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Abstract. We prove a uniform bound on the topological Turán number of an arbitrary two-dimensional

simplicial complex S: any n-vertex two-dimensional complex with at least CSn
3−1/5 facets contains a

homeomorphic copy of S, where CS > 0 is an absolute constant depending on S alone. This result, a

two-dimensional analogue of a classical result of Mader for one-dimensional complexes, sheds some light on

an old problem of Linial from 2006.

1. Introduction

A number of natural extremal geometric problems arise when we view an r-uniform hypergraph as an

(r− 1)-dimensional simplicial complex (by identifying edges with facets). Questions of this nature arise in the

high-dimensional combinatorics programme of Linial [12, 10], and have also been raised by Gowers [5]; for

a sample of some recent results in this programme, see [4, 14, 13, 11]. In this paper, we study the Turán

problem for 2-complexes, or equivalently, the topological Turán problem for 3-graphs.

In the Turán theory of 3-graphs (see [17, 7]), one is concerned with finding a copy of a fixed 3-graph

as a subgraph; in the context of 2-complexes, the appropriate replacement for the notion of a subgraph is

that of a homeomorphic image. More formally, we say that two 3-graphs G and H are homeomorphic if

they are homeomorphic as topological spaces (when viewed as 2-complexes), and we say that G contains a

homeomorph of H if there is a subgraph of G homeomorphic to H. The following example may help clarify

this point of view: a 3-graph H is a homeomorph of the complete 3-graph K3
4 on four vertices (or equivalently,

the two-dimensional sphere S2) if we can place the vertices of H on the sphere and then triangulate the

sphere using those vertices in such a way that the resulting triangles are precisely the edges of H. In this

language, our main contribution is the following theorem.

Theorem 1.1. For each 3-graph H , there exists CH > 0 such that any 3-graph G on n vertices with at least

CHn
3−1/5 edges contains a homeomorph of H .

Here, it is worth mentioning that the topological Turán problem for 2-graphs (i.e., graphs) is understood

reasonably well: a classical result of Mader [15] asserts that for any graph H, there exists CH > 0 such that

every n-vertex graph with at least CHn edges contains a homeomorph of H, and this is tight in general up

to the multiplicative constant. Linial [8, 9] has raised the question of an analogous result for 3-graphs, and

while answers are available for a few specific 3-graphs, no general results for 3-graphs in the spirit of Mader’s

theorem appear to have been previously known; our main result, Theorem 1.1, fills in this gap.

We shall in fact prove Theorem 1.1 with CH = 2000v(H)6 for all sufficiently large n ∈ N. However, we

make no attempt to optimise this constant since we do not believe the exponent of 3− 1/5 in our result to be

tight; instead, we expect the right exponent to be 3− 1/2 = 5/2, and make the following conjecture.
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Figure 1. Each edge of H maps to twelve new edges in H̃; the colours red, blue and green

describe the tripartition of H̃.

Conjecture 1.2. For each 3-graph H , there exists CH > 0 such that any 3-graph G on n vertices with at

least CHn
5/2 edges contains a homeomorph of H .

This conjectural exponent of 5/2 requires explanation, and this brings us to the starting point of the line of

investigation we pursue in this paper. In the specific case of the tetrahedron K3
4 , a classical result of Brown,

Erdős and Sós [1] says that 5/2 is indeed the correct exponent: the minimum number of edges guaranteeing

a homeomorph of the sphere in an n-vertex 3-graph is Θ(n5/2). Conjecture 1.2 is then motivated by the

following line of reasoning: it turns out that we may find homeomorphs in 2-graphs roughly once we are

able to find cycles, i.e., homeomorphs of S1, and our investigations suggest that we ought to be able to find

homeomorphs in 3-graphs roughly once we are able to find spheres, i.e., homeomorphs of S2.

The arguments of Brown, Erdős and Sós are however rather specific to the sphere and, slightly more

generally, to ‘double-pyramidal’ complexes. Consequently, even the specialisation of Conjecture 1.2 to specific

3-graphs leads to interesting questions; indeed, the special case of H being (a triangulation of) the torus

remains open, and has been reiterated by Linial [8, 9] on multiple occasions as a natural starting point.

To put Theorem 1.1 in context, another (cheap) argument is worth mentioning: for any 3-graph H, it

is not difficult to construct a 3-partite 3-graph H̃ that is homeomorphic to H (as shown in Figure 1), and

since finding a copy of H̃ as a subgraph is a degenerate Turán problem, it follows from a classical result of

Erdős [3] that there is an εH > 0 such that any n-vertex 3-graph with at least n3−εH edges contains a copy of

H̃ as a subgraph, and hence a homeomorphic copy of H. In contrast, Theorem 1.1 says that this H-specific

exponent εH may actually be replaced by a universal exponent of 1/5.

