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Abstract

We show that for every positive integer k, any tournament can be partitioned into at most

2ck k-th powers of paths. This result is tight up to the exponential constant. Moreover, we

prove that for every ε > 0 and every integer k, any tournament on n ≥ ε−Ck vertices which is

ε-far from being transitive contains the k-th power of a cycle of length Ω(εn); both bounds are

tight up to the implied constants.

1 Introduction

Tournaments are complete graphs where every edge has an orientation. A simple exercise ([13])

shows that any tournament contains a Hamilton path, i.e., a directed path which passes through

every vertex. A natural generalisation of a directed path is a k-th power of a path which consists

of a sequence of vertices x1, x2, . . . , xn with the property that xi → xj for every 1 ≤ i < j ≤
min{i+ k, n}. When k ≥ n− 1, this k-th power of a path is an n-vertex transitive tournament.

In [14], Yuster investigated the problem of estimating the minimum over all n-vertex tourna-

ments of the maximum length of a power of a path. He showed that any tournament on n vertices

must contains the square of a directed path on at least n0.295 vertices. Confirming a conjecture of

Yuster, Draganić et al. [5] showed that for every k there always exists a k-th power of a path of

linear order.

Theorem 1.1 (Draganić et al. [5]). For every positive integer k, any tournament on n vertices

contains the k-th power of a path of length n/2(4+o(1))k.

More precisely, for every positive integer k, every tournament on n vertices contains a k-th

power of a path on at least n/(k24k+6) vertices. Moreover, it was shown in [5] that this is tight
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up to the constant in the exponent. One might be tempted to ask whether the same phenomenon

holds for every acyclic digraph with bounded maximum degree. In other words, is it the case that,

for any positive integer ∆, there is a constant C(∆) > 0 such that for any acyclic digraph D on n

vertices with maximum degree ∆, every tournament on at least C(∆)n vertices contains a copy of

D? Very recently Fox, He and Wigderson [8] gave a negative answer to this question. Indeed, they

showed that for all ∆ ≥ 2 and every sufficiently large n, there is an acyclic digraph D on n vertices

with maximum degree ∆ for which there are tournaments on at least nΩ(∆2/3−o(1)) vertices that do

not contain any copy of D.

In this paper, we build some tools for finding powers of paths and cycles in tournaments and use

them to prove two further results. We first extend Theorem 1.1, by showing that every tournament

can be partitioned into 2O(k) tournaments each of which contains the k-th power of a Hamilton

path. We then consider powers of cycles, showing that if a tournament is far from transitive then

it must contain the kth power of a long cycle; we give bounds that are essentially tight up to the

implicit constants. These results are discussed in the next two subsections.

1.1 Partitions into powers of paths

A common theme in combinatorics is the problem of partitioning the vertex set of a graph into

a bounded number of pieces, each satisfying certain properties. A famous problem in this area

is Lehel’s Conjecture, which states that any graph has a vertex partition into two parts, where

one forms a cycle and the other forms an anticycle (a cycle in the complement); equivalently, any

2-edge-coloured graph has a vertex bipartition into two monochromatic cycles of distinct colours

This was confirmed for large enough graphs by  Luczak, Rödl, and Szemerédi [12] and for all graphs

by Bessy and Thomassé [1].

Similar questions arise for colourings with more colours. An influential result of Erdős, Gyárfás

and Pyber [7] shows that any r-edge-coloured graph can be partitioned into at most O(r2 log r)

monochromatic copies of a cycle. Recently Bustamante, Corsten, Frankl, Pokrovskiy and Skokan [3]

extended this to powers of cycles, proving that that for all natural numbers k and r, the vertices

of every r-edge-coloured complete graph can be partitioned into a bounded number of k-th powers

of cycles. (We refer the reader to the survey of Gyárfás [10], for many other problems dealing with

partitions and covers of finitely edge-coloured graphs.)

In light of these results it is very natural to ask whether every tournament has a finite partition

of the vertex set into k-th powers of paths. In our first result, we answer this question in the

affirmative.

Theorem 1.2. Every n-vertex tournament T can be partitioned into at most 2105k vertex-disjoint

k-th powers of directed paths.

We remark that the bound above is essentially tight, up to the constant in the exponent. To
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see this, let Tk be a tournament on 2k/2 vertices which does not contain a transitive tournament

on k vertices, and let T be a tournament consisting of the disjoint union of n/2k/2 copies of Tk,

where all edges between the copies are oriented from left to right. It is easy to see that T does not

contain a k-th power of a path of length greater than kn/2k/2.

1.2 Powers of cycles in ε-intransitive tournaments

Generalizing the previous results about path powers to cycle powers is not possible. For example,

the transitive tournament does not contain any directed cycle at all. One can only say something

about cycles in tournament by making further structural assumptions.

An old result of Bollobás and Häggkvist [2] says that for every k and 0 < ε ≤ 1/4, any

tournament on sufficiently many vertices with minimum in and out-degree at least (1/4 + o(1))n

contains a k-th power of a Hamilton cycle and this is tight up to the o(1) error term. Recently,

Draganić, Munhá Correia, and Sudakov [6] were able to find an almost tight bound for the error

term.

We complement these results by showing that much milder assumptions are sufficient for the

existence of long (linear-length) k-th powers of cycles in tournaments.

We say that an n-vertex tournament is ε-intransitive if no matter how we order its vertices,

there are always at least εn2 backward edges. This is a way to measure how far the tournament is

from being transitive. Note that a tournament cannot be γ-intransitive for γ > 1/4, because for any

vertex ordering τ , either τ or its reverse induces fewer than n2/4 backward edges. This definition

turns out to be quite important and is a sort of equivalent of edge density for tournaments. Indeed,

as a by-product of a result of Chung and Graham [4], it follows that for any tournament H, there is

ε(H) ≥ 0 such that every sufficiently large tournament T which is (ε(H) + o(1))-intransitive must

contain a copy of H. Fox and Sudakov [9] showed that ε(F ) = 0 works for any transitive blow-up

F of a directed triangle.

