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Abstract

We investigate a generalisation of permutation networks. We say a
sequence T = (T1, . . . , T`) of transpositions in Sn forms a t-reachability
network if for every choice of t distinct points x1, . . . , xt ∈ {1, . . . , n},
there is a subsequence of T whose composition maps j to xj for every
1 ≤ j ≤ t. When t = n, then any permutation in Sn can be created,
and T is a permutation network. Waksman [JACM, 1968] showed that
the shortest permutation networks have length about n log2 n. In this
paper, we investigate the shortest t-reachability networks. Our main
result settles the case of t = 2: the shortest 2-reachability network has
length d3n/2e − 2. For fixed t, we give a simple randomised construc-
tion which shows there exist t-reachability networks using (2+ot(n))n
transpositions. We also study the case where all transpositions are of
the form (1, ·), separating 2-reachability from the related probabilistic
variant of 2-uniformity. Many interesting questions are left open.
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1 Introduction

Let Sn be the symmetric group on n elements, and write (a, b) ∈ Sn for the
transposition that swaps a and b, and 1 ∈ Sn for the identity permutation.
Let T1, . . . , T` be a sequence of transpositions with Ti = (ai, bi) for i =
1, . . . , `. The sequence forms a permutation network if for every choice of
σ ∈ Sn, there is some subsequence Ti1 , . . . , Ti`′ such that

σ = (ai1 , bi1) · · · (ai`′ , bi`′ ).

Permutation networks are also called non-blocking networks and have been
well-studied due to their usefulness in communication networks and dis-
tributed computing (see e.g. [4]). Of particular relevance is the following
result which shows that permutation networks can be constructed with at
most

∑n
i=1 dlog2(i)e transpositions.

Theorem 1 (Waksman [6], Beauquier and Darrot [2]). There is a permuta-
tion network on n elements using

∑n
i=1 dlog2(i)e transpositions.

Each transposition in a permutation network can only increase the num-
ber of possible final states by a factor of two, and so there must be at least
log2(n!) =

∑n
i=1 log2(i) transpositions.1

Permutation networks can also be described in terms of rearrangements
of counters. If counters {1, . . . , n} are placed on the vertices of a complete
graph on n vertices (with each vertex having exactly one counter), then a
permutation network can reach any configuration of counters by following
the switches prescribed by a suitable subsequence of T1, . . . , T`. But what
happens with fewer counters? How many transpositions are needed to ensure
a specific set of counters can be moved to any configuration? We say a
sequence of transpositions T1, . . . , T` ∈ Sn is a t-reachability network if, for
every choice of t distinct ordered points x1, . . . , xt ∈ [n] = {1, . . . , n}, there is
some subsequence Ti1 , . . . , Ti`′ such that the composition (ai1 , bi1) · · · (ai`′ , bi`′ )
maps j 7→ xj for 1 ≤ j ≤ t.

Let us first consider the case of 1-reachability where we want to shuffle
one counter across n positions. By noting there are at most 2` possible
subsequences of a sequence of length `, we immediately get a lower bound
` ≥ log2 n, but this is far from optimal. Indeed, a transposition (a, b) can
only move the counter if either a or b is a position where there may already
be a counter, and the number of ‘reachable positions’ can only increase by

1It was claimed by Waksman [6] that their construction is best possible, although there
does not appear to be a published proof of the corresponding lower bound.
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one for each transposition. This implies n−1 transpositions are needed, and
it is easy to find a tight example, e.g. (1, 2), (1, 3), . . . , (1, n).

Our main result is an exact bound for 2-reachability.

Theorem 2. Let n ≥ 2. The shortest 2-reachability network on n elements
contains d3n/2e − 2 transpositions.

We also give a simple randomised construction which shows that one
can achieve t-reachability using (2 + ot(1))n transpositions. Surprisingly, the
coefficient of the leading term is independent of t.

Theorem 3. Let t ≥ 3. There is a t-reachability network on n elements of
length at most (2 + ot(1))n.

Reachability questions are related to the problem of generating uniform
random permutations. A lazy transposition T = (a, b, p) is the random per-
mutation

T =

{
(a, b) with probability p,

1 otherwise.

