1, 2, 3. Let m2 ∈ V (P2) such that the subpath of P2 between m2, a
has length d`2/2e. If `2 ≥ 2`3, let c2 ∈ V (P2) such that the subpath of P2 between a, c2 has length
`3, and define d2 similarly; and otherwise let c2 = d2 = m2.

We claim that when the algorithm tests the 12-tuple (a, b1, b2, b3, c2, d2,m2, v0, v1, v2, v3, v4) it
will output a shortest odd hole. To see this, let Z be the set of all big C-major vertices. Let Y be
as in step 1 above; so Z ⊆ Y , and P ∗2 , P

∗
3 are disjoint from Y . Let Q3 be the path chosen in step 2;

it exists and has length at most that of P3, since P3 exists and has interior disjoint from X1. But
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by 8.2, P3 is a shortest path between a, b3 with interior disjoint from Z ∪N [{b1, b2}]; and since Q3

is also disjoint from Z ∪ N [{b1, b2}], it follows that P3 has length at most that of Q3. So P3, Q3

have the same length, and therefore Q3 is a shortest path between a, b3 with interior disjoint from
Z ∪N [{b1, b2}]. By 8.2, we can replace P3 by Q3 and obtain another optimal great pyramid H1 say,
with constituent paths P1, P2, Q3. Since C is contained in H1, it follows that the set of big C-major
vertices is not affected by replacing H by H1.

By 8.4 and 8.5 applied to H1, a similar argument shows that the union of the four paths
R2, C2, D2, S2 chosen in steps 3 and 4 is a path Q2 with the same length as P2, and so P1, Q2

and Q3 are the constituent paths of an optimal great pyramid H2 say. Now let Q1 be as chosen in
step 5 (it exists, since P1 exists); then it has length at most that of P1, and so there is a pyramid
H3 with constituent paths Q1, Q2, Q3. The holes induced on V (Q1 ∪ Q3) and on V (Q2 ∪ Q3) have
length at most that of some hole of H different from C, and hence shorter than C; and so they are
even, and hence the hole induced on V (Q1 ∪Q2) is odd, and since it has length at most that of C,
this hole is a shortest odd hole of G. The algorithm will record this hole in step 6. This proves
correctness. For each 12-tuple, the running time is O(|G|2), so the total running time is as claimed.
This proves 3.2.
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