We prove the following result.

Theorem 1.3. Let 0 < ε < 1/4, then every ε-intransitive tournament on n ≥ ε−105k vertices

contains the k-th power of a cycle of length at least εn/1500.

Furthermore, in Section 4, we show both bounds are essentially tight.

The rest of the paper is organized as follows. In the next section, we develop some machinery

that we shall need for our proofs. Theorem 1.2, on partitioning into powers of cycles, is proved in

Section 3; and Theorem 1.3, on finding powers of long cycles, is proved in Section 4.

We note that we have not tried to optimize absolute constants in our results.
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2 Tools

A tournament is transitive if its vertices can be ordered so that every edge is oriented from its

smaller endpoint to its larger endpoint. Note that every subtournament of a transitive tournament

is also transitive.

We use [n] to denote the set of integers {1, . . . , n}. T will always denote a tournament. For two

disjoint vertex sets A,B in T , e(A,B) denotes the number of edges from A to B, and d(A,B) =
e(A,B)
|A||B| denotes the density of such edges. Of course, d(A,B) = 1 if and only if A and B are disjoint

and there is an edge from every vertex in A to every vertex in B. We will denote this by A⇒ B.

For convenience, our notion of cycles will include singleton vertices and edges as degenerate

cases on one or two vertices. We will also drop floor and ceiling signs when they are not essential.

2.1 Extremal lemmas

Let us start with two well-known facts that we will need for the proof. The first is a basic property

of tournaments shown first by Stearns [16].

Proposition 2.1. Every tournament on at least 2k vertices contains a k-vertex transitive subtour-

nament.

We will also need the following simple observation about edge densities.

Proposition 2.2. Let G = (A ∪ B,E) be a bipartite graph with |E| = β|A||B| edges for some

0 < β ≤ 1. Then for every ε ≥ 0, A contains at least (β − ε)|A| vertices of degree at least ε|B|.

Next, we formulate a special case of the Kővári-Sós-Turán Theorem [15], which will be a key

tool in our arguments. We give a short proof for completeness.

Lemma 2.3. Let G = (A∪B,E) be a bipartite graph such that for some 0 < β ≤ 1/2, every vertex

in A has at least β|B| neighbours in B. If |A| ≥ k/β, then A contains a subset X of size k with at

least β4k|B| common neighbours in B.

Proof. We may assume that |A| = dk/βe. A vertex v ∈ B sees
(d(v)
k

)
different k-subsets of A in its

neighbourhood. This gives a total of∑
v∈B

(
d(v)

k

)
≥ |B|

(∑
d(v)/|B|
k

)
≥ |B|

(
β|A|
k

)
≥ |B|

k-sets over all vertices of B, where we used Jensen’s inequality, and that
∑
d(v) ≥ β|A||B| ≥ k|B|.

But there are only
(|A|
k

)
≤
(2k/β

k

)
≤ (2k/β

k/e )k ≤ β−4k different k-sets in A, so one of them must have

at least β4k|B| common neighbours in |B|.
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We note that the assumptions in the lemma are stronger than necessary (a density condition

would suffice) but we have given the lemma in the form we will use it.

We will also need the following strengthening for tournaments, which comes as a simple appli-

cation of the dependent random choice method.

Lemma 2.4. Let A,B be disjoint sets in a tournament. If d(A,B) ≥ β for some 0 < β ≤ 1/2,

and |A|, |B| ≥ β−5k, then there are subsets Y ⊆ A and X ⊆ B of size |Y | ≥ β4k|A| and |X| = k

such that X induces a transitive tournament, and Y ⇒ X.

Proof. Let S be a random multi-set of s =
⌊

1
2 log1/β |B|

⌋
independently and uniformly sampled ver-

tices in A, and let T ⊆ B be the set of common outneighbours of S. Then E[|T |] =
∑

v∈B d(A, v)s ≥
βs|B| ≥ |B|1/2 by Jensen’s inequality. Let Z be the number of k-subsets in T with fewer than β4k|A|
common inneighbours in A. The probability that a given k-subset Q ⊆ B with γ|A| common in-

neighbours in A satisfies Q ⊆ T is γs, so we have E[Z] ≤
(|B|
k

)
β4k·s ≤ (β4s|B|)k ≤ 1, as 4s ≥

log1/β(|B|). Hence E[|T | −Z] ≥ |B|1/2− 1. Let us fix a random sample where |T | −Z ≥ |B|1/2− 1.

By deleting a vertex of each k-subset counted by Z from the set T , we obtain a subset W ⊆ T
of size at least |B|1/2 − 1 such that all k-subsets in W have at least β4k|A| common inneighbours.

As |W | ≥ 22k, we can use Proposition 2.1 to find a k-set X ⊆ W that induces a transitive

subtournament. We can choose Y to be the common inneighbourhood of X.

Corollary 2.5. Let A,B be disjoint sets in a tournament. If d(A,B) ≥ β for some 0 < β ≤ 1/2,

and |A|, |B| ≥ β−5k, then there are sets X ⊆ A and Y ⊆ B that induce transitive tournaments of

size k and satisfy X ⇒ Y .

Proof. This is immediate from Lemma 2.4 noting β4k|A| ≥ 2k and applying Proposition 2.1.

Our final tool in this section describes a sufficient condition when we can repeatedly apply the

previous lemmas to construct a sequence of transitive tournaments.

Lemma 2.6. Let A1, . . . , At be disjoint vertex sets of size at least 210k in a tournament, and

suppose there is no i ∈ [t− 1] and sets B ⊆ Ai and B′ ⊆ Ai+1 such that B and B′ induce transitive

tournaments of size k, and B′ ⇒ B. Then there are sets Xi ⊆ Ai of size k such that each Xi

induces a transitive subtournament, and X1 ⇒ · · ·⇒ Xt.

