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Abstract

The classical stability theorem of Erdős and Simonovits states that, for any fixed
graph with chromatic number k + 1 ≥ 3, the following holds: every n-vertex graph
that is H-free and has within o(n2) of the maximal possible number of edges can be
made into the k-partite Turán graph by adding and deleting o(n2) edges. In this paper,
we prove sharper quantitative results for graphs H with a critical edge, both for the
Erdős-Simonovits Theorem (distance to the Turán graph) and for the closely related
question of how close an H-free graph is to being k-partite. In many cases, these results
are optimal to within a constant factor.

1 Introduction

For n, k ≥ 1, the k-partite Turán graph Tk(n) is the complete k-partite graph on n vertices
with vertex classes as equal as possible (or equivalently the k-partite graph with maximum
number of edges). We write tk(n) = e(Tk(n)) for the number of edges in the Turán graph.
A fundamental result in extremal graph theory is the Erdős-Simonovits Stability Theorem,
which says that an H-free graph that is close to extremal must in fact look very much like
a Turán graph.

Theorem 1.1 (Erdős-Simonovits [1]). Let k ≥ 2 and suppose that H is a graph with χ(H) =
k + 1. If G is an H-free graph with e(G) ≥ tk(n)− o(n2), then G can be formed from Tk(n)
by adding and deleting o(n2) edges.

It is natural to ask how the o(n2) terms here depend on each other. Thus we will consider
an H-free graph G with n vertices and tk(n)− f(n) edges, where f(n) = o(n2), and ask how
close G is to the Turán graph Tk(n).

In this paper, we will be interested in the case when H has a critical edge: an edge e
in a graph H is said to be critical if χ(H − e) = χ(H) − 1. It was shown by Simonovits
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[15, Theorem 2.3] that if H has a critical edge, then for sufficiently large n the Turán graph
Tk(n) is the unique extremal H-free graph on n-vertices (while if H does not have a critical
edge, then the Turán graph is not extremal). In this case, we will prove the following version
of the Erdős-Simonovits Theorem.

Theorem 1.2. Let H be a graph with a critical edge and χ(H) = k + 1 ≥ 3, and let
f(n) = o(n2) be a function. If G is an H-free graph with n vertices and e(G) ≥ tk(n)−f(n),
then G can be formed from Tk(n) by adding and deleting O(f(n)1/2n) edges.

There is a simple construction showing that this bound is sharp up to a constant factor:
if we take the Turán graph Tk(n) and imbalance it by moving df(n)1/2e vertices from one
class to another then we obtain a k-partite graph G with n vertices and tk(n) − Θ(f(n))
edges. However, in order to obtain Tk(n) from G we must change at least Ω(f(n)1/2n) edges.

Theorem 1.2 will follow from a result on the closely related question: how many edges
do we need to delete from G in order to make it k-partite? We will say that a graph G is
r edges away from being k-partite if the largest k-partite subgraph of G has e(G)− r edges.
In a recent paper, Füredi [6] gave a beautiful proof of the following result.1

Theorem 1.3 (Füredi [6]). Suppose that G is a Kk+1-free graph on n vertices with tk(n)− t
edges. Then G can be made k-partite by deleting at most t edges.

We will show that a much stronger bound holds. More generally, we will prove results for
graphs H that contain a critical edge (note that every edge of Kk+1 is critical). As we will
see below, our bounds are sharp to within a constant factor for many graphs H (including
Kk+1).

Theorem 1.4. Let H be a graph with a critical edge and χ(H) = k + 1 ≥ 3, and let
f(n) = o(n2) be a function. If G is an H-free graph with n vertices and e(G) ≥ tk(n)− f(n)
then G can be made k-partite by deleting O(n−1f(n)3/2) edges.

As we will see below, for many H (including Kk+1) the bound in Theorem 1.4 is optimal
up to a constant factor; in many other cases we will be able to prove a stronger bound. In
order to discuss this, we will need some definitions.

For disjoint sets A, B of vertices we write K[A,B] for the edge set {ab : a ∈ A, b ∈ B}
of the complete bipartite graph KA,B. For a graph G = (V,E), recall that the Mycielskian
[12] of G is a graph M(G) with vertex set V ∪ V ′ ∪ {u} (where V ′ = {v′ : v ∈ V }) and edge
set E ∪ {vw′ : vw ∈ E} ∪K[V ′, {u}]. Informally, the Mycielskian of a graph G is the graph
attained by adding a copy v′ of each vertex v in G (where v′ is adjacent to ΓG(v), but not to
copies of other vertices) and then adding a new vertex adjacent to all copies. For example,
the Mycielskian of an edge is the pentagon.

We define the blown-up Mycielskian graph Mk(a, b, c) as follows. Let V1, . . . , Vk be sets of
size a, let W1, . . . ,Wk be sets of size b, and let U be a set of size c (and let all these sets be

1Füredi also claims that Győri’s work [7] implies the bound O(f(n)2n−2). But Füredi’s claim is not
correct, and Proposition 1.5 below shows that the bound O(f(n)2n−2) is not in general valid.
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disjoint). Then Mk(a, b, c) has vertex set
⋃k
i=1 Vi ∪

⋃k
i=1Wi ∪ U and edge set⋃

i 6=j

K[Vi, Vj] ∪
⋃
i 6=j

K[Vi,Wj] ∪
⋃
i

K[Wi, U ].