The level of generality at which Theorem 1.1 applies comes at a price, however: for a few specific 3-graphs

of interest, such as the sphere and the torus for example, the aforementioned arguments (i.e., that of

Brown–Erdős–Sós, and the one based on the degenerate 3-graph Turán problem) yield better estimates than

what is promised by Theorem 1.1.

This paper is organised as follows. We begin with some definitions and establish some of the basic notions

we need for the proof of our main result in Section 2. The proof of Theorem 1.1 then follows in Section 3.

We conclude with a discussion about the limits of our approach, as well as some open problems, in Section 4.
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2. Preliminaries

Our notation is for the most part standard. Given a 2-graph or a 3-graph G, we write v(G) and e(G) for

the number of vertices and edges of G respectively. For a set S of vertices in a 2-graph G, we write Γ(S) for

the set of common neighbours of S in G, and following a common abuse, we write Γ(x) for Γ({x}), Γ(x, y) for

Γ({x, y}), and so on; in the sequel, whenever we refer to Γ(·), the underlying graph will always be clear from

the context, so there should be no cause for confusion. In those arguments that will involve working with both

2-graphs and 3-graphs in close proximity, we shall refer to the edges of 3-graphs as faces to avoid confusion.

Finally, in what follows, pairs and triples refer respectively to unordered two-element and three-element sets;

again, we abuse notation slightly and abbreviate a pair {x, y} as xy, a triple {x, y, z} as xyz, and so on.

It will be convenient to work with 3-partite 3-graphs; the following fact facilitates this, and follows from

an easy averaging argument.

Proposition 2.1. Any 3-graph on 3n vertices with m edges contains a 3-partite subgraph with vertex classes

of size n and at least 2m/9 edges. �

Now, let H be a fixed 3-graph and let G be a 3-partite 3-graph whose three vertex classes X, Y and Z are

each of size n. Our strategy to construct a homeomorph of H in G will involve gluing various building blocks

together appropriately; below, we introduce the notions we require to execute this strategy.

First, we shall construct an auxiliary 2-graph S(H) from H that will be helpful in finding a homeomorphic

copy of H in G. The construction of S(H) from H, illustrated in Figure 2, is as follows: first, for each pair

xy that is contained in some face of H, we introduce a new vertex u = uxy in S(H) and add the edges xu

and yu to S(H); then, for each face xyz of H, we introduce a new vertex u = uxyz in S(H) and add the

edges xu, yu and zu to S(H).

We record a few facts about S(H) below.

(1) Each face xyz of H gives rise to three specific 4-cycles in S(H), namely the 4-cycles {x, uxy, y, uxyz},
{y, uyz, z, uxyz} and {z, uzx, x, uxyz}; we call the 4-cycles of this form the special 4-cycles of S(H).

(2) S(H) is bipartite, with the set V1 of the original vertices of H and the set V2 of the new vertices

added in the construction of S(H) forming a bipartition.

(3) The degree of any vertex of S(H) in V2 is at most 3.

Next, we describe the structures within G that will serve as building blocks in constructing a homeomorph

of H. The link graph Lz of a vertex z ∈ Z is the bipartite graph between X and Y whose edges are those

pairs xy for which xyz is a face of G. Notice that a 4-cycle in the link graph Lz corresponds to four faces of

G (all sharing the vertex z) that, taken together, are homeomorphic to a disk; we call such a collection of

four faces of G a 4-disk with centre z, and call the associated 4-cycle in the link graph Lz the boundary of

the 4-disk.

Notice that a fixed 4-cycle in the complete bipartite graph between X and Y may be the boundary of

anywhere between 0 and n different 4-disks in G. We set KH = 3v(H)3, and call a 4-cycle between X and Y

(1) H-admissible if the cycle is the boundary of more than KH different 4-disks in G, and

(2) H-forbidden if this cycle is the boundary of between 0 and KH different 4-disks in G.

The definitions of admissible and forbidden 4-cycles are motivated by the following observation. As noted

earlier, each face of H corresponds to three special 4-cycles in S(H), and if we manage to find a copy of S(H)
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Figure 2. The construction of S(H) from H; the colours red and blue describe the

bipartition of S(H).

in X × Y with the property that all its 4-cycles form boundaries of 4-disks in G with distinct centres, then

we may glue the corresponding 4-disks together to obtain a homeomorph of H in G.

