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Abstract. Szemerédi’s Regularity Lemma is an important tool
for analyzing the structure of dense graphs. There are versions of
the Regularity Lemma for sparse graphs, but these only apply when
the graph satisfies some local density condition. In this paper, we
prove a sparse Regularity Lemma that holds for all graphs. More
generally, we give a Regularity Lemma that holds for arbitrary real
matrices.

1. Introduction

1.1. Background. Let X and Y be disjoint sets of vertices in G. We
say that the pair (X, Y ) is ε-regular if, for every X ′ ⊂ X and Y ′ ⊂ Y
with |X ′| ≥ ε|X| and |Y ′| ≥ ε|Y |, we have

(1) |d(X ′, Y ′)− d(X, Y )| < ε,

where d(X, Y ) is the density between X and Y (for notation, see Sec-
tion 1.3). Note that ε plays two roles here, bounding both the size of
the subsets X ′ and Y ′ and the difference in density.

The aim of Szemerédi’s Regularity Lemma is to break up a graph
into pieces such that the bipartite graphs between different pieces are
mostly ‘well-behaved’ (i.e. ε-regular). We shall therefore consider vari-
ous partitions V0 ∪ · · · ∪ Vk of V (G), often with a specified vertex class
V0, which we shall refer to as the exceptional set (we will always use the
subscript 0 for the exceptional set). A partition V (G) = V0 ∪ · · · ∪ Vk
with exceptional set V0 is balanced if |Vi| = |Vj| for all i, j ≥ 1. We
say that a partition V (G) = V0 ∪ · · · ∪ Vk with exceptional set V0 is
ε-regular if it is balanced, |V0| < ε|G| and all but at most εk2 pairs
(Vi, Vj) with i > j ≥ 1 are ε-regular (we will often suppress explicit
mention of the exceptional set). For a partition P with an exceptional
set, we write |P| for the number of nonexceptional classes (so we ignore
the exceptional set).

Szemerédi’s Regularity Lemma [7] then says the following.
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Theorem 1 (Szemerédi’s Regularity Lemma). For every ε > 0 and
every integer m ≥ 1 there is an integer M such that every graph G
with |G| ≥M has an ε-regular partition P with |P| ∈ [m,M ].

Szemerédi’s Regularity Lemma is an extremely important tool for
analysing the structure of dense graphs. However, for sparse graphs, it
is much less helpful. Indeed, if the graph does not contain a large set
of vertices that induces a reasonably dense subgraph then every bal-
anced partition (into not too many classes) is ε-regular. It is therefore
desirable to have a version of Szemerédi’s Regularity Lemma that car-
ries some form of structural information even for graphs with very few
edges (for further background and discussion on regularity and sparse
graphs see Gerke and Steger [2] and Bollobás and Riordan [1]).

In order to handle sparse graphs, it is natural to modify the notion
of regularity to take the density of the graph into account. We say that
a pair (X, Y ) is (ε, p)-regular if, for every X ′ ⊂ X and Y ′ ⊂ Y with
|X ′| ≥ ε|X| and |Y ′| ≥ ε|Y |, we have

(2) |d(X ′, Y ′)− d(X, Y )| < εp.

We say that (X, Y ) is (ε)-regular if it is (ε, d)-regular, where d is the
density of G. A partition V0 ∪ · · · ∪ Vk with exceptional set V0 is (ε)-
regular if it is balanced, |V0| < ε|G|, and all but at most εk2 pairs
(Vi, Vj) with i > j ≥ 1 are (ε, d)-regular.

Using this notion of regularity, Kohayakawa and Rödl (see [3, 4, 2])
proved a Sparse Regularity Lemma for a large class of sparse graphs,
namely those that do not have large dense parts. More precisely, we say
that a graph with density d is (η,D)-upper-uniform if, for all disjoint
X, Y ⊂ V with min{|X|, |Y |} ≥ η|G|, we have d(X, Y ) ≤ Dd.

Theorem 2. [4] For every ε,D > 0 and every integer m ≥ 1 there are
η > 0 and an integer M such that every (η,D)-upper uniform graph G
has an (ε)-regular partition P with |P| ∈ [m,M ].