Proof. We proceed by induction on t under the weaker assumption that |At| ≥ 26k. The t = 1 case

easily follows from Proposition 2.1, so we assume t ≥ 2.

If d(At, At−1) ≥ 1/2, then we can apply Corollary 2.5 to find k-sets B ⊆ At−1 and B′ ⊆ At that

induce transitive tournaments and satisfy B′ ⇒ B, contradicting our assumption.

So d(At, At−1) ≤ 1/2, i.e., d(At−1, At) ≥ 1/2, and we can apply Lemma 2.4 to find a k-subset

Xt ⊆ At that intournamentsduces a transitive tournament, and another subset A′t−1 ⊆ At−1 of size
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|A′t−1| ≥ |At−1|/24k ≥ 26k such that A′t−1 ⇒ Xt. Applying the induction hypothesis to the sets

A1, . . . , At−2, A
′
t−1 yields the result.

2.2 Median orderings

A median ordering of a tournament T is an ordering v1 ≺ · · · ≺ vn of the vertices that maximizes

the number of forward edges, i.e., edges of the form vi → vj with i < j. Studying such orderings

has been very helpful in understanding the structure of tournaments (see e.g. [5]). An interval of

vertices with respect to a median ordering is a sequence V [i, j] = {vi, . . . , vj} for some i ≤ j. For

two vertex subsets X,Y we write X ≺ Y to denote that x ≺ y for any x ∈ X and y ∈ Y .

Lemma 2.7. Suppose that in a median ordering of some tournament T , an interval is split into

subintervals A0 ≺ · · · ≺ At of size m each. Then every vertex v ∈ A0 has at least t−2
2 m out-

neighbours in A = A1 ∪ · · · ∪ At−1, and every vertex in v ∈ At has at least t−2
2 m inneighbours in

A.

Proof. Note that |A| = (t− 1)m, so if some v ∈ A0 has fewer than t−2
2 m outneighbours in A, then

v has at least m fewer outneighbours in A than inneighbours. As v has at most m− 1 neighbours

in A0, moving v to the end of the interval A0∪A (so that At−1 ≺ v ≺ At) is guaranteed to increase

the number of forward edges. This contradicts our assumption on the ordering. The statement

about At can be proved analogously.

Using this lemma, we can obtain an ordered variant of Lemma 2.3. It will be helpful to allow

a set F of ‘forbidden’ vertices.

Lemma 2.8. Suppose that in a median ordering of some tournament T , an interval A is split into

three subintervals A0 ∪A1 ∪A2 of size m each, and let F ⊆ A be a set of at most m/4 (forbidden)

vertices. Then every set A′0 ⊆ A0 of size 8k contains a subset X of size k such that for some i ∈ [2],

X has at least m/212k common outneighbours in Ai \ F .

Proof. By Lemma 2.7 with t = 3 (and adding a dummy set A3 of m vertices), we have that every

vertex in A′0 has at least m/2 outneighbours in A1 ∪A2, at least m/4 of which lie in (A1 ∪A2) \F .

Applying Lemma 2.3 with β = 1/8 applied to the bipartite graph consisting of all edges directed

from A′0 to (A1 ∪A2), we get a set X ⊆ A′0 of size k with at least 2m/212k common outneighbours

in (A1 ∪ A2) \ F . Of course, at least m/212k of these common outneighbours must lie in the same

set Ai \ F for some i ∈ [2].

We can now easily deduce an ordered variant of Lemma 2.6. In this case there is no need for

the assumption on backward edges: the median ordering provides all the structure we need.

Lemma 2.9. Let k > 0, and suppose that in a median ordering of some tournament T , an interval

is split into subintervals A1 ≺ · · · ≺ At of size m ≥ 220k each. Suppose we have a set of vertices
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F such that |F ∩ Ai| ≤ m/8 for every i ∈ [t], and X ⊆ A1 \ F is a set of size 8k that induces a

transitive tournament.

Then there are sets X1 ⇒ · · · ⇒ Xs such that X1 ⊆ X, and each Xi induces a transitive

tournament of size k in Aji \ F , where the indices 1 = j1 < · · · < js satisfy ji+1 ∈ {ji + 1, ji + 2}
for every i, and js ∈ {t− 1, t}.

Proof. Set j1 = 1 and X ′1 = X. We repeat the following step for every i = 1, 2, . . . as long as

ji < t− 1.

Applying Lemma 2.8 to the interval Aji ∪ Aji+1 ∪ Aji+2 with A′0 = X ′i and forbidden vertices

(F ∩Aji+1)∪ (F ∩Aji+2) gives a k-set Xi ⊆ X ′i with at least m/212k ≥ 28k common outneighbours

in Aji+1 \ F for some ji+1 ∈ {ji + 1, ji + 2}. By Proposition 2.1, we can find a subset X ′i+1 of 8k

common outneighbours that induce a transitive subtournament.

This process stops with some js ∈ {t− 1, t}, and we can then choose any k-subset Xs ⊆ X ′s so

that X1, . . . , Xs satisfy the statement.

The next lemma is a key component of our arguments, and perhaps the most technical result in

the paper. It says that if two sets are far enough apart in a median ordering, then we can connect

them with a short blowup of a path.

Lemma 2.10. Suppose that in a median ordering of some tournament T , an interval is split into

subintervals A0 ≺ · · · ≺ At of size m ≥ 100 · 240400k each, where t ≥ 50. Let A′0 ⊆ A0 and A′t ⊆ At
be subsets of size at least 24001k, and let F be a set of at most m/2 vertices in A = A1 ∪ · · · ∪At−1.

Then there is s ≤ 3 and disjoint sets X0 ⊆ A′0 and X1, . . . , Xs−1 ⊆ A \ F and Xs ⊆ A′t, such that

X0 ⇒ · · ·⇒ Xs, and each Xi induces a transitive tournament of size k.