We shall rely on H-admissible 4-cycles between X and Y to build a homeomorph of H in G. First,

assuming G has sufficiently many edges, we shall show that we may pass to a subgraph G′ of G in which

most of the 4-cycles in X × Y are H-admissible. Next, we shall show, using G′, that we may find a copy of

S(H) between X and Y with the property that each of the 4-cycles in this copy is H-admissible. Finally,

since an H-admissible 4-cycle is contained in at least 3v(H)3 ≥ 3e(H) different link graphs, we will be able to

ensure that we never re-use central vertices when gluing the appropriate 4-disks in G′ together to construct a

homeomorph of H.

3. Proof of the main result

As before, let H be a fixed 3-graph, take KH = 3v(H)3, and let G be a 3-partite 3-graph whose three

vertex classes X, Y and Z are each of size n.

Our first goal is to find a vertex z ∈ Z whose link graph Lz is sufficiently dense so as to contain many

copies of the auxiliary 2-graph S(H) defined in Section 2, and which has a small number of H-forbidden

4-cycles. In order to achieve this, we use a straightforward application of dependent random choice; with the

set-up as above, we have the following claim.

Lemma 3.1. If e(G) ≥ Cn3−δ , then there exists a vertex z ∈ Z such that

(1) e(Lz) ≥ (C/2)n2−δ , and

(2) the number of H-forbidden 4-cycles in Lz is at most (2KH/C)n1+δe(Lz).

Proof. Select a vertex z ∈ Z uniformly at random. It is clear that E[e(Lz)] = e(G)/n. Note that the

probability that any given H-forbidden 4-cycle is contained in Lz is at most KH/n. Therefore, writing Bz

for the number of H-forbidden 4-cycles in Lz, we have E[Bz] ≤ KHn
3.

Putting the two estimates above together, we have

E
[
e(Lz)− (C/2)n2−δ − (C/2KH)n−1−δBz)

]
≥ 0,
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so there must exist a vertex z ∈ Z for which we both have

e(Lz)− (C/2)n2−δ ≥ 0

and

e(Lz)− (C/2KH)n−1−δBz ≥ 0,

proving the claim. �

Our proof of Theorem 1.1 will hinge around finding a copy of the auxiliary 2-graph S(H) within the link

graph Lz promised by Lemma 3.1 while avoiding H-forbidden 4-cycles. To find this copy, we first show that

we can pass to a large subset Y ′ ⊂ Y within which almost all pairs and triples are well-behaved. To quantify

what it means to be well-behaved, we make the following definitions.

(1) We call a pair y1y2 of vertices in Y good if

|Γ(y1, y2)| ≥ n1−2ε

and there are at most

(KH/C)n1−3ε|Γ(y1, y2)|

H-forbidden 4-cycles containing both y1 and y2, and bad otherwise.

(2) We call a triple y1y2y3 of vertices in Y good if

|Γ(y1, y2, y3)| ≥ n1−3ε,

and bad otherwise.

With this set-up, we next show the following.

Lemma 3.2. Let ε ≤ 1/5, C ≥ 1 and let Lz be a bipartite graph between X and Y with (C/2)n2−ε edges in

which the number of H-forbidden 4-cycles is at most KHn
3+1/5−ε. Then there is a subset Y ′ of Y of size at

least n1−ε/4 within which

(1) at most (400/C)
(|Y ′|

2

)
pairs are bad, and

(2) at most (600/C)
(|Y ′|

3

)
triples are bad.

Proof. To prove the lemma, we start by selecting a vertex x ∈ X uniformly at random. Clearly, we have

E[|Γ(x)|] = (C/2)n1−ε.

Notice that if a pair y1y2 in Y is bad, then either

(a) |Γ(y1, y2)| < n1−2ε, or

(b) the number of H-forbidden 4-cycles through y1 and y2 is at least (KH/C)n1−3ε|Γ(y1, y2)|,

or possibly both.

First, given a bad pair y1y2 in Y for which (a) holds, since |Γ(y1, y2)| < n1−2ε, the probability that both

y1 and y2 belong to Γ(x) is at most n−2ε; hence, the number P1 of such pairs surviving in Γ(x) satisfies

E[P1] ≤ n2−2ε.
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Next, let Q denote the set of bad pairs y1y2 for which (b) holds, so each pair y1y2 ∈ Q lies in at least

(KH/C)n1−3ε|Γ(y1, y2)| H-forbidden 4-cycles. Since the total number of H-forbidden 4-cycles in Lz is at

most KHn
3+1/5−ε, we get ∑

y1y2∈Q
(KH/C)n1−3ε|Γ(y1, y2)| ≤ KHn

3+1/5−ε,

which implies that ∑
y1y2∈Q

|Γ(y1, y2)| ≤ Cn2+1/5+2ε.