Random graphs typically satisfy an upper uniformity condition, which
has meant that this result has been useful in practice. However, it is
natural to wonder whether the upper uniformity condition is necessary,
or whether some simpler condition could replace it (see for instance
Gerke and Steger [2] and Komlós and Simonovits [5] for discussion).
The aim of this paper is to prove that, perhaps surprisingly, no condi-
tion at all is necessary: for every ε > 0 and m ≥ 1 there is an integer
M such that every sufficiently large graph has an (ε)-regular partition
into k parts, for some k ∈ [m,M ]. Furthermore, similar results hold
for arbitrary weighted graphs and for real matrices.
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1.2. Results. Let us note first that (ε)-regularity can be considered
as a ‘rescaled’ version of ε-regularity. Consider G as an edge-weighting
wG of Kn, where w(xy) = 1 for edges xy ∈ E(G) and w(xy) = 0 for
nonedges. Now, multiplying all weights by

(
n
2

)
/e(G), we get an edge-

weighting w′ with average edge-weight 1 (note that the weights can be
arbitrarily large, even if w is bounded). An (ε)-regular partition of G
with edge-weighting w corresponds to an ε-regular partition of G with
edge-weighting w′.

In proving our results, it will be both more general and more conve-
nient to work in terms of matrices rather than graphs. Let A = (aij) be
a matrix (not necessarily square), with rows indexed by V and columns
indexed by W . We write

||A|| =
∑

i∈V,j∈W

|aij|.

For X ⊂ V and Y ⊂ W , we write

wA(X, Y ) =
∑

v∈X,w∈Y

avw

and say that the density of the submatrix AX,Y (with rows X and
columns Y ) is

dA(X, Y ) =
wA(X, Y )

|X||Y |
.

We say that a submatrix AX,Y is ε-regular if for all X ′ ⊂ X and Y ′ ⊂ Y
with |X ′| ≥ ε|X| and |Y ′| ≥ ε|Y |, we have

|dA(X ′, Y ′)− dA(X, Y )| ≤ ε.

A block partition (P ,Q) of A is a partition P of V together with a
partition Q of W ; the blocks (X, Y ) of the partition are the submatrices
AX,Y for X ∈ P and Y ∈ Q. If V = W (i.e. rows and columns are
indexed by the same set), we say that the block partition is symmetric
if P = Q. We will also want to allow exceptional sets, which for block
partitions are given by specifying a class V0 of P and a class W0 of Q.
We say that the block partition (P ,Q) has exceptional sets (V0,W0),
and refer to the blocks {(V0, Y ) : Y ∈ Q} ∪ {(X,W0) : X ∈ P} as
exceptional blocks. The block partition (P ,Q) with exceptional sets
(V0,W0) is symmetric if P = Q and V0 = W0.

We say that a block partition (P ,Q) with exceptional sets (V0,W0)
is balanced if the partitions P (with exceptional set V0) and Q (with
exceptional set W0) are balanced. A block partition (P ,Q) with ex-
ceptional sets (V0,W0) is ε-regular if P and Q (with exceptional sets
V0, W0 respectively) are balanced, |V0| < ε|V |, |W0| < ε|W |, and all
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but at most ε|P||Q| of the nonexceptional blocks are ε-regular. (P ,Q)
is (ε)-regular if it is an ε-regular partition of the normalized matrix

A∗ =
|V ||W |
||A||

A

in which the average modulus of entries is 1.
It is not difficult to prove a version of the Regularity Lemma for

matrices A such that all entries of A∗ are O(1) (or more generally,
following Theorem 2, for matrices satisying a suitable local density
condition). The difficulty comes when the entries are not uniformly
bounded. Note that, for a graph G with density d and adjacency
matrix A, the normalized matrix A∗ has entries with maximum value
Θ(1/d); so for sparse graphs, the entries of A∗ can become arbitrarily
large (for instance, consider a graph with n vertices and n log n edges).

Our aim here is to prove a version of the Regularity Lemma for
arbitrary weighted graphs and matrices. For general matrices, we have
the following result.

Theorem 3 (SRL for matrices). For every ε > 0 and every positive
integer L there is a positive integer M such that, for all m,n ≥ M ,
every real m by n matrix A has an (ε)-regular block partition (P ,Q)
with |P|, |Q| ∈ [L,M ].

For square matrices, we can demand a little more.

Theorem 4 (SRL for square matrices). For every ε > 0 and every
positive integer L there is a positive integer M such that, for all n ≥M ,
every real n by n matrix A has a symmetric (ε)-regular partition (P ,P)
with |P| ∈ [L,M ].