The composition of an independent sequence of lazy transpositions is also
a random permutation. A transposition shuffle is an independent sequence of
lazy transpositions T1, . . . , T` such that T1 · · ·T` ∼ Uniform(Sn), the uniform
distribution over Sn. Let U(n) denote the minimum ` for which there exists a
transposition shuffle on n elements of length `. Angel and Holroyd [1] asked
whether U(n) =

(
n
2

)
. This is disproved in [5], which shows that U(n) ≤

2
3

(
n
2

)
+ O(n log n) (which is currently the best upper bound). For a lower

bound, note that by ignoring the probabilities, any transposition shuffle gives
a permutation network, and so U(n) = Ω(n log n).2

In the case when all transpositions are of the form (i, i + 1), Angel and
Holroyd [1] showed that

(
n
2

)
is best possible. However, with this restriction

there is also a lower bound of
(
n
2

)
from the ‘reachability’ point of view: this

is needed to reach the ‘reverse permutation’ that maps i to (n+ 1)− i. It is
an interesting open problem to prove better lower bounds than Ω(n log n) in
the general case.

Similar to how we defined t-reachability, we say a sequence of lazy trans-
positions T1, . . . , T` is a t-uniformity network if the composition T1 . . . T`

2Conversely, any sorting network can be used to give a sequence which achieves every
permutation with non-zero probability, but not necessarily the uniform distribution. It
is important here that the sequence of permutations achieves the uniform distribution
exactly: Czumaj [3] showed that there are sequences of lazy transpositions of length
O(n log n) which are very close to uniform.
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maps the tuple (1, . . . , t) to (x1, . . . , xt) with equal probability for each tu-
ple (x1, . . . , xt) of t distinct elements from [n]. Of course, any t-uniformity
network is also a t-reachability network.

In this paper, we also provide a separation between 2-uniformity and 2-
reachability when restricted to transpositions of the form (1, ·), which we call
star transpositions (as they match the edges of a star graph K1,n−1). This
does not affect the order of magnitude in the uniformity set-up, since any
lazy transposition (i, j, p) can be simulated by the three star transpositions
(1, i, 1), (1, j, p), (1, i, 1) (so, in particular, showing that the minimum number
of star transpositions is Ω(n2) would give a lower bound of Ω(n2) for the
general case as well).

A modification of Theorem 2 shows that the minimum number of transpo-
sitions needed for 2-reachability is again around 3n/2 even when restricting
to star transpositions.

Theorem 4. For n ≥ 3, the shortest 2-reachability network on n elements
in which each transposition is a star transposition, contains d3(n− 1)/2e
transpositions.

Using the restrictive nature of the transpositions, we are able to show
that achieving 2-uniformity is strictly harder than achieving 2-reachability.

Theorem 5. For some C > 0, any 2-uniformity network on n elements in
which each transposition is a star transposition has length at least 1.6n−C.

This is the only setting in which a separation between reachability and
uniformity is known. In the setting of star transpositions, we also provide a
lower bound on the length of t-reachability networks (see Proposition 7).

The remainder of the paper is organised as follows. We settle the case
of 2-reachability (Theorem 2) in Section 2 and prove Theorem 3 in Section
3. In Section 4 we study star transpositions, providing a separation between
2-reachability and 2-uniformity (Theorem 4 and Theorem 5). We finish with
some open problems in Section 5.

2 Exact bound for 2-reachability

We prove Theorem 2: the smallest 2-reachability network on n elements has
length d3n/2e − 2.

Proof of Theorem 2. We first give an upper bound construction. Let n ≥ 2
be given. Our sequence of transpositions starts with the following transpo-
sitions, in order.
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1 2

9

Figure 1: The multigraph corresponding to the minimum 2-reachable se-
quence given in the proof of Theorem 2. All vertices except 1 and 9 have
deficiency 0.

1. (1, 2).

2. (1, x) for all odd 3 ≤ x ≤ n.

3. (2, y) for all even 4 ≤ y ≤ n.

4. (x, x+ 1) for all odd 3 ≤ x ≤ n− 1.

If n is odd, we also add the transposition (1, 2) at the end, which will be
needed to reach the position (1, n). This defines a sequence of transpositions
of length d3n/2e − 2, and it is straightforward to check that this sequence
forms a 2-reachability network.

The main work in this proof is in showing the lower bound. Suppose
that σ = (σ1, . . . , σ`) is a shortest 2-reachability network on n ≥ 2 elements.
Given two (distinct) counters on positions 1 and 2, a subsequence of σ defines
a permutation that moves the counters to new (distinct) positions x, y ∈
{1, . . . , n}. By the definition of 2-reachability, it must be possible to reach
any such pair of positions (x, y).