Note that Mk(a, b, c) is a blowup of the graph M(Kk). Indeed, from M(Kk) (with vertex set
V ∪ V ′ ∪ {u}), one obtains Mk(a, b, c) by taking a copies of each vertex in V , then b copies
of each vertex in V ′, and then c copies of u.

uv1

v2

v3

v′1

v′2

v′3

Figure 1: Mycielskian of K3 (M3(1, 1, 1))
Figure 2: M3(1, 2, 2)

The optimal error bound in Theorem 1.4 turn out to depend on whether H is a subgraph
of some blown-up Mycielskian graph Mk(a, b, c) (note that here it is enough just to consider
the case a = b = c = |H|. If H is not contained in one of these blow-ups, then the bound in
Theorem 1.4 is tight up to a constant factor.

Proposition 1.5. Let H be a graph with a critical edge and χ(H) = k + 1 ≥ 3, and let
f(n) = o(n2) be a function with f(n) ≥ 2n. Suppose that H is not a subgraph of Mk(a, a, a)
where a = |V (H)|. Then there is an H-free graph G with n vertices and at least tk(n)−f(n)
edges which cannot be made k-partite by deleting o(n−1f(n)3/2) edges.

It is natural to ask what happens when f is very small. It follows from a result of
Simonovits [16, p. 282] that for sufficiently large n and f(n) < n

k
− O(1), any H-free graph

with n vertices and at least tk(n)− f(n) edges is already k-partite. On the other hand, the
bound in Theorem 1.2 is still sharp in this range. Indeed, as noted above, unbalancing the
class sizes in the Turán graph so that one class is f(n)1/2 larger than the rest gives a graph
with e(G) ≥ tk(n) − f(n) which requires the addition and deletion of Θ(f(n)1/2n) edges to
form Tk(n).

If H is a subgraph of some blown-up Mycieslkian Mk(a, b, c) then the construction used
to prove Proposition 1.5 can no longer be used. However, we do have the following general
lower bound that holds for all graphs H with a critical edge.

Proposition 1.6. Let H be a graph with a critical edge and χ(H) = k + 1 ≥ 3, and let
f(n) = o(n2) be a function with f(n) ≥ 2n. Then there is an H-free graph G with n vertices
and at least tk(n)−f(n) edges which cannot be made k-partite by deleting o(n−2f(n)2) edges.

Note that this is much weaker than the bound given in Proposition 1.5. However, if H
is contained in Mk(a, a, 1) for some a, then the bound in Theorem 1.4 can be substantially
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strengthened. Indeed, for this class of graphs it turns out that Proposition 1.6 is in fact tight
to within a constant factor.

Theorem 1.7. Let H be a graph with a critical edge and χ(H) = k + 1 ≥ 3, and suppose
that H is a subgraph of Mk(a, a, 1) for some a. Let f(n) = o(n2) be a function. If G is an
H-free graph on n vertices with e(G) ≥ tk(n)−f(n) then G can be made k-partite by deleting
O(n−2f(n)2) edges.

Theorems 1.4 and 1.7 give bounds that are sharp to within a constant factor when H is
a subgraph of some Mk(a, a, 1) or when H is not contained in any Mk(a, a, a). What about
graphs that are contained in some Mk(a, a, a) but are not contained in any Mk(a, a, 1)? In
this case, we do not have sharp results, but can say a little.

Theorem 1.8. Let H be a graph with a critical edge and χ(H) = k + 1 ≥ 3, and suppose
that H is a subgraph of Mk(t, b, a). Let f(n) = o(n2) be a function. If G is an H-free
graph on n vertices such that e(G) ≥ tk(n)− f(n) then G can be made k-partite by deleting

O(n
1
bk f(n)1−

1
bk ) edges.

Note that the bound in Theorem 1.8 is stronger than the bound in Theorem 1.4 when

f(n)� n2− 2
bk+2 . This shows that the upper bound O(n−1f(n)3/2) in Theorem 1.4 isn’t tight

when H is contained in some Mk(a, a, a) but is not contained in any Mk(a, a, 1). However,
we will give examples in Section 4 showing that these graphs need not satisfy the stronger
O(n−2f(n)2) bound of Theorem 1.7. We discuss this further in the conclusion.

The paper is organised as follows. In Section 2 we give proofs of Theorems 1.2, 1.4, 1.7
and 1.8. In Section 3, we will prove Propositions 1.5 and 1.6 by way of constructions. In
Section 4 we discuss the gap between the upper bound given by Theorem 1.8 and the lower
bound given by Proposition 1.6, and conclude the paper with some related problems and
open questions.

Related results can be found in papers by Norin and Yepremyan [13, 17], and Pikhurko,
Sliacan and Tyros [14]. Finally, we note that results from this paper are applied in a joint
paper with Natasha Morrison [11].