Given a graph G, we can apply Theorem 4 to the adjacency matrix A
of G (note that partitions of V (G) correspond to symmetric partitions
ofA). There is a rough correspondence between (ε)-regular partitions of
G and symmetric, (ε)-regular block partitions of the adjacency matrix
A(G): each gives an (O(ε))-regular partition of the other (the slight
difference is caused by the fact that diagonal blocks are relevant in a
block partition (P ,P) but do not correspond to pairs in the partition
P of V (G); however this is easily handled by a slight rescaling of ε).
Theorem 4 therefore has the following immediate corollary.

Theorem 5 (SRL for sparse graphs). For every ε > 0 and every posi-
tive integer m there is a positive integer M such that every graph G with
at least M vertices has an (ε)-regular partition P with |P| ∈ [m,M ].

In fact, by the same argument, the result holds for graphs with an
arbitrary edge-weighting.
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Note that Theorem 5 is stronger than Theorem 2, as it does not have
the upper uniformity hypothesis. However, some additional constraints
may be needed in applications (see Section 4).

1.3. Notation. Let G be a graph. For X ⊂ V (G) we define eG(X) =
e(G[X]) to be the number of edges induced by X; for disjoint X, Y
we define e(X, Y ) = |{xy ∈ E(G) : x ∈ X, y ∈ Y }|. For a set of

vertices X ⊂ V (G) the density of X is d(X) = e(X)/
(|X|

2

)
, and the

density of G is d(G) = d(V (G)); for disjoint sets X, Y ⊂ V (G) we
define d(X, Y ) = e(X, Y )/(|X||Y |).

For integers a < b, we write [a, b] = {a, a+ 1, . . . , b}.
We will write partitions either as P = V1 ∪ · · · ∪ Vk or as P =
{V0, . . . , Vk}. For a partition P = V1 ∪ · · · ∪ Vk of a set S, we write
|P| = k; for a partition P = V0 ∪ · · · ∪ Vk with exceptional set V0,
we write |P| = k, i.e. we are counting the number of nonexceptional
classes.

2. Averaging

Given a matrix A = (axy) with rows and columns indexed by V and
W respectively, we will be interested in various partitions of A into
blocks and in how the entries of A are distributed with respect to these
partitions.

Let φ : R → R be a function. For subsets X ⊂ V and Y ⊂ W , we
define

φ(X, Y ) = |X||Y |φ(d(X, Y )).

More generally, if P = V1 ∪ · · · ∪ Vk is a partition of some subset of V
and Q = W1 ∪ · · · ∪Wl is a partition of some subset of W , we define

φ(P ,Q) =
∑
i,j

φ(Vi,Wj).

This can also be seen in terms of “smoothing” or “averaging”. For
partitions P = V1∪· · ·∪Vk of V and Q = W1∪· · ·∪Wl of W we define
the matrix AP,Q by (for every i, j)

(AP,Q)xy = d(Vi,Wj) for x ∈ Vi and y ∈ Wj.

Thus AP,Q is the matrix obtained by averaging the entries of A inside
each block (Vi,Wj). If P is a partition of some subset X of V and Q
is a partition of some subset Y of W then we define

AP,Q = (AX,Y )P,Q.

Note that if P ′ and Q′ are refinements of P and Q then

(3) (AP ′,Q′)P,Q = AP,Q.
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This follows by a trivial calculation (and is a special case of the tower
law for conditional expectation).

For a real-valued function φ, we can now define

φ(A) =
∑

x∈V,y∈W

φ(axy).

Thus, writing dij = d(Vi,Wj), we have

(4) φ(P ,Q) =
∑
i,j

φ(dij)|Vi||Wj| = φ(AP,Q).

Note that φ is additive. For instance, given partitions P = V1∪· · ·∪
Vk and Q = W1 ∪ · · · ∪Wl of (subsets of) V and W , and refinements
P ′ of P and Q′ of Q, we can write P ′i, Q′j for the partitions of Vi and
Wj induced by P ′, Q′ respectively. Then

φ(P ′,Q′) =
∑
i,j

φ(P ′i,Q′j).