Proof. Let ε = 1/100, and define AI ⊆ A \F as the set of vertices with at least ε|A′0| inneighbours

in A′0, and AO ⊆ A\F as the set of vertices with at least ε|A′t| outneighbours in A′t. We claim that

|AI |, |AO| ≥ ( t−3
2 − (t − 1)ε)m. Indeed, there are at least t−2

2 m|A′0| = t−2
2t−2 |A||A

′
0| edges from A′0

to A by Lemma 2.7, so Proposition 2.2 applied to the bipartite graph induced by these edges with

β = t−2
2t−2 gives ( t−2

2 − (t − 1)ε)m vertices in A with at least ε|A′0| inneighbours in A′0. Excluding

the vertices of F yields the lower bound on |AI |. The bound on |AO| is analogous.

If AI and AO share at least 2k/ε
2

vertices, then we are done with s = 2 as follows. By

Proposition 2.1, there is a set Y ⊆ AI ∩ AO of size k/ε2 that induces a transitive tournament.

Then every vertex of Y has at least ε|A′t| outneighbours in A′t, so we can apply Lemma 2.3 to the

bipartite graph of the edges from Y to A′t to get sets Y ′ ⊆ Y and Ãt ⊆ A′t such that |Y ′| ≥ k/ε

and |Ãt| ≥ ε4k/ε|A′t| ≥ |A′t|/24000k ≥ 2k with Y ′ ⇒ Ãt. Once again, every vertex of Y ′ has at

least ε|A′0| inneighbours in A′0, so Lemma 2.3 gives Y ′′ ⊆ Y ′ and Ã0 ⊆ A′0 such that |Y ′′| ≥ k and

|Ã0| ≥ ε4k|A′0| ≥ 2k with Ã0 ⇒ Y ′′. We can then choose X0 and X2 to be k-subsets of Ã0 and

Ãt that induce transitive tournaments, and X1 to be Y ′′. tournaments So we may assume that
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|AI ∩ AO| < 2k/ε
2
< εm. Let ÃI = AI \ AO. Then ÃI is disjoint from AO and has size at least

( t−3
2 − tε)m. Also, |ÃI ∪ AO| > (t− 3)m− (2t− 1)εm, so the set AX = A \ (AI ∪ AO) of leftover

vertices (including F ) has size at most 2m+ (2t− 1)εm.

If d(ÃI , AO) > ε, then we can conclude the argument with s = 3 similarly to the previous

case: As |ÃI |, |AO| ≥ m ≥ ε−5k/ε, we can apply Corollary 2.5 to find sets Y ⊆ ÃI and Z ⊆ AO

that induce transitive tournaments of size k/ε and satisfy Y ⇒ Z. Now every vertex of Y has at

least ε|A′0| inneighbours in A′0 and every vertex of Z has at least ε|A′t| outneighbours in A′t, so two

independent applications of Lemma 2.3 gives k-sets Y ′ ⊆ Y and Z ′ ⊆ Z as well as sets Ã0 ⊆ A′0
and Ãt ⊆ A′t of size |Ã0| ≥ ε4k|A′0| ≥ 2k and |Ãt| ≥ ε4k|A′t| ≥ 2k such that Ã0 ⇒ Y ′ ⇒ Z ′ ⇒ Ãt.

We then choose X0 and X3 to be transitive k-subsets of Ã0 and Ãt, respectively, and set X1 = Y ′

and X2 = Z ′.

So let us also assume that d(ÃI , AO) ≤ ε. We will show that we could not have started with

a median ordering in this case. Let B = A1 ∪ · · · ∪ Ab(t−1)/2c and C = At−b(t−1)/2c ∪ · · · ∪ At−1,

and let us first bound the size of BI = B ∩ AI and CO = C ∩ AO. By Lemma 2.7, there are at

least t−6
4 |A

′
0|m edges from A′0 to B and t−6

4 |A
′
t|m edges from C to A′t, so Proposition 2.2 implies

|BI |, |CI | ≥ ( t−6
4 − (t− 1)ε)m. We then also see that B̃I = B ∩ ÃI has size at least ( t−6

4 − tε)m.

Let us now consider the ordering on the vertices of the tournament that moves all vertices in

ÃI to the end of the interval A, without affecting the relative order of vertices in any other way. So

A′0 ≺ (AO∪AX) ≺ ÃI ≺ A′t in this new ordering. With this reordering, we may lose up to |ÃI ||AX |
forward edges between ÃI and AX , and up to ε|ÃI ||AO| between ÃI and AO, but we will surely

gain at least |B̃I ||CO| − ε|ÃI ||AO| forward edges between B̃I and CO. With t ≥ 50 and ε = 1/100,

we can bound the terms as follows:

|B̃I ||CO| ≥
(
t− 6

4
− tε

)(
t− 6

4
− (t− 1)ε

)
m2 ≥ (t− 2)2

25
·m2

|ÃI ||AO| ≤
(
t− 2

2
− tε

)(
t− 2

2
− (t− 1)ε

)
m2 ≤ (t− 2)2

4
·m2

|ÃI ||AX | ≤
(
t− 2

2
− tε

)
(2 + (2t− 1)ε)m2 ≤ t− 2

2
· t− 2

15
·m2.

This means that the new ordering has at least

|B̃I ||CO| − 2ε|ÃI ||AO| − |ÃI ||AX | ≥
(

1

25
− 1

200
− 1

30

)
(t− 2)2m2 ≥ (t− 2)2m2

600

more forward edges than the median ordering we started with, which is a contradiction.

It will be more convenient for us to apply the previous lemma via the following statement.

Corollary 2.11. Suppose that in a median ordering of some tournament T , an interval is split

into subintervals A0 ≺ · · · ≺ At of size m ≥ 100 · 240400k each, where t ≥ 60. Let X ⊆ A0 and

X ′ ⊆ At be 4k-subsets that induce transitive tournaments, and let F be a set of at most m/2
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(forbidden) vertices in A = A1 ∪ · · · ∪ At−1. Then there is s ≤ 5 and disjoint sets X0 ⊆ X and

X1, . . . , Xs−1 ⊆ A \ F and Xs ⊆ X ′, such that X0 ⇒ · · · ⇒ Xs, and each Xi induces a transitive

tournament of size k.