We will consider a process on an auxiliary multigraph G with vertex set
{1, . . . , n}. An example is drawn in Figure 1 for the sequence of transposi-
tions given earlier for the upper bound (for n = 9). The process begins by
growing two trees of black edges from the vertices 1 and 2, which we denote
T1 and T2 respectively. We initialise G as the empty graph and process the
transpositions in order, adding an edge for each. We start with a set of active
vertices {1, 2}. Any other vertex becomes active when it first appears in a
transposition with an active vertex. Note that no counter can be sitting on
an inactive vertex, and (by minimality) no transposition joins two inactive
vertices. When we process a transposition (a, b), we add an edge ab to G.
We colour the edge black if either a or b was inactive and red otherwise.
The black edges always form a forest consisting of at most two trees each
containing one of the starting positions.
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We now modify our sequence to obtain a sequence with a nicer form (and
at most the same length). Let c1 and c2 denote the counters that start on
1 and 2 respectively, and let (a, b) where a ∈ V (T1) and b ∈ V (T2) be the
transposition at the first time the two trees meet. Before this time, the
counter c1 is contained in V (T1) and the counter c2 is contained in V (T2),
so immediately after (a, b) the first counter c1 is contained in V (T1) ∪ {b}
and the second counter c2 is contained in V (T2) ∪ {a}. We replace the
initial sequence of transpositions, up to and including (a, b), by the following
sequence. Start with the transpositions (1, v) for all v ∈ V (T1)\{a}, followed
by the transpositions (1, u) for all u ∈ V (T2)\{b}. Lastly, we do (1, 2), (1, a)
and (2, b). The new sequence can reach every pair (x, y) that the original
sequence could reach, and uses at most as many transpositions. We colour
the edge (1, 2) black, so the black edges form a spanning tree which we will
view as rooted at the pair of vertices {1, 2}.

We now prove that the sum of the red degrees (counted at the end of the
process) is at least n − 2, which shows that the number of edges in G (and
transpositions in our sequence) is at least n− 1 + d(n− 2)/2e = d3n/2e − 2,
as desired. We first need some more definitions. The subtree Tv rooted at
v is the set of vertices u (including v) such that the unique path from u to
{1, 2} in the black tree passes through v. Any vertex in the subtree rooted
at v is said to be above v. The deficit of a vertex v is defined as

def(v) = |V (Tv)| −
∑

u∈V (Tv)

dR(u),

where dR(u) denotes the number of red edges incident to u. Note that the
red edges may join vertices of Tv to vertices outside Tv, so may not sit inside
the tree. In order to bound the sum of the red degrees, we will inductively
bound the deficit of vertices.

Each vertex v 6∈ {1, 2} has a unique vertex adjacent to v on the unique
path in the black tree from {1, 2} to v. We call this the parent of v and we
denote it by p(v) (which could equal 1 or 2). The children C(v) of a vertex
v are the vertices u for which p(u) = v. We may rewrite the formula for the
deficit of v in the following inductive manner.

def(v) = 1− dR(v) +
∑

u∈C(v)

def(u).

Note that the first edge that can carry a counter to v 6∈ {1, 2} is the black
edge to its parent; if v is not incident to a red edge, then this is the only way
to get a counter to v.

We show the following claim inductively, which we will extend to v ∈
{1, 2} to finish the proof.
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Claim 6. Every vertex v 6∈ {1, 2} has deficit at most 1. Moreover, if the
deficit of v is equal to 1, then there is a vertex ` such that the only way for a
counter to reach ` is to enter v using the black edge p(v)v and then to follow
the path of black edges from v to `.

Proof. We prove the claim by induction on the height of the subtree rooted
at v 6∈ {1, 2}. If the height is 0, that is, v is a leaf of the black tree, then the
deficit is at most 1 and equals 1 if and only if v can only be reached via the
black edge from its parent p(v).

Now suppose that the claim has been shown up to height h ≥ 0, and
suppose the subtree rooted at v has height h + 1. We first show that there
are at least as many red edges incident to v as there are children of v with
deficit 1, which implies that deficit

∑
u∈V (Tv)

(1− dR(u)) of v is at most

1− dR(v) + |{u ∈ V (Tv) : dR(u) = 1 and u 6= v}| ≤ 1.