We have not said how φ(P ,Q) is defined for partitions with excep-
tional sets. If P = V0 ∪ · · · ∪ Vk is a partition with exceptional set V0,

we define P̃ to be the partition obtained from P by splitting V0 into
singletons. If (P ,Q) has exceptional sets (V0,W0), we define φ(P ,Q)
by

(5) φ(P ,Q) = φ(P̃ , Q̃).

3. Proofs

The usual proof of the Regularity Lemma proceeds roughly as fol-
lows:

• Define a function f on partitions P of G such that 0 ≤ f(P) ≤ 1
for any partition
• Show that if a partition P is not ε-regular then there is a bal-

anced refinement Q of P so that |Q| is bounded (as a function
of |P|) and f(Q) ≥ f(P)+α, where α = α(ε) is a fixed constant
• Iterating the step above, we get a sequence of partitions, each

refining the previous one and increasing the value of f by a
constant. Since f is nonnegative and bounded above by 1, the
process cannot have more than 1/α iterations, and so we must
terminate with an ε-regular partition with a bounded (but pos-
sibly very large) number of classes.

We take the same general approach. However, there is a significant
obstacle in the proof. The standard function to use for partitions P =
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V0 ∪ · · · ∪ Vk is

(6) f(P) =
1

n2

∑
1≤i<j≤k

d(Vi, Vj)
2|Vi||Vj|.

Since all densities d(Vi, Vj) are at most 1, it is easily seen that f(P) ≤ 1
for any partition P . However, for arbitrary weighted graphs or matri-
ces, this is no longer true: for instance, in a weighted graph we can
have average weight 1 but almost all the mass concentrated on a small
number of edges, which can make f(P) arbitrarily large.

An important feature of our argument is that, rather than using
a quadratic function as in (6), we can instead use a different convex
function (this approach has previously been used by  Luczak [6]). We
will therefore work with a different function φ(x), which is quadratic
for small values of x but has a “cutoff” after which it becomes lin-
ear, to prevent large entries making a disproportionate contribution to
φ(P ,Q). It is also convenient to work with the (slightly) greater gen-
erality of a matrix rather than an edge-weighted graph; of course, as
noted already, we can readily translate between the two by considering
the (weighted) adjacency matrix. Finally, for convenience, we leave out
the 1/n2 factor from our weight functions.

3.1. Effects of refinement. We start by looking at the effects on
φ(P ,Q) of refining the partitions P and Q. We first show that, pro-
vided φ is convex, refinements do not decrease φ(P ,Q).

Lemma 6. Let A = (axy) be a real matrix with rows indexed by V and
columns indexed by W . Let φ : R → R be a convex function. Suppose
that (P ,Q) is a block partition of A and (P ′,Q′) is a refinement of
(P ,Q). Then

φ(P ′,Q′) ≥ φ(P ,Q).

Proof. In light of (3) and (4), this follows easily from Jensen’s Inequal-
ity for conditional expectation. However, we give a proof for complete-
ness.

Suppose first that P = {V } and Q = {W} are the trivial partitions,
and P ′ = X1 ∪ · · · ∪Xr and Q′ = Y1 ∪ · · · ∪ Ys. Let d = d(V,W ) and
dij = d(Xi, Yj), so (since the total weight is conserved)

d|V ||W | =
∑
i,j

dij|Xi||Yj|.

Since φ is convex, and
∑

i,j |Xi||Yj| = |V ||W |, we have

φ(d) ≤
∑
i,j

|Xi||Yj|
|V ||W |

φ(dij),
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and so

(7) φ(P ,Q) = φ(d)|V ||W | ≤
∑
i,j

φ(dij)|Xi||Yj| = φ(P ′,Q′).

Now suppose P = V1 ∪ · · · ∪ Vk and Q = W1 ∪ · · · ∪Wl. Writing P ′i
and Q′j respectively for the partitions of Vi and Wj induced by P ′ and
Q′, we have by (7) that φ(P ,Q) =

∑
i,j φ(Vi,Wj) ≤

∑
i,j φ(P ′i,Q′j)

= φ(P ′,Q′). �

Note that Lemma 6 also applies to partitions with exceptional sets:
if P is a partition with exceptional set V0 and P ′ has exceptional set
V ′0 , we say that P ′ is a refinement of P if V ′0 ⊃ V0, and every other
element of P ′ is contained in some element of P . This notion of re-
finement extends naturally to block partitions (P ,Q) with exceptional
sets (V0,W0), by considering P and Q separately. Then Lemma 6 is
then easily seen to apply: if (P ′,Q′) with exceptional sets (V ′0 ,W

′
0) is

a refinement of (P ,Q) with exceptional sets (V0,W0), then

φ(P ′,Q′) ≥ φ(P ,Q).