For the duration of this paper, we write a(n) = o(b(n)) to mean a(n)
b(n)
→ 0 as n→∞. We

also use the notation a(n) = O(b(n)) if there is some constant C such that |a(n)| ≤ C|b(n)|
for all n, and a(n) = Ω(b(n)) if b(n) = O(a(n)).

2 Upper Bounds

In this section we present our proofs of Theorems 1.2, 1.4, 1.7 and 1.8. We start by recalling
some important results that will be key to our argument. The first is the Erdős-Stone
Theorem [5] concerning the extremal number of a complete symmetric k-partite graph.

Theorem 2.1 (Erdős-Stone [5]). Let k ≥ 2, t ≥ 1, and ε > 0. Then for n sufficiently large,
if G is a graph on n vertices with

e(G) ≥
(

1− 1

k − 1
+ ε

)(
n

2

)
,
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then G must contain a copy of Tk(kt).

The second is a theorem proven by Simonovits regarding the extremal graph of a graph
with a critical edge.

Theorem 2.2 (Simonovits [15, Theorem 2.3]). Let H be a graph with a critical edge with
χ(H) = k+ 1 ≥ 3. Then there exists some n0 such that, for all n ≥ n0, we have Ex(n;H) =
{Tk(n)}.

As a stepping stone to Theorem 1.4, we first prove a weaker result. This can also be
deduced from independent work of Norin and Yepremyan ([13, Theorem 3.1] and [17]) but
we include a self-contained proof here for completeness. The approach is essentially standard
(see for example Erdős [1]), but we must keep careful track of the error bounds.

Lemma 2.3. Let H be a graph with a critical edge and χ(H) = k+1 ≥ 3, and let f(n) = o(n2)
be a function. Suppose that G is an H-free graph on n vertices such that e(G) ≥ tk(n)−f(n).
Then G can be made k-partite by deleting O(f(n)) edges.

The following easy lemma will be used repeatedly in the proof of Lemma 2.3.

Proposition 2.4. Fix k ≥ 2 and t ≥ 1. For n ≥ 1, suppose G ⊂ Tk(kn) is a Tk(kt)-free
graph. Then for sufficiently large n,

e(G) ≤ tk(kn)− n2

2
. (2.1)

Proof. Let k ≥ 2 and n, t ∈ N and suppose G ⊂ Tk(kn) is Tk(kt)-free. Then e(G) ≤
ex(kn;Tk(kt)), so we can apply Theorem 2.1 to get

tk(kn)− e(G) ≥ tk(kn)− ex(kn;Tk(kt))

≥ (kn)2

2

(
1− 1

k

)
− (kn)2

2

(
1− 1

k − 1
+ o(1)

)
≥ n2

2
,

for sufficiently large n.

Proof of Lemma 2.3. Let f(n) = o(n2) be a function, and let H be a graph with a critical
edge and χ(H) = k + 1 ≥ 3. Choose t such that H ⊆ Tk(tk) + e, where e is any edge inside

a vertex class of Tk(tk). Let δ, ε, η ∈ (0, 1
20000k2

) with ε ≤ η2

8
.

Suppose that G is an H-free graph on n vertices with e(G) ≥ tk(n) − f(n). Since
f(n) = o(n2), Theorem 1.1 tells us that there exists some N0 such that when n ≥ N0, G is
at most εn2 edges away from a complete k-partite graph. By Theorem 2.2 we may assume
that Ex(n;H) = {Tk(n)} for all n ≥ N0.

Now suppose n ≥ 2N0 and let L ( V (G) be the set of vertices with degree less than

(1− δ)n(k−1)
k

. Consider an arbitrary subset B ⊂ L with |B| < δn
2

and let J = G \B. We can
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count the number of edges in J by considering the number of edges removed from G to get
that

e(J) ≥ tk(n)− f(n)− (1− δ)n
(
k − 1

k

)
|B|. (2.2)

Now tk(n) ≥ tk(n − 1) + k−1
k

(n − 1), since we can form Tk(n) from Tk(n − 1) by adding a
vertex to a smallest vertex class, and so tk(n) ≥ tk(n− |B|) + k−1

k
(n− |B|)|B|. If we apply

this inequality to (2.2), we see that

e(J) ≥ tk(|J |)− f(n) +

(
k − 1

k

)
(|B|(n− |B|)− (1− δ)n|B|)

= tk(|J |)− f(n) +

(
k − 1

k

)(
δn|B| − |B|2

)
≥ tk(|J |)− f(n) +

(
k − 1

2k

)
δn|B|. (2.3)

On the other hand, J does not contain a copy of H and |J | > n − δ
2
n > n

2
≥ N0, so

e(J) ≤ tk(|J |). Comparing this upper bound with the lower bound given by (2.3), we see
that

|B| ≤ 2k

δ(k − 1)
f(n)n−1. (2.4)