Proof. By Lemma 2.7, every vertex in X has at least 3m/2 outneighbours in A1 ∪A2 ∪A3 ∪A4, at

least m of which are not in F . So we can apply Lemma 2.3 with A = X, B = (A1∪A2∪A3∪A4)\F
and β = 1/4 to find a k-subset X0 ⊆ X with at least 3m/28k common outneighbours in B. At

least m/210k ≥ 220001k of these are in the same Ai with i ≤ 4, let us denote them by A′i.

The same argument can be applied to X ′ from the other direction, so we similarly get a k-set

Xt ⊆ X ′ with and another set A′i′ ⊆ Ai′ \ F for i′ ≥ t− 4 such that |A′i′ | ≥ 22000k and A′i′ ⇒ Xt.

But then we can apply Lemma 2.10 to the interval Ai ∪ · · · ∪ Ai′ to find transitive k-sets

Y0 ⇒ · · ·⇒ Ys′ with s′ ≤ 3 such that Y0 ⊆ A′i, Y1, . . . , Ys−1 ⊆ (Ai+1∪· · ·∪Ai′−1)\F , and Ys′ ⊆ A′i′ .
Relabeling X0, Y0, . . . , Ys′ , Xt as X0, . . . , Xs with s = s′+ 2 yields the sets we were looking for.

2.3 Absorbers

Definition 2.12. Let r′ = 210k and r ≥ r′ + 1. We say that a tournament H is a k-absorber if

there is an r′-set Q = {q1, . . . , qr′} and a partition V (H) = S0 ∪ · · · ∪ Sr ∪Q such that

(i) S0 ⇒ S1 ⇒ · · ·⇒ Sr ⇒ S0, and each Si induces a transitive tournament of size 2k.

(ii) S0 ⇒ Q⇒ Sr′+1, and Si ⇒ qi ⇒ Si+1 for i ∈ [r′].

We will refer to the set Q = Q(H) as the absorbing part of H.

→
S0

→
S1

→
Sr′

→
Sr′+1

. . . →
Sr

Q

. . .

q1 q2 qr′−1 qr′...

It is easy to see that every k-absorber H contains the k-th power of a Hamilton cycle. In fact,

its structure is more robust. The key property of these absorbers is captured by the following

statement.
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Proposition 2.13. Let H be a k-absorber, and X,Y ⊆ Q(H) be two vertex sets of size 2k in the

absorbing part of H that induce transitive subtournaments. Then H contains the k-th power of a

Hamilton path whose first k vertices are in Y and last k vertices are in X.

Proof. Let Y0 ⊆ Y and X0 ⊆ X\Y0 be arbitrary disjoint subsets of size k. We will cover the vertices

of H by the k-th power of a path whose first k vertices are the ones in Y0 and last k vertices are

the ones in X0.

Let us split each vertex set Si of the k-absorber H arbitrarily into two k-sets S1
i and S2

i . The

backbone of the path power is given by the relations

Y0 ⇒ S1
r′+1 ⇒ · · ·⇒ S1

r ⇒ S1
0 ⇒ S1 ⇒ · · ·⇒ Sr′ ⇒ S2

r′+1 ⇒ · · ·⇒ S2
r ⇒ S2

0 ⇒ X0.

As each of these sets induces a transitive subtournament of size at least k, we can combine them

into the k-th power of a path touching all vertices in the above order. Finally, we can insert any

leftover vertex qi ∈ Q \ (X0 ∪ Y0) between Si−1 and Si (or between S1
0 and S1 when i = 1, and

between Sr′−1 and S2
r′ when i = r′) by the assumptions on k-absorbers.

Lemma 2.14. Let H1, . . . ,Hs be vertex-disjoint k-absorbers in a tournament T . Then T contains

the k-th power of a directed path with vertex set V (H1) ∪ · · · ∪ V (Hs).

Proof. Consider the auxiliary tournament on vertex set [s], where ij is an edge if d(Q(Hi), Q(Hj)) ≥
1/2 (keeping only one of ij and ji if d(Q(Hi), Q(Hj)) = 1/2). Like every tournament, this must

contain a Hamilton path, so we may assume that 1, . . . , s is a directed path.

Now for every i ∈ [s − 1], we can apply Corollary 2.5 to Q(Hi) and Q(Hi+1) with β = 1/2

to get 2k-sets Xi ⊆ Q(Hi) and Yi+1 ⊆ Q(Hi+1) that induce transitive tournaments and satisfy

Xi ⇒ Yi+1. Let us set Y1 = X1 and Xs = Ys. Then by Proposition 2.13 each Hi contains the k-th

power of some spanning path Pi that starts with k vertices in Yi and ends with k vertices in Xi.

As Xi ⇒ Yi+1, the concatenation of these paths satisfies our requirements.

The next lemma is our tool for finding k-absorbers in the tournament. Its proof heavily uses the

underlying median ordering, but at this point, it is simply a combination of previously established

lemmas.

Lemma 2.15. Suppose that in a median ordering of some tournament T , an interval is split into

subintervals A0 ≺ · · · ≺ At of size m ≥ 281000k each, where t ≥ 80. If there are sets X0 ⊆ A0 and

Xt ⊆ At of size |X0|, |Xt| ≥ 8k that both induce transitive subtournaments and Xt ⇒ X0, then T

contains a k-absorber.

Proof. By Lemma 2.7, every vertex in X0 has at least m/2 outneighbours in A1 ∪ A2. Then

Lemma 2.3 with β = 1/4 gives subsets X ′0 ⊆ X0 and Y ⊆ A1 ∪ A2 of size |X ′0| ≥ 2k and |Y | ≥

10



2m/216k such that X ′0 ⇒ Y . At least half of Y must lie in the same Ai1 for some i1 = 1 or i1 = 2,

so Yi1 = Y ∩Ai1 has size |Yi1 | ≥ m/216k.