If a vertex u of deficit 1 is above v and connected to v via a black edge, then
by induction there exists a vertex `(u) in the subtree rooted at u which can
only be reached using black edges from v. Let vz be the last black edge from v
to a child of v with deficit 1. Then it is not possible to get counters into both
v and `(z) unless there is a red edge incident with v after (v, z). Similarly, if
v has black edges to vertices x, y ∈ C(v) that have have deficit 1, then there
has to be a red edge incident with v, produced by some transposition that
occurs between the transpositions (v, x) and (v, y) else there is no way to
reach (`(x), `(y)).

Suppose now that v has deficit exactly 1. We need to find a vertex ` which
can only be reached using a path of black edges from the parent of v. If none
of the children of v have deficit 1, then the deficit of v is 1− dR(v) and there
are no red edges incident to v. Hence, we can take ` = v. Otherwise, let x be
the first neighbour above v which has deficit 1. Since, v has deficit exactly
1, our argument above shows that there cannot be a red edge incident to v
which corresponds to a transposition before (v, x). Hence, the only way of
getting a counter into `(x) is using the black edge to v, the edge (v, x) and
the path of black edges from x to `(x), and we take ` = `(x). This completes
the proof of Claim 6.

We now show that the vertices 1 and 2 have deficit at most 1 as well.
The difficulty in this case is that it is possible to put a counter on 1 (say)
using the black edge (1, 2). This means that we can put a counter on `(x)
and `(y) without requiring a red edge between them. However, this does not
take into account the fact that the counters are distinguishable, and we only
need to modify the argument from the claim slightly to make use of this.

7



Let the counters starting in positions 1 and 2 be c1 and c2 respectively,
and suppose there is a child x of 1 which has deficit 1. Then there is a vertex
`(x) such that the only way for a counter to reach `(x) is to follow the path
of black edges from 1 to x to `(x). If the transposition (1, x) occurs before
the black edge (1, 2), then there is no way to move the counter c2 to `(x),
and x must have deficit 0. The black edge (1, 2) is the only way to put a
counter on 1 without using a red edge, so after this transposition we can
apply a proof similar to that of the claim above to see the deficit of 1 is at
most 1. Indeed, if x and y are children of 1 with deficit 1, then there has to
be some transposition that can place a counter on 1 in between (1, x) and
(1, y) in order to reach (`(x), `(y)). We have just argued that this is not the
transposition (1, 2), and so it must be a red transposition. Likewise, there
must be a red transposition after the last black edge to a vertex z of deficit
1 in order to end with the counters in 1 and `(z).

Since every vertex is in either the subtree rooted at 1 or the subtree rooted
at 2 and the deficit of these two subtrees is at most 1, the sum of the red
degrees must be at least n − 2. Hence, there are at least d(n− 2)/2e red
edges and at least d3n/2e − 2 transpositions in the sequence.

3 Upper bound for t-reachability

We now give a probabilistic construction which shows that there are t-
reachability networks on n elements of length (2 + ot(1))n. This is much
smaller than the best known constructions for uniformity and, surprisingly,
the coefficient of the leading term is bounded. We remark that all the trans-
positions used in this construction are star transpositions.

Proof of Theorem 3. Let t ≥ 3 be a natural number and choose ε ∈ (0, 1
t+1

).
Let n > t and set L = bn1−εc. Recall that the counters start in positions
{1, . . . , t}.

Let G be a random bipartite graph with vertices A∪B = {at+1, . . . , an}∪
{b1, . . . , bL} constructed by adding two uniformly random edges from aj to
{b1, . . . , bL} for each j. The random transposition sequence begins with L
phases. In the ith phase, we add the transpositions (1, j) for each j ∈
{2, . . . , t} followed by (1, j) for the j ∈ {t+ 1, . . . n} such that aj is adjacent
to bi. Finally, the sequence ends with a t-reachable network over the first t
positions.

Fix positions x1, . . . , xt ∈ {1, . . . , n} for which we need to find a subse-
quence that puts our t counters into those positions. Let the xi which are in
{t+ 1, . . . , n} be xi1 , . . . , xim = y1, . . . , ym.
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Suppose that there is a matching {ayjbsj : j ∈ [m]} in G containing the
vertices ay1 , . . . , aym . For j ∈ [t], we can put the jth counter in position
yj = xij during phase sj using the transpositions (1, j) and (1, yj). The
remaining counters can easily be positioned using the t-reachable sequence
at the end.