3.2. Finding a good refinement. In order to obtain quantitative
bounds on the effects of refinement, we must choose a specific convex
function for φ. Let us fix ε > 0 and D > 0, and define the function
φ = φε,D by

φ(t) =

{
t2 if |t| ≤ 2D

4D(|t| −D) otherwise.

Note that φ is convex and φ(t) ≤ 4D|t| for all t. We will choose a value
D = D(ε) later (in order to clarify the presentation, we carry constants
through the lemmas below).

We note the following trivial bound on φ(A).

Lemma 7. Let A = (axy) be a matrix, and let (P ,Q) be a block parti-
tion of A. Then

φ(P ,Q) ≤ 4D||A||.

Proof. Let P∗ and Q∗ be the partitions of V and W respectively into
singletons. Then, by Lemma 6, we have

φ(P ,Q) ≤ φ(P∗,Q∗) =
∑
i,j

φ(aij) ≤ 4D
∑
i,j

|aij| = 4D||A||.

�

Note that the definition (5) implies that the same result applies to
block partitions with exceptional sets.
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Lemma 6 shows that refinements do not decrease φ; we will also need
to find refinements that increase φ by a significant amount. This will
be a consequence of the following lemma.

Lemma 8. Suppose D ≥ 1, ε ∈ (0, 1/2), and A is a matrix with rows
indexed by V and columns indexed by W . Supose that X ⊂ V and
Y ⊂ W . If |d(X, Y )| ≤ εD and (X, Y ) is not ε-regular then there are
partitions X = X1 ∪X2 of X and Y = Y1 ∪ Y2 of Y such that

(8) φ(X ,Y) ≥ φ(X, Y ) + ε4|X||Y |.

Proof. Since (X, Y ) is not ε-regular, we can find sets X1 ⊂ X and Y1 ⊂
Y such that |X1| ≥ ε|X|, |Y1| ≥ ε|Y | and |d(X1, Y1) − d(X, Y )| ≥ ε.
Now if |X1| > |X|/2 then we can replace X1 by a subset X ′1 ⊂ X1

with |X ′1| = b|X|/2c and |d(X ′1, Y1)− d(X, Y )| ≥ ε (consider a random
X ′1 ⊂ X1 of this size). Thus we may assume that ε|X| ≤ |X1| ≤ |X|/2,
and similarly ε|Y | ≤ |Y1| ≤ |Y |/2. Let X2 = X \X1 and Y2 = Y \ Y2,
and note that

min{|X1|, |X2|} ≥ ε|X|, min{|Y1|, |Y2|} ≥ ε|Y |.

Let X = X1 ∪X2 and Y = Y1 ∪ Y2.
Now if any pair (Xi, Yj) has |d(Xi, Yj)| ≥ 2D then

φ(X ,Y) ≥ φ(dij)|Xi||Yj|
≥ φ(2D) · ε|X| · ε|Y |
≥ 4ε2D2|X||Y |.

But φ(X, Y ) ≤ φ(εD)|X||Y | = ε2D2|X||Y | and D ≥ 1, so

φ(X ,Y) > φ(X, Y ) + ε4|X||Y |.

Otherwise, all pairs (Xi, Yj) have density at most 2D. Let d =
d(X, Y ) and dij = d(Xi, Yj). Now

∑
i,j dij|Xi||Yj| = d|X||Y |, so defin-

ing ηij by dij = d+ ηij, we have

(9)
∑
i,j

ηij|Xi||Yj| = 0.
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It follows that

φ(X ,Y) =
∑
i,j

φ(dij)|Xi||Yj|

=
∑
i,j

(d+ ηij)
2|Xi||Yj|

= d2|X||Y |+ 2d
∑
i,j

ηij|Xi||Yj|+
∑
i,j

η2ij|Xi||Yj|

≥ d2|X||Y |+ η211|X1||Y1|
≥ φ(X, Y ) + ε4|X||Y |,

where we have used (9) in the penultimate line, and the fact that
|η11| ≥ ε in the final line. �

The main lemma in our argument is as follows.

