Powers of paths in tournaments

Nemanja Draganic¢* Francois Dross' Jacob Fox* Anténio Girao®
Frédéric HavetY — Daniel Kordandil™  William Lochet'  David Munhé Correia*
Alex Scott! Benny Sudakov*

Abstract

In this short note we prove that every tournament contains the k-th power of a directed
path of linear length. This improves upon recent results of Yuster and of Girao. We also
give a complete solution for this problem when k& = 2, showing that there is always a
square of a directed path of length [2n/3] — 1, which is best possible.

1 Introduction

One of the main themes in extremal graph theory is the study of embedding long paths
and cycles in graphs. Some of the classical examples include the Erdés—Gallai theorem [3]
that every nm-vertex graph with average degree d contains a path of length d, and Dirac’s
theorem [2] that every graph with minimum degree n/2 contains a Hamilton cycle. A famous
generalization of this, conjectured by Pdsa and Seymour, and proved for large n by Komlés,
Sérkozy and Szemerédi [5], asserts that if the minimum degree is at least kn/(k + 1), then
the graph contains the k-th power of a Hamilton cycle.

In this note, we are interested in embedding directed graphs in a tournament. A tour-
nament is an oriented complete graph. The k-th power of the directed path ]3@ = vg...U
of length ¢ is the graph ﬁf on the same vertex set containing a directed edge v;v; if and
only if i < j < i+ k. The k-th power of a directed cycle is defined analogously. An old
result of Bollobds and Haggkvist [I] says that, for large n, every n-vertex tournament with
all indegrees and outdegrees at least (1/4 + ¢)n contains the k-th power of a Hamilton cycle
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(the constant 1/4 is optimal). However, we cannot expect to find powers of directed cycles in
general, as the transitive tournament contains no cycles at all.

What about powers of directed paths? A classical result, which appears in every graph
theory book (see, e.g., [7]), says that every tournament contains a directed Hamilton path.
On the other hand, Yuster [6] recently observed that some tournaments are quite far from
containing the square of a Hamilton path. In particular, there is an n-vertex tournament
that does not even contain the square of ﬁzn /3, and more generally, for every k > 2, there are
tournaments with n vertices and no k-th power of a path with more than nk/ 2k/2 vertices. In
the other direction, Yuster proved that every tournament with n vertices contains the square

0295 This was improved very recently by Girao [4], who showed that for

1—0(1).

of a path of length n
fixed k, every tournament on n vertices contains the k-th power of a path of length n
Both papers noted that no sublinear upper bound is known. Our main result shows that the
maximum length is in fact linear in n.

Theorem 1. For n > 2, every n-verter tournament contains the k-th power of a directed
path of length n /26,

The proof of this theorem combines Ko6vari-Sés—Turan style arguments, used for the
bipartite Turdn problem, and median orderings of tournaments. A median ordering is a vertex
ordering that maximizes the number of forward edges. Theorem [I| and Yuster’s construction
show that an optimal bound on the length has the form n/ 20(k) | Tt would be interesting to
find the exact value of the constant factor in the exponent. Optimizing our proof can yield a
lower bound of n/ 2ck+o(k) with ¢ ~ 3.9, but is unlikely to give the correct bound.

We also improve the exponential constant in the upper bound from 1/2 to 1.

Theorem 2. Let k > 5 and n > k(k + 1)2%. There is an n-vertex tournament that does not
contain the k-th power of a directed path of length k(k + 1)n/2*.

Note that this theorem also holds trivially for k < 4, when k(k + 1)n/2* > n.
Finally, we can solve the problem completely in the special case of k = 2. Once again, the
proof uses certain properties of median orderings.

Theorem 3. Forn > 1, every n-vertex tournament contains the square of a directed path of
length ¢ = [2n/3] — 1, but not necessarily of length € + 1.

Theorems and [3] are proved in Sections and [4] respectively.

2 Lower bound

We will need the following K&vari—-Sés—Turan style lemma.

Lemma 4. Let G be a directed graph with disjoint vertex subsets A and B with |A| = 2k +1,
|B| > 2%+ and every vertex in A has at least (1 — ﬁ)|3]/2 outneighbours in B. Then
A contains a subset A" of size k that has at least (2k + 1)22% common outneighbours in B.



Proof. Suppose there is no such set A’. Then every k-subset of A appears in the inneighbour-
hood of less than (2k + 1)22% vertices in B. So if d~(v) denotes the number of inneighbours
a vertex v € B has in A, then we have

(2k; 1) C(2k + 1)2%% = <’2‘> k12 > Y (d_kfv)). (1)

veEB

On the other hand, ) _p Sl*(v) > |A|(1 — ﬁ)\B[/Z = k|B|. By Jensen’s inequality,
Y veB (d;;(”)) > |B|- (szB dk (U)/‘B‘) = |B| > 2*+4k. This contradicts . O

One more ingredient we need for the proof of Theorem [l| is the folklore fact that every
tournament on 2" vertices contains a transitive subtournament of size m 4 1. This is easily
seen by taking a vertex of outdegree at least 27! as the first vertex of the subtournament,
and then recursing on the outneighbourhood.