Similarly, Lemma 2.7 implies that every vertex in Yi1 has at least m/2 outneighbours in Ai1+1∪
Ai1+2, so d(Yi1 , Ai2) ≥ 1/4 for i2 = i1 + 1 or i2 = i1 + 2. We can thus apply Lemma 2.4 with

β = 1/4 to find sets Y ′i1 ⊆ Yi1 and Xi2 ⊆ Ai2 of size |Y ′i1 | ≥ |Yi1 |/2
64k ≥ m/280k and |Xi2 | ≥ 8k

such that Xi2 induces a transitive tournament in T , and Y ′i1 ⇒ Xi2 .

We will construct the k-absorber as follows. We set S0 = X ′0, and Sr′+1 (where r′ = 210k) will be

a k-subset of Xi2 defined later. We find the sets S1, . . . , Sr′ and Q in Y ′i1 by applying Theorem 1.1

to obtain a path v1v2 . . . v` in Y ′i1 with ` = r′(2k+ 1) ≥ m/2200k ≥ |Y ′i1 |/2
100k vertices, whose 4k-th

power is in the tournament. Let us define Si = {vi(2k+1)−1, . . . , vi(2k+1)−2k} and qi = vi(2k+1) for

every i = [r′], and let Q = {q1, . . . , qr′}. Then we know that each Si induces a transitive tournament

of size 2k, and we have S0 ⇒ Q ⇒ Xi2 and S0 ⇒ S1 ⇒ . . . ⇒ Xi2 , as well as Si ⇒ qi ⇒ Si+1 for

every i ∈ [r′].

The crucial part of the construction is closing the cycle. To do so, we apply Corollary 2.11 to

the interval Ai2 ∪ · · · ∪At with X = Xi2 , X ′ = Xt, F = ∅, and 2k in the place of k. As t− i2 ≥ 60,

|Xi2 |, |Xt| ≥ 8k, and each Ai has size m ≥ 281000k, there are sets Sr′+1 ⊆ Xi2 , Sr′+s+1 ⊆ Xt and

Sr′+2, . . . , Sr′+s ⊆ Ai2+1 ∪ · · · ∪ At−1 such that each of Sr′+1, . . . , Sr′+s+1 has size 2k, induces a

transitive subtournament, and Sr′+1 ⇒ . . .⇒ Sr′+s+1.

By construction, we have Sr′+s+1 ⇒ S0, so we are done with r = r′ + s+ 1.

3 Proof of the partitioning theorem

Theorem 3.1. Every n-vertex tournament T can be covered with at most 2105k vertex-disjoint k-th

powers of directed paths.

Proof. Let H1, . . . ,Hs be a maximal collection of vertex-disjoint k-absorbers in T . By Lemma 2.14,

the vertices V (H1) ∪ · · · ∪ V (Hs) can be covered by the k-th power of a single directed path P .

Let T ′ = T − (H1 ∪ · · · ∪ Hs) be the subtournament induced by the remaining vertices, and let

n′ = |V (T ′)|.

Take a median ordering ≺ of T ′, and let us split the vertices into subintervals of size m = 281000k.

More precisely, we split V (T ′) into intervals A0 ≺ A1 ≺ · · · ≺ At where t = bn′/mc, |Ai| = m for

i ∈ [t], and |A0| < m. We can afford to use a single path for each vertex in A0, so let us focus on

covering A1 ∪ · · · ∪At.

As T ′ does not contain any k-absorbers, Lemma 2.15 tells us that there cannot be indices

i, i′ ∈ [t] such that i′ ≥ i+ 80, and B′ ⇒ B for some 8k-sets B ⊆ Ai and B′ ⊆ Ai′ that both induce

transitive subtournaments. We can therefore apply Lemma 2.6 to the sets A1, A81, A161, . . . to find

8k-subsets X1 ⊆ A1, X81 ⊆ A81, X161 ⊆ A161, . . . that each induce transitive subtournaments, and
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X1 ⇒ X81 ⇒ X161 ⇒ . . . . In fact, we can then apply it again to the sets A1 \X1, A81 \X81, A161 \
X161, . . . to find another sequence of such 8k-sets X ′1 ⊆ A1, X

′
81 ⊆ A81, X

′
161 ⊆ A161, . . . disjoint

from the Xi, and repeat this as long as each Ai contains at least 280k unused vertices.

This way we can find subsets Xh
i ⊆ Ai of size 8k for every i ∈ [t] and h = 1, . . . , r for some

r, such that these sets are pairwise disjoint, each of them induces a transitive subtournament,

Xh
w ⇒ Xh

w+80 ⇒ Xh
w+160 ⇒ . . . for every h ∈ [r] and w ∈ [80], and 281000k − 8kr < 280k, i.e., the

set Ui ⊆ Ai of vertices left uncovered by the Xh
i has size |Ui| < 280k for every i ∈ [r]. Note that

each sequence Xh
w, X

h
w+80, . . . contains the k-th power of a spanning path, and this holds even if we

remove at most 7k arbitrary vertices from each Xh
i . It is therefore enough to cover the remaining

vertices U1 ∪ · · · ∪ Ut with k-th powers of paths, and we can even use some vertices from the Xh
i

for this purpose.