Recall that f(n) = o(n2) and so 2k
δ(k−1)f(n)n−1 < δn

4
for large enough n. Since B is an

arbitrary subset of L with |B| < δn
2

, we can conclude that |L| < 2k
(k−1)δf(n)n−1 for sufficiently

large n.
Now fix J = G \ L. Since |L| < 2k

(k−1)δf(n)n−1, we have lost at most 2
δ
f(n) = O(f(n))

edges, so it suffices to show that the graph J must be k-partite.
Let q := |J | = (1 + o(1))n. For sufficiently large n, the graph J has minimum degree at

least (1 − 2δ) q(k−1)
k

and has e(J) = tk(q) − O(f(n)). Furthermore, we already know that J
is at most εn2 = εq2(1 + o(1)) edges away from being k-partite since J is a subgraph of G.
We may then choose a partition V1, . . . , Vk of V (J) which contains at most εn2 edges within
the vertex classes. For n sufficiently large, since f(n) = o(n2), there are at most 3

2
εn2 edges

missing between the vertex classes. We now use this fact to derive information about the
vertices in J .

Suppose some vertex v has at least ηn neighbours in each vertex class. Pick ηn neighbours
of v in each vertex class to form Q ⊆ V (J). Now let P be the subgraph of J [Q] obtained by
deleting all edges inside the classes Q ∩ Vi. Note that if P contains a copy of Tk(kt), then
J [Q ∪ {v}] contains a copy of H, contradicting the fact that J is H-free. Therefore P is
Tk(tk)-free. An application of Proposition 2.4 then gives, for n sufficiently large,

e(P ) ≤ tk(kn)− η2

2
n2. (2.5)
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Since ε ≤ η2

8
, we get e(P ) ≤ tk(kηn) − 4εn2. But then at least 4εn2 edges between vertex

classes are not present in J , which gives a contradiction. We may therefore assume that
every vertex in J has at most ηn neighbours inside its own vertex class.

If |Vi| − |Vj| ≥ q
50k

for some j, then e(J) ≤ tk(q) − q2

10000k2
+ εq2(1 + o(1)) < tk(q) − ε

2
n2

for sufficiently large n, since ε < 1
20000k2

. This is impossible as f(n) = o(n2) and e(J) =
tk(q)−O(f(n)). So we may asume that |Vi| ≥ q

k
(1− 1

50
) for each i.

Suppose, without loss of generality, that there is an edge uv inside V1. Consider the
neighbourhoods of u and v in each of the vertex classes V2, . . . Vk. Note that |Γ(u) ∩ (V2 ∪
· · · ∪ Vk)| ≥ q(1 − 2δ)(k−1

k
) − 2ηn. At the same time |V2 ∪ · · · ∪ Vk| ≤ q(1 − 1

k
(1 − 1

50
))

and so |(V2 ∪ · · · ∪ Vk) \ Γ(u)| ≤ q( 1
50k

+ 2δ + 2η) ≤ q
10k

. The same argument applies for
v and so there are most q

5k
vertices not in Γ(u) ∩ Γ(v) in each vertex class V2, . . . , Vk. So

|Γ(u) ∩ Γ(v) ∩ Vi| ≥ q
k
(1− 1

50
)− q

5k
≥ q

2k
≥ ηn for each i ≥ 2.

Pick S1 ⊂ V1 and Si ⊂ Γ(u)∩Γ(v)∩Vi for each i = 2, . . . , k with |Si| = ηn for each i. Let
Q = S1∪ . . .∪Sk and P be the subgraph of J [Q] obtained by deleting all edges inside the Si.
Arguing as in (2.5), we get e(P ) < tk(kηn) − 4εn2 and so arrive at the same contradiction.
Therefore there is no edge uv inside V1 and so J must be k-partite as required.

We are now in a position to prove Theorem 1.4. We have to work rather harder, and our
argument is guided by the structure of the examples showing lower bounds.

Proof of Theorem 1.4. Let f(n) = o(n2) be a function, and let H be a graph with a
critical edge and χ(H) = k+1. Choose t such that H ⊆ Tk(tk)+e, where e is any edge inside
a vertex class of Tk(tk). Let G be an H-free graph on n vertices with e(G) ≥ tk(n)− f(n).
Take a partition (V1, . . . , Vk) of V (G) which minimises the number of edges inside vertex
classes. Then by Lemma 2.3, there are O(f(n)) edges within vertex classes and at most
O(f(n)) edges between vertex classes are not present in G. Furthermore for each i, we must
have |Vi| = (1 + o(1))n

k
, otherwise G cannot contain enough edges.

Let v be a vertex in G with maximal number of neighbours inside its own vertex class.
Without loss of generality, we may assume v ∈ V1. Let r(v) = |Γ(v) ∩ V1|. By our choice of
partition, v has at least r(v) neighbours in every other vertex class. Pick r(v) neighbours of
v from each vertex class to form Q ⊆ V (G) and let J be the subgraph of G[Q] with all the
edges within vertex classes removed (so J is k-partite). If J contains a copy of Tk(tk), then
by adding v to this copy, we must get a copy of H. J must then be Tk(tk)-free and so we
may apply Proposition 2.4 to get that if r(v) is sufficiently large, then

e(J) ≤ tk(kr(v))− r(v)2

2
. (2.6)

As G is missing at most O(f(n)) edges between vertex classes, we must have tk(kr(v)) −
e(J) = O(f(n)) and so r(v) = O(f(n)1/2).