Lemma 9. Suppose that ε ∈ (0, 1/2), D ≥ 8/ε2, and A is a matrix
with rows indexed by V and columns indexed by W such that ||A|| =
|V ||W |. Suppose that P = V0 ∪ · · · ∪ Vk is a balanced partition of V
with exceptional set V0, and Q = W0 ∪ · · · ∪Wl is a balanced partition
of W with exceptional set W0, where

|V0| < |V |/2, |W0| < |W |/2
and

|V | ≥ k4l+1, |W | ≥ l4k+1.

If the block partition (P ,Q) with exceptional sets (V0,W0) is not ε-
regular then there is a balanced refinement (P ′,Q′) of (P ,Q) with ex-
cptional sets (V ′0 ,W

′
0), such that

|P ′| ≤ k4l+1, |Q′| ≤ l4k+1

|V ′0 | ≤ |V0|+
|V |
2l
, |W ′

0| ≤ |W0|+
|W |
2k

(10)

and

(11) φ(P ′,Q′) ≥ φ(P ,Q) +
ε5|V ||W |

8
.

Proof. Let n = |V | and m = |W |. Note first that, for i, j ≥ 1, we
have |Vi| ≥ n/2k and |Wl| ≥ m/2l. Since (P ,Q) is not ε-regular, there
are at least εkl blocks (Vi,Wj) with i, j ≥ 1 such that (Vi,Wj) is not
ε-regular. Now at most εkl/2 of these blocks have |d(Vi,Wj)| ≥ εD, or
else we would have

||A|| > (εkl/2)(n/2k)(m/2l)εD = ε2mnD/8 ≥ mn.

So there are at least εkl/2 irregular blocks with |d(Vi,Wj)| < εD.
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For each pair (i, j), i, j ≥ 1, we define partitions Cij of Vi and Dij of
Wj as follows.

• If (Vi,Wj) is ε-regular or |d(Vi,Wj)| ≥ εD, we take the trivial
partitions Cij = {Vi} and Dij = {Wj}.
• If (Vi,Wj) is not ε-regular and |d(Vi,Wj)| < εD, we can find

partitions of Cij of Vi and Dij of Wj into two sets each, as in
Theorem 8, so that (8) is satisfied.

Now for i, j ≥ 1, we let Pi be the partition of Vi generated by {Cij : j 6=
i} and Qj be the partition of Wj generated by {Dij : i 6= j}. Let P0 be
the partition of V0 into singletons and let Q0 be the partition of W0 into
singletons. Let P∗ be the partition of V obtained by concatenating the
Pi, i ≥ 0, and let Q∗ be the partition of W obtained by concatenating
the Qi, i ≥ 0. Then

φ(P∗,Q∗) = φ(P0,Q0) +
∑
i≥1

φ(P0,Qi) +
∑
i≥1

φ(Pi,Q0) +
∑
i,j≥1

φ(Pi,Qj).

On the other hand, recalling (5), we have

φ(P ,Q) = φ(P0,Q0) +
∑
i≥1

φ(P0,Wi) +
∑
i≥1

φ(Vi,Q0) +
∑
i,j≥1

φ(Vi,Wj).

Now for all i, j ≥ 1,

φ(P0,Qj) ≥ φ(P0,Wj),

φ(Pi,Q0) ≥ φ(Vi,Q0),

φ(Pi,Qj) ≥ φ(Vi,Wj),

and, in εkl/2 cases,

(12) φ(Pi,Qj) ≥ φ(Vi,Wj) + ε4|Vi||Wj|,

where the first inequality follows from Lemma 6 and the second one
from (8). Since |Vi||Wj| ≥ mn/4kl, we have

φ(P∗,Q∗) ≥ φ(P ,Q) +
εkl

2
· ε4 · mn

4kl

= φ(P ,Q) +
ε5mn

8
.

We are almost done, except the partitions P∗ and Q∗ may not be
balanced. We start with exceptional set V0, which contains all sets from
P0, and divide each remaining set in P∗ into subsets of size bn/k4lc,
throwing away (i.e. adding to the exceptional set) any remainder. Since
each nonexceptional set in P is divided into at most 2l pieces in P∗,
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and we throw away at most n/k4l vertices from each set in P∗, the
exceptional set increases in size by at most

n

k4l
· k2l =

n

2l

vertices. Let the resulting partition be P ′, and let V ′0 be the resulting
exceptional set. Note that |P ′| ≤ n/bn/k4lc ≤ k4l+1.