Let m′ = 281000k − 8kr < 280k be the size of each Ui, and denote its vertices as Ui =

{ui,1, . . . , ui,m′}. By Lemma 2.7, ui,j has at least 79m/2 outneighbours in the interval Ai+1 ∪
· · · ∪ Ai+80, at least m/2 of which must be in Ai+40 ∪ · · · ∪ Ai+80. In particular, at least m/160

of these outneighbours must fall in some Aα(i,j) with i + 40 ≤ α(i, j) ≤ i + 80, and similarly, ui,j

has at least m/160 inneighbours in some Aβ(i,j) with i − 80 ≤ β(i, j) ≤ i − 40. Note that a given

index γ ∈ [t] can appear as α(i, j) or β(i, j) for no more than 160m′ different vertices ui,j , so we

can choose subsets of in- and outneighbourhoods of size m/(8k · 1602m′) ≥ m/2100k so that they

are all disjoint and no two lie in the same Xh
γ for distinct vertices. Also, each of these subsets must

come from at least (m/2100k)/8k ≥ 280000k different 8k-sets Xh
γ . All in all, for every ui,j , we can

find a set N+
i,j ⊆ Aα(i,j) of outneighbours and another subset N−i,j ⊆ Aβ(i,j) of inneighbours for ui,j

such that these are pairwise disjoint subsets of size at least 280000k each, and they together contain

at most one vertex from each 8k-set Xh
γ .

Recall that there are no indices i, i′ with i′ ≥ i+ 80 such that B′ ⇒ B for some 8k-sets B ⊆ Ai
and B′ ⊆ Ai′ . As α(i, j) ≥ β(i, j)+80 and β(i+240, j) ≥ α(i, j)+80 for every i, j, this means that

we can apply Lemma 2.6 to the sequence N−w,j , N
+
w,j , N

−
w+240,j , N

+
w+240,j , N

−
w+480,j , N

+
w+480,j , . . . to

find 8k-sets Y −i,j ⊆ N−i,j and Y +
i,j ⊆ N+

i,j that induce transitive tournaments, and satisfy Y −w,j ⇒

Y +
w,j ⇒ Y −w+240,j ⇒ Y +

w+240,j ⇒ Y −w+480,j ⇒ Y +
w+480,j ⇒ . . . , for every w ∈ [240] and j ∈ [m′].

As Y −i,j ⇒ ui,j ⇒ Y +
i,j , we can cover the vertices Y −w,j ⇒ uw,j ⇒ Y +

w,j ⇒ Y −w+240,j ⇒ uw+240,j ⇒

Y +
w+240,j ⇒ Y −w+480,j ⇒ uw+480,j ⇒ Y +

w+480,j ⇒ . . . with the k-th power of a single path.

Putting everything together, we see that we can cover U1 ∪ · · · ∪ Ut (and the vertices in Y ±i,j)

with the k-th powers of 240m′ vertex-disjoint paths. As noted above, these paths use at most one

vertex from each Xh
i , so we can cover the remaining vertices in T ′ with the k-th powers of 80r

vertex-disjoint paths, plus one path for each vertex in A0. Together with P , we obtain no more

than 240m′ + 80r + m + 1 ≤ 290k + 281010k + 281000k + 1 < 2105k vertex disjoint paths whose k-th

powers cover all vertices of T .
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4 Proof of the existence of a long cycle power

First, we show that the bounds in Theorem 1.3 are tight up to the implied constants. We can

easily construct a roughly ε-intransitive tournament on n vertices with no cycle of length 5εn, as

follows. Split the n vertices into m = 1/(4ε) parts of equal size, say A1, . . . , Am. Let Ti be a

random tournament on Ai for every i, and orient all Ai-Aj edges from Ai to Aj when i < j. It is

easy to see that a random tournament is (1/4− o(1))-intransitive w.h.p. as n→∞, so T must be

roughly ε-intransitive. On the other hand, every cycle intersects at most o160ne of the Ti, so its

length is at most 4εn.

We now prove that the bound on the order of the tournament in Theorem 1.3 is tight up to an

absolute constant.

Lemma 4.1. For every k ≥ 300 and 0 < ε < 1/20, there is an ε-intransitive tournament T on at

least ε−k/50 vertices that does not contain the k-th power of any cycle of length longer than k.

Proof. Let T be a transitive tournament on n = dε−k/50e vertices, and denote the transitive ordering

by τ . Let R(T ) be a random tournament obtained by independently reversing each edge of T with

probability 10ε.

First, we show that R(T ) is ε-intransitive with probability at least 1/2. In any fixed ordering π

of the vertices, there are either at least n2/4 forward edges or n2/5 backward edges. Either way, a

standard application of the Chernoff bounds shows that the probability that R(T ) contains fewer

than εn2 backward edges is less than e−εn
2/100. Indeed, if there are n2/5 backward edges we are

done. If not, observe that each forward edge will be reversed with probability at least 10ε and

hence the expected number of backward edges is at least (10ε)n2/4 ≥ 2εn2 and so by Chernoff the

probability we deviate more than εn2 is at most e−εn
2/100. There are n! orderings, so the probability

that R(T ) is not ε-intransitive is at most n!e−εn
2/100 < en logn−εn2/100 < 1/2 using εn > 200 log n

(which is easy to check with the given parameters).

Claim. If R(T ) contains the k-th power of a cycle of length at least k, then the backward edges of

R(T ) with respect to τ contain a copy of Kk/10,k/10.

Proof. Let C ⊆ R(T ) be the k-th power of a cycle of length at least k. Let x1, . . . , xm be an

ordering of the vertices of C such that xi sends edges to xi+1, . . . , xi+k for every i ∈ [m] (and taking

indices modulo m).

Split C into consecutive intervals of size k/2, say A1, . . . , Ab2m/kc (ignoring any leftover vertices),

so that A1 ⇒ A2 ⇒ · · · ⇒ Ab2m/kc ⇒ A1. If A2 contains at least k/10 vertices that precede some

k/10 vertices in A1 in τ , then we have the desired Kk/10,k/10 consisting of backward edges. Hence,

we may assume that there are sets A′1 ⊆ A1 and A′2 ⊆ A2 of size at least 2k/3 such that A′1 ≺τ A′2
(i.e. all vertices in A′1 precede in τ all vertices of A′2). By applying the same argument to A′2 and

A3, either we find a Kk/10,k/10 in the graph consisting of backward edges, or there are sets A′′2 ⊆ A′2
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and A′3 ⊆ A3 such that A′′2 has size k/10, A′3 has size 2k/3, and A′′2 ≺ A′3. Continuing in the same

fashion, we obtain a sequence A′1 ≺τ A′′2 ≺τ · · · ≺τ A′b2m/kc. Now A′b2m/kc ⇒ A′1 gives a Kk/10,k/10

in the graph of backward edges, as we wanted to show.