Proof of Theorem [ Order the vertices as 0,1,...,n — 1 to maximize the number of forward
edges, i.e., the number of edges ij such that ¢ < j. As was mentioned in the introduction, we
will refer to such a sequence as a median ordering of the vertices. We denote an “interval” of
vertices with respect to this ordering by [i,7) = {i,...,7 — 1}, where 0 <i < j < n.

We will embed ]52“ inductively using the following claim.

Claim. Let t = 2%k and t < i < n — (2k + 1)t. For every subset A* C [i — t,i) of size 22¥,
there is an index i +t < j < i+ (2k + 1)t and a set A" C A* of size k such that A" induces a

22k

transitive tournament and its vertices have at least common outneighbours in [j — ¢, j).

Proof. There is a subset A C A* of size 2k + 1 that induces a transitive tournament. Let B =
[i,7 + (2k + 1)t). Then every vertex v € A has at least kt = (1 - ﬁ) | B|/2 outneighbours

in B. Indeed, otherwise v would have more than (k + 1)t inneighbours in the interval B,
so moving v to the end of this interval would increase the number of forward edges in the
ordering, contradicting our choice of the vertex ordering.

We can thus apply Lemma [4] to find a k-subset A’ C A with least (2k 4 1)2%* common
outneighbours in B. Partition B into 2k+1 intervals of size ¢, and we can choose j accordingly
so that A’ has at least 22¥ common outneighbors in the interval [j — ¢, 5). O

The theorem trivially holds for n < 2%¥, so assume n > 22%. Let ip = 22 and A4 = [0, 2%),
and apply the Claim with ¢ = i and A* = Ay. We get a set A’ C Ay of size k that induces a
transitive tournament, i.e., the k-th power of some path vg...v,_1. Moreover, this A’ has at

22k common outneighbours in some interval [j — ¢,75) with ig + ¢ < j < ig + (2k + 1)t.

least
Let us define i1 = j, and choose A; to be any 22 of the common outneighbours.

At step s, we apply the Claim again with ¢ = iy and A* = Ag to find the k-th power of
some path vy ... V(gp1)k—1 in As with 22k common outneighbours in some [ig; 1 —t,i541) with
is+t <ist1 <is+(2k+1)t, and repeat this process until some step ¢ with i, > n— (2k+ 1)t.
Note that intervals [is — t,i5) and [is41 — ,i5+1) are always disjoint. Finally, A, must also
contain a transitive tournament of size 2k + 1. Call these vertices vy, ..., v(p12)r. Observe

that n — (2k + 1)t < iy < 2% + 0(2k + 1)t, so n < (£ + 2)(2k + 1)t.



Then vy . .. v(g42), 18 a directed path of length (£+2)k > kn/(2k+1)t > n/(2*%+6L) whose
k-th power is contained in the tournament. In fact, we proved a bit more: the tournament
contains all edges of the form v,vp with a < b and |a/k] +1 > [b/k]. O

3 Upper bound

Let /i (n) denote the smallest integer ¢ such that there is an n-vertex tournament that does
not contain ]52“, or in other words, the largest integer such that every n-vertex tournament
contains the k-th power of a directed path on ¢ vertices.

To prove Theorem [2| we first note that ¢x(n) is subadditive.

Lemma 5. For any k,n,m > 1, we have £i(n+m) < lg(n) + (m).

Proof. Let T1 and T, be extremal tournaments on n and m vertices, respectively, not contain-
ing the k-th power of any directed path of length ¢x(n) and f;(m). Let T be the tournament
on n + m vertices, obtained from the disjoint union of 77 and 75 by adding all remaining
edges directed from 77 to T5. Then any k-th power of a path in 7" must be the concatenation
of the k-th power of a path in 77 and the k-th power of a path in 75, and hence it must have
length at most (¢x(n) — 1) + (lx(m) — 1) + 1 < li.(n) + Lx(m). O

Our improved upper bound is based on the following construction.

Lemma 6. For every k > 5, we have £;,(2F1) < Lk;l)-

Proof. Let n =21 and ¢ = k(k;l), and note that 134’“_1 has k¢ — ¢ edges.