It follows that the number P2 of pairs in Q surviving in Γ(x) satisfies

E[P2] =
∑

y1y2∈Q

|Γ(y1, y2)|
n

≤ Cn1+1/5+2ε.

Thus, the total number Px of bad pairs surviving in Γ(x), which is clearly at most the sum P1 + P2,

satisfies

E[Px] ≤ E[P1] + E[P2] ≤ Cn1+1/5+2ε + n2−2ε ≤ (1 + C)n2−2ε;

here, the last inequality relies on the fact that ε ≤ 1/5.

Finally, given a bad triple y1y2y3 in Y , since |Γ(y1, y2, y3)| < n1−3ε, the probability that this triple survives

in Γ(x) is at most n−3ε. Writing Tx for the number of bad triples surviving in Γ(x), we again have

E[Tx] ≤ n3−3ε.

Putting the above estimates together, we get

E
[
|Γ(x)| − Cn1−ε

4
− CPx

12(1 + C)n1−ε
− CTx

6n2−2ε

]
≥ 0,

which in particular implies that there is some x ∈ X for which we have

(A) |Γ(x)| ≥ Cn1−ε/4,

(B) |Γ(x)| ≥ CPx/12(1 + C)n1−ε, and

(C) |Γ(x)| ≥ CTx/6n2−2ε.

Multiplying the inequality in (B) by the one in (A), the inequality in (C) by the square of the one in (A), we

see that for this choice of x ∈ X, we have

Px ≤
(
48(1 + C)/C2

)
|Γ(x)|2 ≤ (400/C)

(
|Γ(x)|

2

)
,

and

Tx ≤
(
96/C3

)
|Γ(x)|3 <

(
600/C3

)(|Γ(x)|
3

)
,

provided n is sufficiently large. Taking Y ′ = Γ(x) for this choice of x proves the claim. �

We are now ready to put these two lemmas together to prove our main result.

Proof of Theorem 1.1. Our goal given is to find a homeomorph of a given 3-graph H in any large 3-graph

G with sufficiently many faces. Appealing to Proposition 2.1, we start by assuming that G is a 3-partite

3-graph whose three vertex classes X, Y and Z are each of size n, and which has at least Cn3−1/5 faces for

some suitably large constant C depending on H alone. As described in Section 2, we shall work with the

auxiliary 2-graph S(H) to find a homeomorph of H in G.
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First, we apply Lemma 3.1 to G with δ = 1/5. This gives us a vertex z ∈ Z whose link graph Lz contains

(C/2)n2−ε edges for some ε ≤ δ = 1/5 in which the number of H-forbidden 4-cycles is at most

(2KH/C)n1+1/5e(Lz) = KHn
3+1/5−ε.

This link graph satisfies the requirements of Lemma 3.2, so we apply the lemma to pass to a subset Y ′ ⊂ Y
within which most pairs and most triples are good.

Recall that S(H) is bipartite and admits a bipartition (V1, V2) where each vertex in V2 has degree at most

3, and where V1 is in fact the original set of vertices of H.

We shall first embed the vertices of V1 into Y ′ in such a way that no embedded pair is bad and no embedded

triple is bad. In order to show that this is possible, we note that the proportion of bad pairs in Y ′ is at most

400/C and the proportion of bad triples in Y ′ is at most 600/C3. We define a 3-graph D(Y ′) on the vertex

set Y ′ whose edges are those that are potentially problematic for our embedding, i.e., those triples y1y2y3

which are either bad, or for which one of the pairs y1y2, y2y3 or y1y3 is bad. The density of this 3-graph

D(Y ′) is at most 1200/C + 600/C3 ≤ 2000/C.

Our goal now is to find a complete 3-graph on |V1| vertices in the complement of D(Y ′), since the existence

of such a subgraph enables us to inject V1 into Y ′ whilst avoiding all bad pairs and bad triples. A bound of

de Caen [2] shows that a copy of the complete 3-graph K3
t on t vertices can be found in any 3-graph on n

vertices of density at least

1−
(
t− 1

2

)−1
,

provided n is sufficiently large. Therefore, we may find our embedding (again, assuming that n is sufficiently

large) provided that

2000/C ≤
(
|V1|
2

)−1
,

which we may ensure by taking C ≥ 1000v(H)2.

It remains to find an embedding of the vertices of V2 into X. For each vertex u of degree 3 in V2 that

we need to embed into X, we have a choice of n1−3ε vertices in the common neighbourhood of its three

already-embedded neighbours from V1; we choose its image from these candidates uniformly at random.