We similarly divide Q∗ into pieces of size m/l4k, increasing the size
of the exceptional set by at most m/2k. The resulting block partition
(P ′,Q′) with exceptional sets (V ′0 ,W

′
0) is a refinement of (P ,Q) (with

exceptional sets (V0,W0)), and still satisfies (11) by Lemma 6. �

3.3. Final proofs. After all this, it is straightforward to prove our
main theorems.

Proof of Theorem 3. We may assume that ||A|| = |V ||W |, or else re-
place A by the normalized matrix A∗. Let D = 8/ε2, so by Lemma 7
we have φ(P ′,Q′) ≤ 32|V ||W |/ε2 for any block partition (P ,Q) of A.

We start with any balanced block partition (P ,Q) with |P| = |Q| =
max{L, dlog(1/ε)e + 2}, and with exceptional sets (V0,W0) such that
|V0|, |W0| < L. We now apply Lemma 9 repeatedly: at each iteration,
we either have an ε-regular partition, or can apply the lemma to obtain
a partition for which φ increases by at least ε5|V ||W |/8 and such that
the increase in size of the exceptional sets is controlled by (10). Since
φ(P ′,Q′) is always at most 32|V ||W |/ε2, we halt after at most 256/ε7

steps with an ε-regular partition. �

Proof of Theorem 4. We proceed as in the proof of Theorem 3. How-
ever, we begin by choosing a balanced block partition (P ,Q) with
|P| = |Q| = 4L/ε, so that there are at most ε|P||Q|/4 diagonal blocks.

We now apply a slight modification of Lemma 9: in order to keep
a symmetric partition, we choose Cij = Dji at every stage. For i =
j, we choose the trivial partition Cii = Dii = {Vi}. For i 6= j, we
choose partitions for (Vi, Vj) and (Vj, Vi) at the same time, and choose
the same partition up to transposition for each: note that if A is not
symmetric and both (Vi, Vj) and (Vj, Vi) are irregular, then we may
have to choose partitions such that (12) holds for only one of (Vi, Vj)
and (Vj, Vi). However, since there are at most εkl/4 diagonal blocks,
there are at least εkl/4 irregular off-diagonal blocks, and so equation
(12) still applies at least εkl/8 times. Therefore φ(P ,Q) increases by
at least ε5mn/32 at each step. �

Note that, in the case that A is the adjacency matrix of a graph
G, if a diagonal block is ε-regular we obtain some pseudorandomness
inside the corresponding class of the partition; however, we are allowed
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to fail on a proportion ε of blocks, so we can fail to be ε-regular on all
diagonal blocks.

4. Final remarks

Although Theorem 5 seems to give a natural version of Szemerédi’s
Regularity Lemma for sparse graphs, significant difficulties remain in
applications. For instance, the usual counting and embedding lemmas
that are invaluable in the dense case are not immediately useful in the
sparse case. Furthermore, as edge weights may be unbounded (after
rescaling), Theorem 5 may give a partition in which all the edges of
the original graph are hidden in irregular pairs. However, even in this
case it might be helpful to know that the edges are confined to some
small part of the graph.

The results above are stated for graphs and matrices. It is straight-
forward to write down versions for digraphs, for coloured graphs, or
for several matrices with arbitrary real entries. For instance the proof
of Theorem 3 is easily modified to prove the following (by applying
Lemma 9 to each matrix in turn at each stage, and refining a common
block partition).

Theorem 10. For every ε ∈ (0, 1) and positive integers L, k there is a
positive integer M such that for all m,n ≥ M and for every sequence
A(1), . . . , A(k) of m by n matrices with nonnegative entries there is a
block partition (P ,Q) with |P|, |Q| ∈ [L,M ] that is simultaneously (ε)-
regular for each Ai.

Once again, in the symmetric case, we can demand P = Q.
Finally, we note that taking D =∞ in the arguments above gives a

particularly clean version of the usual proof of Szemerédi’s Regularity
Lemma.

Acknowledgement. The author would like to thank Paul Balister
for very helpful suggestions, and a referee for pointing out the paper of
 Luczak [6].
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