Let T be a random n-vertex tournament obtained by orienting the edges of K, indepen-
dently and uniformly at random. The probability that a fixed sequence of ¢ vertices vy ... vp_1
forms a copy of ]3;_1 is 27 (=D There are (?) - ¢! such sequences, so the probability that T
contains the k-th power of a path of length ¢ —1 is at most (z) 0127 (=1 ol ig=(k=1)E —

So with positive probability 7" does not contain ]5}“_1, therefore £;,(28=1) < ¢ — 1. O
Combining Lemmas |5 and |§| and using the monotonicity of f;(n), we get

€k(n)§{%wfk(2k_l)§(2%1+l) (W_QSW

for n > k(k + 1)2%, establishing Theorem

4 The square of a path

Proof of Theorem[3. Recall that f2(n) is the largest integer such that every n-vertex tourna-
ment contains the square of a path on ¢ vertices. Proving Theorem [3|is therefore equivalent
to showing ¢3(n) = [2n/3] for every n > 1.

It is easy to check that (1) = 1 and (2(2) = ¢2(3) = 2, so l2(n) < [2n/3] follows from
Lemma [5 by induction, as f3(n) < ly(n — 3) + £2(3) = l2(n — 3) 4+ 2 holds for every n > 3.
For the lower bound we need to take a closer look at median orderings.



Claim. Every median ordering x1,...,z, of a tournament has the following properties:
(a) All edges of the form z;x;y; are in the tournament.

(b) If z;x;_2 is an edge of the tournament, then “rotating” z;_oz;_12; gives two other median
orderings T1, ..., Ti—3, Li—1,Ti, Ti—2y Titly- -y Tn ANA L1, ..., T3, Tiy Tim2y i1, Tigly -« -5 T

(¢) If z;z;_9 is an edge of the tournament, then each of x;_9,2;_1,x; is an inneighbour of
Zi+1, and at most one of them is an outneighbour of x;42.

Proof. Property @ holds, as otherwise we could swap x; and z;11 to get an ordering with
more forward edges, contradicting our assumption. Property holds because rotating
Zi—ox;—12; has no effect on the number of forward edges.

These two properties together imply that each of x;_s,z;—1,x; is an inneighbour of x;1.
Suppose, to the contrary of (), that two of them are outneighbours of z;4s. By rotating
xi_ox;_1x; if needed, we may assume that these are x; 1 and z;. But then we can also rotate
TiT;+1Ti+2 SO that x;1 0 comes right after ;1 in a median ordering. This contradicts @ O

Let us now say that ¢ is a bad index in a median ordering x1,...,x, if ;x;_2 is an edge,
and at least one of x;10x; and x;10x;_1 is also an edge.

Lemma 7. FEvery tournament has a median ordering without any bad indices.

Proof. Suppose this fails to hold for some tournament, and take a median ordering x1, ..., Z,
that minimizes the largest bad index i. As ¢ is a bad index, x;x;_o is an edge, and x; or x;_1
is an outneighbour of x;ys. By , Ti—o%i—1%; can be rotated so that $i+21‘§72 is an edge
in the new median ordering 1, ..., %—3,%;_o, @, 1,2}, Tit1,...,2y. Then neither x;; 92} nor
Tipox;_; is an edge, since by (d), only one of @}_,,z}_,,} is an outneighbour of z; ;5. Also
by , x,_jxi+1 and zhx;4q are edges, so both of ;41 and ;19 are outneighbours of }_; and
x,. This means that none of 7,7+ 1,7 + 2 is a bad index in this new ordering, and hence the
largest bad index is smaller than ¢. This is a contradiction. O

Now we are ready to prove ¢2(n) > [2n/3]. Take an n-vertex tournament with median
ordering x1,...,x, as in Lemma [7} and let I = {i; < i2 < -+ < ix} be the set of indices i
such that z;x;_2 is not an edge (in particular, i; = 1 and ip = 2). We claim that z;, ... x;, is

a directed path on k > [2n/3]| vertices whose square is contained in the tournament.

To see this, first observe that if the index ¢ 4+ 2 is not in I, then both ¢ and ¢+ 1 are in [I.
Indeed, if x;iom; is an edge, then x;412;—1 cannot be one because of , and x;x;_9 cannot
be one because 7 is not a bad index. This immediately implies & > [2n/3].

It remains to check that z; T and x; i1 Ti; are all edges in the tournament. By the
above observation, we know that i; — 3 <i;_9 <i;_1 < ¢;. Here Ti;—1T;; is an edge by @,
and z;,—ow;; is an edge by the definition of I. So the only case left is to show that x;,_,z;, is
an edge when i;_o = 7; — 3.

In this case there is an index 7; — 3 < ¢ < 7; that is not in I, i.e., x;2;_2 is an edge in the
tournament. But then if ¢ =4; — 1, then z;;,_,;; is an edge because of , while otherwise

i =1i;—2, and z;;_,x;; is an edge because 7 is not a bad index. This concludes our proof. [
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