Similarly, for each vertex v of degree 2 in V2, we choose its image uniformly at random from the n1−2ε vertices

in the common neighbourhood of its two already-embedded neighbours from V1.

The probability that this embedding is not proper, i.e., that some two vertices in V2 get mapped to the

same vertex in X, is at most |V2|2n3ε−1 < 1/2, provided n is large (since ε ≤ 1/5 and |V2| ≤ 10v(H)3).

We shall next show that for this embedding, the probability of some special 4-cycle in S(H) mapping to

an H-forbidden 4-cycle is also at most 1/2. Since the number of special 4-cycles in S(H) is 3e(H), it suffices

to show for each special 4-cycle C in S(H) that the probability of its image being H-forbidden is at most

1/(6e(H)). Let y1 and y2 be the images of vertices of C in V1 (which have been fixed earlier deterministically),

and consider u′ and v′, the (random) images of the two vertices u and v of C from V2 whose degrees in

S(H) are respectively 3 and 2. Let y3 be the vertex in Y ′ so that u′ is chosen uniformly at random from

Γ(y1, y2, y3). Suppose for a contradiction that the probability of the image of C being H-forbidden is at least

1/(6e(H)). Then this implies that at least a 1/(6e(H)) proportion of the 4-cycles formed by taking y1 and

y2, together with a vertex x1 ∈ Γ(y1, y2, y3) and a vertex x2 ∈ Γ(y1, y2) are H-forbidden. This leads us to

conclude that the number of H-forbidden 4-cycles through y1 and y2 is at least

(1/6e(H))n1−3ε|Γ(y1, y2)|.
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However, if 1/(6e(H)) ≥ KH/C, then this would imply that y1y2 is a bad pair, a contradiction; this final

inequality may be ensured by taking C ≥ 18v(H)6, since e(H) ≤ v(H)3 and KH = 3v(H)3.

We have shown that it is possible to embedded S(H) into Lz in such a way that all of the special 4-cycles

in this embedding are H-admissible. This embedding extends to a homeomorph of H inside G as follows.

For each 4-cycle C in Lz that is the image of some special 4-cycle of S(H), we claim that we may choose a

unique vertex z(C) ∈ Z such that C is also contained in the link graph Lz(C): indeed, C is H-admissible, so

there are at least KH = 3v(H)3 ≥ 3e(H) choices for z(C). We then use z(C) to turn each of the embedded

special 4-cycles C in Lz into a 4-disk in G, noting that these 4-disks all have distinct centres; the result is a

homeomorph of H in G. �

4. Conclusion

Below, we address some of the limitations of our approach to finding homeomorphs of a fixed target

3-graph H, as well as some potential avenues for improvement.

It seems plausible that the exponent of 3 − 1/5 that we obtain may be improved somewhat by a more

judicious application of the methods developed here. However, the ideas developed in this paper reach a

bottleneck, conjecturally, at the exponent of 3 − 1/4. This is because it is believed [16] that there exist

n-vertex 3-graphs with Ω(n3−1/4) edges that do not contain any octahedra, though the best constructions

presently known, see [6], only manage Ω(n3−1/3) edges. If a 3-graph does not contain any octahedra, then our

approach based on H-admissible 4-cycles falls apart, since if all the 4-cycles in the link graphs are H-forbidden,

then our method for extending S(H) to a homeomorph of H fails due to degeneracy concerns.

Another important fact to bear in mind is that while Ω(n5/2) edges guarantee a homeomorph of S2 in

any n-vertex 3-graph, the number of edges needed to guarantee a homeomorph of S2 of bounded size comes

with an exponent strictly greater than 5/2, as can be verified by a standard deletion argument applied to

a (binomial) random 3-graph of the appropriate density. Our methods here end up finding bounded-size

homeomorphs: indeed, we find a homeomorphic copy of H that has 12e(H) edges. Any strategy that does

not plan for the possibility of finding large homeomorphs of H, i.e., of size unbounded in terms of H, cannot

prove Conjecture 1.2.

We leave the reader with a reminder of the specialisation of Conjecture 1.2 to the torus as reiterated by

Linial [8, 9].

Conjecture 4.1. There is a C > 0 such that any 3-graph G on n vertices with at least Cn5/2 edges contains

a homeomorph of the torus.

An easy adaptation of the arguments of Brown, Erdős, and Sós [1] to triple-pyramidal complexes (from

double-pyramidal complexes) shows that an exponent of 3− 1/3 suffices for the torus, but improving on this

bound remains an attractive starting point to Conjecture 1.2 in its full generality.
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