It remains to show that there is some choice for G such that every set of
s ≤ t vertices from A is in a matching. The probability that a given set of s
vertices from A has at most s− 1 neighbours in B is at most(

L

s− 1

)(
s− 1

L

)2s

≤ (s− 1)2s

(s− 1)!
L−(1+s).

Hence, by the union bound, the probability that there is a set A′ ⊆ A of size
at most t and with at most |A′| − 1 neighbours is at most

t∑
s=3

(
n

s

)
(s− 1)2s

(s− 1)!
L−(1+s) ≤

t∑
s=3

(s− 1)2s

s!(s− 1)!

ns

Ls+1
= Ot

(
n−1+(t+1)ε

)
.

Since ε < 1/(t + 1), this probability is less than 1 for n sufficiently large.
This implies there exists a suitable choice for the graph G.

Note that for j ∈ {t + 1, . . . , n}, the transposition (1, j) appears exactly
twice in the sequence since the vertex aj has degree exactly 2. We can create a
t-reachable network on the first t positions usingO(t log t) star transpositions.
Hence, there exists a t-reachability network using at most

(t− 1)L+ 2(n− t) +O(t log t) = 2n+ ot(n)

transpositions.

4 Star transpositions

We now turn our attention to the setting where all transpositions are of
the form (1, ·) and prove Theorem 4, which shows that restricting to star
transpositions leads to only a small difference in the number of transpositions
needed for 2-reachability. In fact, there is no difference when n is odd, and
they differ by only 1 when n is even.

Let us first consider the upper bound. The idea is simple: we will start
with the transposition (1, 2) so the two counters are indistinguishable, then
we will sweep through the even numbers and potentially load one of them
with a counter. Finally, we will sweep through every position. That is,

1. (1, 2),
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2. (1, 4), (1, 6), . . . , (1, 2bn/2c),

3. (1, 2), (1, 3), (1, 4), . . . , (1, n).

It is easy to see that the counters can reach (x, y) when x and y are not
both odd: simply place one counter in an even position in the first sweep
and place the other counter in the second sweep. To put a counter on x
and y when both are odd and 1 < x < y, we load (x + 1) in the first sweep
and use this to “reload” 1 before the transposition (1, y). When x = 1, this
sequence works when n is even and we can use (1, n) to leave a counter on
1, but it breaks down when n is odd. This could be fixing by appending
the transposition (1, 2) say, but it is possible to do slightly better with the
following “twisted” sequence. Let n = 2m + 1. The following sequence of
transpositions is 2-reachable.

1. (1, 2),

2. (1, 4), (1, 6), . . . , (1, 2m),

3. (1, 3), (1, 2), (1, 5), (1, 4), . . . , (1, 2m+ 1), (1, 2m).

Proof of Theorem 4. The upper bound is given in the discussion above, so
we only need to prove a matching lower bound. For this we proceed much
as in the proof of Theorem 2. We colour the transposition (1, x) black if it
is the only occurrence, red if it has occurred previously and blue otherwise
(i.e. if it is a first occurrence, but will occur later as well). There are n− 1
transpositions that are either black or blue, and it suffices to show that there
are at least (n− 1)/2 red transpositions.

We claim that the number of red transpositions is at least the number
of black transpositions. Let the two counters be c1 and c2. Suppose (1, x)
is the last black transposition where x ≥ 3. Then there needs to be a red
transposition after (1, x) in order to leave the counters c1 and c2 in 1 and x
respectively. Similarly, in between any pair of black transpositions (1, x) and
(1, y) where x, y ≥ 3 there has to be a red transposition in order to leave the
counters c1 and c2 in y and x respectively. This shows the claim when (1, 2)
is used multiple times, and there is no black (1, 2).

If (1, 2) is used exactly once, then it must be the first black transposition.
Indeed, if (1, x) is a black transposition where x ≥ 3, then there is no way
to put the counter c2 in x unless (1, 2) has already been. If (1, 2) were to be
the only black transposition, then (1, x) must appear twice for every x ≥ 3
and there are 2(n − 2) + 1 transpositions. This is at least d3(n− 1)/2e for
n ≥ 3 and we would therefore be done. Hence, if (1, 2) is used exactly once,
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it must be the first but not the last black transposition. The above argument
shows there is a red transposition after the last black transposition and in
between every pair of black transpositions (1, x) and (1, y) where x, y ≥ 3.
It is enough to show there is a red transposition between (1, 2) and the first
black transposition (1, x) where x ≥ 3, and this is easy to argue: there must
be a red transposition between (1, 2) and (1, x) in order to leave c1 in x and
c2 in 1.