Let δ ∈ (0, 1
4tk2

) and S be the set of vertices in V (G) with degree less than n(1− 1
k
)(1−δ).

Arguing as in Lemma 2.3 (around (2.3)) we see that |S| = O(f(n)n−1). We will show that
each edge inside a vertex class is incident to a vertex in S.

Let EI be the set of edges inside vertex classes. Pick some edge e = uv ∈ EI and suppose
that neither u nor v is an element of S. Without loss of generality, assume that u, v ∈ V1.
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Recall that |Vi| = (1 + o(1))n
k

for each i. Since |Γ(u)| ≥ n(1 − 1
k
)(1 − δ) ≥ k−1

k
n − n

20k

and |V2 ∪ . . . ∪ Vk| = (1 + o(1))n(k−1)
k

, it follows that |Vi \ Γ(u)| ≤ n
20k

(1 + o(1)) for each
i ∈ {2, . . . , k}. The same is true for v. So for sufficiently large n, |Vi ∩ Γ(u) ∩ Γ(v)| ≥ n

2k

for each i ∈ {2, . . . , k}. Pick B1 ⊂ V1 and Bi ⊂ Γ(u) ∩ Γ(v) ∩ Vi for each i = 2, . . . , k with
|Bi| = n

2k
for each i. If Q = G[B1 ∪ . . . ∪ Bk] contains a copy of Tk(kt), then G[Q ∪ {u, v}]

contains a copy of H, contradicting the fact that J is H-free. Therefore Q is Tk(tk)-free. So
by Proposition 2.4,

e(Q) ≤ tk(
n

2k
)− 1

8k2
n2.

This is a contradiction since G is missing O(f(n)) edges between vertex classes. Therefore
u or v must belong to S.

We have shown that each edge in EI is incident with S, every vertex of S is incident
with at most r(v) = O(f(n)1/2) edges from EI , and |S| = O(f(n)n−1). It follows that
|EI | = O(f(n)3/2n−1).

The proof of Theorem 1.4 came in two parts. The first part bounded the number of
neighbours a vertex can have inside its respective vertex class by considering whether there
is a copy of Tk(kt) in its neighbourhood. When we move to the regime of graphs contained
in some Mk(a, a, 1), we can improve the argument by considering whether there is a copy
of Tk(kt) present in many of the neighbourhoods of the vertex’s neighbours. Again, our
arguments are guided by considering the examples giving lower bounds.

Proof of Theorem 1.7. Let f be a function on the natural numbers such that f(n) =
o(n2), let H be a graph with a critical edge and χ(H) = k + 1 and suppose that h is such
that H ⊂ Mk(h, h, 1). Let G be an H-free graph on n vertices with e(G) ≥ tk(n) − f(n).
Let δ, η ∈ (0, 1

20000hk2
). Take a partition (V1, . . . , Vk) of V (G) which minimises the total

number of edges inside vertex classes and let EI be the set of edges inside vertex classes.
Furthermore, let S = {u ∈ V (G) : d(u) ≤ (1− δ)nk−1

k
}.

Carrying on from the end of the proof of Theorem 1.4, we know that each edge e ∈ EI is
incident with a vertex in S and that |S| = O(f(n)n−1). It therefore suffices to show that the
maximum number of neighbours a vertex can have inside its own vertex class is O(f(n)n−1).

Suppose without loss of generality that v ∈ V1 has the maximum number of neighbours
inside its own vertex class. Then for each i, let Ai = Vi ∩ Γ(v) and split each Ai into
Bi = S ∩ Ai and Ci = Ai \Bi. Let us consider the size of the Ci. Suppose that |Ci| ≥ h for
each i and pick h-subsets Di ⊂ Ci for each i. Now for each i ∈ [k], let

Wi =

{
x ∈ Vi \ (Di ∪ {v}) :

⋃
j 6=i

Dj ⊂ Γ(x)

}
. (2.7)

Note that for large enough n, each u ∈ Di is adjacent to all but at most 2δ n
k

vertices in Vj.
Thus for large enough n, |Wi| ≥ n

2k
− 2khδ n

k
≥ ηn. So pick ηn vertices from each Wi to form

a set Q of vertices and let J be the subgraph of G[Q] with all edges inside vertex classes
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deleted. Note that if J contains a copy, J [F ], of Tk(kh), then G[{v} ∪
⋃
i∈[k]Di ∪ F ] will

contain a copy of Mk(h, h, 1) and so will contain a copy of H, a contradiction. So we may
apply Proposition 2.4 to give that for n sufficiently large,

e(J) ≤ tk(kηn)− η2

2
n2.

On the other hand, we know that there are O(f(n)) edges between vertex classes not present
in G. Therefore, e(J) ≥ tk(kηn)−O(f(n)). We then have a contradiction since f(n) = o(n2).
So there is a j ∈ [k] such that |Cj| < h.