By definition the number of red transpositions is at least the number of
blue transpositions. Since there is a total of n− 1 black and blue transposi-
tions, there must be at least (n− 1)/2 of one of them and there are at least
(n− 1)/2 red transpositions.

The lower bound for 2-reachability above immediately gives a lower bound
for the more difficult problem of constructing a 2-uniformity network with
star transpositions but, using the restrictive nature of the transpositions,
we can show that a 2-uniformity network has length at least 1.6n − C, a
constant factor higher. This confirms, for this specific case, that the problem
of uniformity is strictly more difficult than reachability.

Proof of Theorem 5. We use a discharging argument to show that, after dis-
regarding a constant number of the transpositions, 1.6 is a lower bound on
the average number of times that a star transposition is used.

Let T = (T1, . . . , T`) be a sequence of star transpositions that forms a
2-uniformity network on n elements. We assign each transposition (1, a) a
weight equal to the number of times (1, a) is used in T . Let σ1, . . . σm be the
transpositions of T which are used exactly once and are of the form (1, x) for
x ≥ 3. We transfer weight from the transpositions which are used multiple
times to the transpositions which are used exactly once according to the
following rules.

� If the last appearance of (1, a) and (1, b) is between σi and σi+1, then
they each transfer transfer 0.3 to σi and 0.1 to σi+1.

� If there is only one transposition which appears for the last time be-
tween σi and σi+1, it transfers 0.4 to σi.

� Each transposition which appears between σi and σi+1 for neither the
first time nor the last time transfers 0.6 to σi and 0.2 to σi+1.

If (1, a) is used exactly twice, then it transfers 0.4 and ends with weight 1.6.
A transposition used more than twice transfers 0.8(i− 2) + 0.4 so ends with
weight 1.6 + 0.2(i− 2). Hence, we only need to show that all but a constant
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number of the transpositions that are used once (the σi) end with weight at
least 1.6.

Let σi−1 = (1, a) and σi = (1, b). In order to end with counters in both
a and b, there must a transposition between σi−1 and σi which can place a
counter in position 1. In particular, there is either a transposition which is
not appearing for the first time, or (1, 2) appearing for the first time. This
immediately shows that all but one of σ1, . . . , σm−1 have weight at least 1.4.
We claim that in between either σi−1 and σi or between σi and σi+1 one of
the following must hold:

1. there are at least two transpositions appearing for the last time,

2. there is a transposition appearing for neither the first nor the last time,

3. there is the transposition (1, 2) appearing for the first time.

If one of the first two cases occurs, then σi ends with weight at least 1.6,
while the last case can only occur twice. This analysis does not apply to σ1
and σm, showing that the number of σi which ends up with weight less than
1.6 is at most four.

We now prove the above claim. Let σi−1 = (1, a), σi = (1, b) and σi+1 =
(1, c) and assume that none of the conditions above hold. In between σi−1
and σi, there can be only transpositions used for the first time and a single
transposition (1, `) used for the last time. We may write the sequence as

(1, a), (1, f1), . . . , (1, fk), (1, `), (1, fk+1), . . . , (1, fs), (1, b) (1)

where the fj are distinct, not equal to 2 and are appearing for the first time.
The only way to end the sequence of lazy transpositions with the counters

in {a, b}, {a, `} or {b, `} is to start the sequence (1) with the two counters
in {1, `}. Let pj be the probability associated with the transposition (1, j)
in (1). The probability that this sequence ends with counters in {a, b} and
{a, `} must be equal, so

pa(1− p`) = pap`(1− pfk+1
) · · · (1− pfs)pb.

In particular, if q = (1−pfk+1
) · · · (1−pfs), then 1−p` = p`qpb which implies

p` = 1/(qpb + 1) ≥ 1/2. We now claim that the probability a counter ends
in ` is strictly higher than the probability a counter ends in b unless qpb = 1.
We condition on which of 1 and ` contain a counter before the transposition
(1, `) and calculate the probability a counter ends in each of the positions `
and b.
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Starting positions {1,`} {`} {1} ∅
Counter ends in ` 1 1− p` p` 0
Counter ends in b qpb p`qpb (1− p`)qpb 0

In every case, the probability that a counter ends in ` is at least the proba-
bility that a counter ends in b, and the first one is strict unless qpb = 1.