Now note since Bj ⊂ L, that |Bj| = O(f(n)n−1) and so |Aj| = O(f(n)n−1). Note that
since we have taken the partition which minimises the total number of edges inside vertex
classes, |A1| ≤ |Aj|. We conclude that the maximum number of neighbours a vertex can
have inside its own vertex class is |A1| = O(f(n)n−1).

Theorem 1.2 now follows as a direct corollary of Theorem 1.4.

Proof of Theorem 1.2. Let f(n) = o(n2) be a function, and let H be a graph with a
critical edge and χ(H) = k + 1. Let G be an H-free graph on n vertices with e(G) ≥
tk(n) − f(n). By Theorem 1.4, we can delete O(f(n)3/2n−1) edges from G to form a k-
partite graph G′ which has tk(n) − O(f(n)) edges. Suppose that V1, . . . , Vk is a vertex
colouring of G′. If the size of two colour classes differ by 2t, then the maximum number of
edges possible in the graph G′ would be tk(n)−Θ(t2), and so two classes can differ in size by
at most O(f(n)1/2). It follows that ||Vi| − n

k
| = O(f(n)1/2) for each i and so a new graph G′′

with equal class sizes can be formed by deleting the edges incident to O(f(n)1/2) vertices.
G′′ has tk(n)− O(f(n)1/2n) edges and has class sizes equal to that of the Turán graph. We
can then attain the Turán graph by filling in the missing edges. To summarise, we deleted
O(f(n)1/2n) edges to form G′′ and then added O(f(n)1/2n) edges to reach the Turán graph.

To end this section, we prove Theorem 1.8 using a method similar to that used by Kővári,
Sós and Turán [10].

Proof of Theorem 1.8. Let f(n) = o(n2) be a function, and let H be a graph with a
critical edge and χ(H) = k + 1. Further suppose that h, t and a are natural numbers such
that H is contained in Mk(t, h, a) and that H is contained in no Mk(b, b, 1). Suppose that
G is an H-free graph on n vertices such that e(G) ≥ tk(n) − f(n). Take the k-partition
W1, . . . ,Wk of V (G) which minimises the total number of edges inside vertex classes. By
the proof of Theorem 1.4 we know that there is a set S of order |S| = O(f(n)n−1) such
that G − S is a k-partite graph, that the minimum degree of the vertices in V (G) \ S is
(1 + o(1))nk−1

k
and that the maximum number of edges inside a vertex class incident to a

vertex in S is O(f(n)1/2). We further know that there are O(f(n)) edges missing between
any pair Vi, Vj, where Vl = Wl \ S for each l ∈ [k].

Let EI be the set of edges inside the vertex classes (so that G is |EI | edges away from

being k-partite). We assume that |EI | = Ω(f(n)1−
1
bkn

1
bk ), else we are done. Note that if we
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delete a different set of edges F ⊂ E to obtain a k-partite subgraph of G, then since we
have taken the k-partition which minimises the total number of edges inside vertex classes,
it must be the case that |F | ≥ |EI |. So to get an upper bound on |EI | consider deleting
all the edges between vertices in S, of which there are O(f(n)2n−2), and then deleting the
edges between each vertex s ∈ S and one of the Vi, where i may depend upon s. The best
we could do (in terms of minimising edges deleted) by using this method is if for each s ∈ S
we deleted the edges between s and a Vi such that |Γ(s) ∩ Vi| is minimised. So if we let
eI(s) = min{|Γ(s)∩ Vi| : i ∈ [k]}, we have an upper bound for the number of irregular edges
in G.

|EI | ≤
∑
s∈S

eI(s) +O(f(n)2n−2).

Recall that |EI | = Ω(f(n)1−
1
bkn

1
bk ) and note that f(n)2n−2 = o(f(n)1−

1
bkn

1
bk ). This means

that
∑

s∈S eI(s) = Θ(EI). Let S ′ = {s ∈ S : eI(s) ≥ 2h}. Since |S| = O(f(n)n−1) the
contribution to the sum of those vertices in S \ S ′ is negligible and so∑

s∈S′
eI(s) = Θ(EI). (2.8)

Following the argument of Theorem 1.7 from (2.7), we see that if we pick h-subsets Di

of each Vi, then there exists Ci ∈ (Vi \ Di)
(t) for each i such that G[Ci, Dj] and G[Ci, Cj]

are homomorphic to Kt,h and Kt,t respectively for i 6= j. Therefore if there is an a-set A in
S such that the vertices share h common neighbours in each Vi, then we can find a copy of
Mk(t, h, a) in G which contradicts our initial assumption that G is H-free. We will therefore

count how many times an element of V
(h)
1 × . . .×V (h)

k is contained within the neighbourhood
of a vertex in S.

Since no element of V
(h)
1 × . . . × V (h)

k can we contained within the neighbourhood of a

distinct vertices in S, we have an upper bound given by a|V (h)
1 × . . . × V (h)

k | = O(nhk). On
the other hand if we count over the vertices of S, we see that the neighbourhood of a vertex
s ∈ S, contains ∏

i∈[k]

(
|Γ(s) ∩ Vi|

h

)
≥
(
eI(s)

h

)k
(2.9)

elements of V
(h)
1 × . . . × V

(h)
k . Summing over the vertices in and comparing to the upper

bound given earlier, we see that∑
s∈S

(
eI(s)

h

)k
= O(nhk). (2.10)

Note that we may easily bound the left hand side of (2.10) by summing only over S ′ and

bounding
(
eI(s)
h

)k
below by ( eI(s)

h
)hk to get that∑
s∈S′

eI(s)
hk = O(nhk). (2.11)

10



We can then bound the left hand side by applying Hölder’s inequality to get that∑
s∈S′

eI(s)
hk ≥ |S ′|1−hk(

∑
s∈S′

eI(s))
hk

≥ (f(n)n−1)1−hk(
∑
s∈S′

eI(s))
hk

= Θ((f(n)n−1)1−hkEhk
I ). (2.12)

Combining (2.11) and (2.12), we see that

(f(n)n−1)1−hkEhk
I = O(nhk),

and so after rearranging, the result follows.

3 Lower Bounds

In this section, we prove Propositions 1.5 and 1.6.

Proof of Proposition 1.5. Fix k ≥ 2 and let f(n) = o(n2) be a function with f(n) ≥ 2n. Let

r = f(n)1/2

k2
and s = f(n)

2n
. For n a large positive integer, consider the graph

G := Mk(
n− s− kr

k
, r, s).

Note that the numbers given for G may not be integer valued. This can easily be fixed but
we have left it as it is for clarity and ease of reading (this will also be true of the remainder
of this paper). Furthermore label subsets of the vertices of G as in Figure 3.

U

W3

W2

W1

Wk

V3

V2

V1

Vk

Figure 3: G

Now suppose that H is graph with a critical edge and χ(H) = k + 1 and H is not a
subgraph of Mk(a, a, a) for any a. Thus H cannot be a subgraph of G.

We can obtain Tk(n) from G by adding the edges between the Wi (
(
k
2

)
r2 ≤ f(n)

2
edges) and

changing the edges incident with U (ns = f(n)
2

edges). In this process we add at most f(n)

11



edges and so e(G) ≥ tk(n) − f(n). It is therefore enough to show that G is Ω(f(n)3/2n−1)
edges away from being k-partite.

So let Q be a k-partite subgraph of G formed by deleting edges from G. If we have
deleted a fraction 1

8k2
of the edges between some pair (U,Wi), (Wi, Vj) or (Vi, Vj) in forming

Q from G, then in all cases we have deleted at least f(n)3/2n−1

16k4
edges. Otherwise if we pick a

vertex uniformly at random from each U,Wi and Vj to form a copy of Mk(1, 1, 1) within G,
then we expect to have deleted less than half an edge on average from this subgraph when
forming Q (note that e(Mk(1, 1, 1)) ≤ 4k2). It must then be the case that we can pick a
vertex from each U,Wi and Vj to form a copy of Mk(1, 1, 1) in Q. This contradicts Q being
k-partite and so there must be some pair (U,Wi), (Wi, Vj) or (Vi, Vj) between which we have
deleted a fraction 1

8k2
of the edges. In all cases we must have deleted Ω(f(n)3/2n−1) edges

from G and so G must be Ω(f(n)3/2n−1) edges away from being k-partite.

For critical graphs contained within some Mk(a, a, a) we will consider graphs with chro-
matic number k + 1 such that every small subgraph has chromatic number at most k. We
can construct an example of such a graph by adding more levels to the Mycielskian graph of
a clique and blowing it up.

Definition 3.1. Let a, b, c, l and k be positive integers. Let V1, . . . , Vk be sets of size a, let
W 1

1 , . . .W
1
k , . . . ,W

l
1, . . . ,W

l
k be sets of size b and let U be a set of size c (and let all these sets

be disjoint). Then the l-layer Mycielskian graph M
(l)
k (a, b, c) has vertex set V (G)∪

⋃k
i=1 Vi∪⋃

i∈[k],m∈[l]W
m
i ∪ U and edge set⋃

i 6=j

K[Vi, Vj] ∪
⋃
i 6=j

K[Vj,W
1
i ] ∪

⋃
i 6=j,m∈[l−1]

K[Wm
i ,W

m+1
j ] ∪

⋃
i∈k

K[W l
i , U ].

Figure 4: M
(3)
3 (1, 2, 3)

Proof of Proposition 1.6. Fix k ≥ 2 and let f(n) = o(n2) be a function. Let s = f(n)
2n

.
Suppose that H is a graph with a critical edge on N vertices with χ(H) = k + 1. For n a
large positive integer, consider the graph G,

G = M
(N)
k (

n− (Nk + 1)s

k
, s, s).
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Furthermore label subsets of the vertices of G as in Figure 3 (we have drawn an example
with k = 4).

U

W 1
3

W 1
2

W 1
1

W 1
4

W 2
3

W 2
2

W 2
1

W 2
4

WN
3

WN
2

WN
1

WN
4

V3

V2

V1

V4

. . .