Now we consider the transpositions between (1, b) and (1, c) below.

(1, b), (1, f ′1), . . . , (1, f
′
k), (1, `′), (1, f ′k+1), . . . , (1, f

′
s), (1, c)

Since the transposition (1, b) fires with probability 1, there is no way for
the counters to end in both `′ and c, giving a contradiction and proving the
claim.

We have seen in Theorem 4 that the shortest 2-reachability network
has length approximately 3n/2. Moreover, it is possible to construct a 3-
reachable network using 5n/3 + C such transpositions. Using a similar ar-
gument to the proof of Theorem 5, we offer the following lower bound for
arbitrary t when using star transpositions, which is tight up to additive con-
stants when t = 2, 3.

Proposition 7. For each t ≥ 1, there is a constant Ct such that any t-
reachability network on n elements using only star transpositions has length
at least (2− 1/t)n− Ct.

Proof. We will again apply a discharging argument. Let T be a given t-
reachability network consisting of star transpositions. Similar to before, we
assign the transposition (1, a) a weight equal to the number of times (1, a)
is used and let σ1, . . . , σm be the subsequence of transpositions that are used
exactly once and of the form (1, x) for x 6∈ [t]. We transfer weight from
a transposition used multiple times according to the σi using the following
simple rules.

� For each transposition between σi and σi+1 used for the last time (but
not the first), transfer 1/t to σi.

� For each transposition between σi and σi+1 used for neither the first
time nor the last time, transfer 1 to σi.

We will show all but at most 2t transpositions end up with weight at least 2−
1/t. Clearly, any transposition which is used multiple times ends with weight
2− 1/t as required. We will ignore any σi, σi+1 for which some transposition
(1, x) with x ∈ [t] occurs for the first time between them. This disregards at
most 2(t− 1) of the σi.
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We show all the other σi (except σm) get weight at least 2−1/t. Consider
the section between σi = (1, a) and σi+1 = (1, b)

(1, a)(1, s1) · · · (1, s`)(1, b).

If there is a transposition between σi and σi+1 used for neither the first nor
the last time, then σi has weight at least 2. So we assume all (1, sj) are used
for either the first or last time. Let s′1, . . . , s

′
`′ be the transpositions used for

the last time. If `′ ≥ t− 1, then σi receives weight at least 2− 1/t as desired,
and we show that this is always the case.

We show this by proving that we cannot simultaneously reach the posi-
tions {a, s′1, . . . , s′`′ , b} (which we should be able to if it has at most t ele-
ments). The transposition σi = (1, a) must be used (as this is the only way
to put a counter on a) and then the only way for a counter to ‘reload’ posi-
tion 1 before σi+1 is using a transposition (1, s′j) that has been used before.
(Here we use our assumption that no (1, x) appears for the first time in our
segment for x ∈ [t].) When we use (1, s′j) to ‘reload’, then no counter can
end in position s′j since this is the last use of this transposition. Hence, we
cannot ‘reload’ the position 1 to leave a counter in b.

5 Open problems

We determined exactly the minimum number of transpositions needed in a
2-reachable network. We also gave upper and lower bounds for t-reachable
networks using star transpositions, although there is still a small gap between
them.

Problem 1. What is the minimum number of transpositions needed in a
t-reachable network? What if all transpositions are of the form (1, ·)?

We proved in Theorem 5 that there is a gap between 2-uniformity and
2-reachability when restricting to star transpositions. There are many 2-
uniformity networks of length 2n − 3, e.g. consider the sequence of lazy
transpositions(

1, 2, 1
2

)
,
(
1, 3, 2

n

)
,
(
1, 2, 1

2

)
,
(
1, 4, 2

n−1

)
, . . . ,

(
1, 2, 1

2

)
,
(
1, n, 2

3

)
,
(
1, 2, 1

2

)
,

and we conjecture that no smaller sequences exist, i.e. U2(n) = 2n− 3. We
remark that, if this were true, it would match nicely with selection networks.

Conjecture 1. For n ≥ 2, U2(n) = 2n− 3.

As a first case, it would be interesting to close the gap when restricting
to star transpositions and confirm the conjecture in this case.
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