Figure 5: G

Note that if we delete U or
⋃
i Vi, then we are left with a k-partite and a bipartite graph

respectively. It must then be the case that any subgraph J ⊂ G with chromatic number
k+ 1 must contain vertices in both U and

⋃
i Vi and so must contain at least N + 2 vertices.

It follows that G is an H-free graph since |H| = N .
We can obtain Tk(n) fromG by adding the edges between theW j

i (N∗
(
k
2

)
s2 ≤ Nk2f(n)2n−2 ≤

f(n)
2

edges) and changing the edges incident with U (ns = f(n)
2

edges). In this process we
add at most f(n) edges and so e(G) ≥ tk(n) − f(n). Therefore if we can show that G is
Ω(f(n)2n−2) edges away from being k-partite, then we will be done.

So let Q be a k-partite subgraph of G formed by deleting edges from G. If we have deleted
a fraction 1

8N2k2
of the edges between some pair (U,W 1

i ), (W l
i ,W

l+1
j ), (WN

i , Vj) or (Vi, Vj) in

forming Q from G, then in all cases we have deleted at least f(n)2n−2

16N2k2
edges. Otherwise if we

pick a vertex uniformly at random from each U,W l
i and Vj to form a copy of M

(N)
k (1, 1, 1)

within G, then we expect to have deleted less than half an edge on average from this subgraph
when forming Q (Note that e(M

(N)
k (1, 1, 1)) ≤ 4N2k2). It must then be the case that we can

pick a vertex from each U,W
(l)
i and Vj to form a copy of M

(N)
k (1, 1, 1) in Q. This contradicts

Q being k-partite and so there must be some pair (U,W l
i ), (W

l
i ,W

l+1
i ) or (Wi, Vj) between

which we have deleted a fraction 1
8N2k2

of the edges. In all cases we must have deleted
Ω(f(n)3/2n−1) edges from G and so G is Ω(f(n)2n−2) edges away from being k-partite.

4 Conclusion

We have given bounds that are tight to within a constant factor for graphs with a critical
edge that are not contained in any Mk(a, a, a) and also graphs that are contained in some
Mk(a, a, 1). It would be interesting to have even sharper bounds. For instance, is it possible
to get an exact result for Theorem 1.2 or Theorem 1.4?

The other cases appear more difficult to handle. Theorem 1.8 shows that for graphs
contained in some Mk(a, b, c) (but not with c = 1), we can improve on the O(f(n)3/2n−1)

13



upper bound of Theorem 1.4. The arguments used in the proof of Theorem 1.8 are rather
crude, and it seems likely that stronger results should hold, at least when f(n) is quite large.
For instance, what can we say if f(n) ≥ n2−ε for small ε = ε(H)?

For some graphs we can improve on the Ω(f(n)2n−2) lower bound of Proposition 1.6. Let
r = f(n)1/2 and s = f(n)n−1. Consider the graph

G = Mk(
n− s− kr

k
, r, s),

and label the subsets U,W1, . . . ,Wk, V1, . . . , Vk as in Figure 3. Suppose we wanted to avoid
a copy of Mk(1, 1, 2). Then it would be sufficient to change the edges between U and
W1 ∪ · · · ∪Wk so that for each pair of vertices u1 6= u2 ∈ U , there is a j ∈ [k] so that u1 and
u2 have no common neighbour in Wj.

Let q = d(f(n)
n

+ 1)
1
k e and for each i ∈ [k], let W

(0)
i , . . . ,W

(q−1)
i be disjoint subsets of Wi

all of size bf(n)
1/2

q
c. Let the vertices of U be u1, . . . , ur, where r = df(n)n−1e. Each j ∈ [r]

can be expressed as a q-ary number with k digits

j =
∑
i∈[k]

aiq
i−1, (4.1)

where ai ∈ {0, . . . , q − 1} for each i. Now form a new graph G′ from G, where each vertex

uj in U has neighbourhood
⋃
i∈[k]W

(ai)
i where the ai are as in (4.1). The graph G′ does not

contain Mk(c, b, a) for any a, b and c with a ≥ 2, but is Θ(f(n)3/2−
1
kn−1+

1
k ) edges away from

being k-partite. This improves a little on the bound given by Proposition 1.6.
Proposition 1.5 tells us that there are constants C1, C2 and a Kk+1-free graph G with

e(G) ≥ tk(n)− C1n which is at least C2n
1/2 edges away from being k-partite. On the other

hand, if e(G) ≥ tk(n) − n
k

+ O(1) then, as noted above, a result of Simonovits [16, p. 282]
shows that G must be k-partite. It would be interesting to know what happen in the range
in between.

In this paper we have discussed graphs H with a critical edge. It would be interesting to
get sharp results for all graphs both for the Erdős-Simonovits problem of distance from the
Turán graph, and for the problem of the distance from being k-partite.

Finally, we note that the condition f(n) = o(n2) in Theorems 1.4, 1.7, 1.8 and Proposi-
tions 1.5, 1.6 can be replaced by the condition that f(n) ≤ εn2 for some sufficiently small ε
with only minor changes to the proof.
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