To finish the proof, it is enough to show that with probability at least 1/2, there is no copy of

Kk/10,k/10 consisting of backward edges in τ , and hence R(T ) does not contains the k-th power of

any cycle of length at least k. There are at most
(

n
k/10

)2
possible complete bipartite graphs on n

vertices, and each of them appears in R(T ) with probability (2ε)k
2/100. Now it easy to check that(

n

k/10

)2

· (2ε)k2/100 < nk/5 · εk2/200 = ε−k
2/250+k2/200 < 1/2.

This shows that there is an instance of R(T ) that is ε-intransitive but does not contain the k-th

power of any cycle of length at least k, as we wanted to show.

Let us now turn to the proof of Theorem 1.3. The general idea is the following. We first find

two vertex subsets that are relatively far from each other in a median ordering, but are connected

by many backward edges. We then use our tools from Section 2 to assemble the k-th power of

a long cycle as follows. The cycle will start with a complete bipartite graph of backward edges

between the two subsets that we can find using Corollary 2.5. We continue the cycle with forward

edges. Lemma 2.9 allows us to touch many of the vertices between the two subsets. Finally, we

can apply Corollary 2.11 to close the cycle. This method yields a cycle of length ckεn. In order to

make the constant independent of k, we will repeat the above argument several times, “wrapping

around” the two subsets.

Our main tool for finding two sets with many backward edges is the following density-increment

lemma, which is inspired by a similar tool of Long [11, Lemma 5].

We define the length lenτ (e) of an edge e = vivj with respect to a given ordering τ = v1 ≺ · · · ≺
vn of the vertices as the distance |i− j| of its endpoints.

Lemma 4.2. Let 0 < ε ≤ 1/4 and let T be a tournament on n vertices that is ε-intransitive. Then

for every 0 < c < 1/3, T satisfies at least one of the following properties.

(P1) In every median ordering τ of T , there is a set Eτ consisting of backward edges such that

|Eτ | ≥ cεn2/4 and lenτ (e) ≥ cn/4, for every e ∈ Eτ .

(P2) There is a sub-tournament T ′ ⊆ T of order at least n/2 such that T ′ is 2(1− c)ε-intransitive.

Proof. Let τ = v1 ≺ · · · ≺ vn be a median ordering of T . By assumption, there are at least εn2

backward edges in this ordering. Let Eτ be the set of backward edges whose endpoints are at

distance at least cn/4. If |Eτ | ≥ cε
4 n

2, then (P1) is satisfied, so we may assume that |Eτ | < cε
4 n

2.
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In particular, we may assume that cn/4 > 1 (i.e., n > 4/c), as otherwise Eτ contains at least εn2

backward edges.

Now let I1 = {v1, . . . , vdn/2e} and I2 = {vbn/2c+1, . . . , vn}, and let E1 and E2 be the respective

sets of backward edges induced by them. We may assume that |E1| ≥ |E2|. Finally, let F be the set

of backward edges not contained in either of E1, E2 and Eτ . Then the edges in F must go from I2 to

I1 and have length less than cn/4, so they are all induced by the interval J = {v1, . . . , vb(1+c/2)n/2c}.

We have |E1| + |E2| + |Eτ | + |F | ≥ εn2 with |E1| ≥ |E2| and |Eτ | < cε
4 n

2. If |F | < cε
4 n

2,

then |E1| ≥ ε(1−c/2)
2 n2. Using n > 4/c, it is easy to check that cn2

2 ≥ (1 − c)(2n + 1), so we

have |E1| ≥ ε(1−c)
2 (n + 1)2 ≥ 2(1 − c)ε|I1|2. As τ is a median ordering of the subtournament

induced by any interval, we can choose T ′ = T [I1] to satisfy (P2). Otherwise, |F | ≥ cε
4 n

2, so

|E1|+ |F | ≥ εn2/2 ≥ (1− c)(1 + c/2)2εn2/2 ≥ 2(1− c)ε|J |2. We can then choose T ′ = T [J ].

Corollary 4.3. Let 0 < ε ≤ 1/4, and let T be an n-vertex tournament that is ε-intransitive.

Then, for some ε̃ ≥ ε, T contains a subtournament T̃ on ñ vertices that is ε̃-intransitive such that

ε̃ñ ≥ εn/5, and for every median ordering τ of T̃ there is a set Eτ consisting of ε̃2ñ2/4 backward

edges such that lenτ (e) ≥ ε̃ñ/4, for every e ∈ Eτ .

Proof. Let us repeatedly apply Lemma 4.2 with c = ε as long as (P2) holds, i.e., let T = T0 ⊇
T1 ⊇ . . . ⊇ Tp be a longest sequence of tournaments such that ni = |V (Ti)| ≥ |V (Ti−1)|/2 and Ti is

εi-intransitive for some εi ≥ 2(1 − εi−1)εi−1, for every i ∈ [p]. We claim that T̃ = Tp satisfies the

conditions.

To see this, first note that if Ti is εi-intransitive, then εi ≤ 1/4. Since εi−1 ≤ 2
3εi for every

i ∈ [p], we have
∑p

i=0 εi ≤ εp
∑p

i=0(2/3)i ≤ 3/4. We also know that np ≥ np−1/2 ≥ · · · ≥ n0/2
p

and that

1/4 ≥ εp ≥ 2εp−1(1− εp−1) ≥ · · · ≥ 2pε0

p−1∏
i=0

(1− εi) ≥ 2pεe−2
∑
εi ≥ 2pε/e3/2,

so ε̃ñ ≥ εn/e3/2 > εn/5 for ε̃ = εp and ñ = np.

As we chose a maximal sequence of tournaments, T̃ does not satisfy (P2) with c = ε̃. But then

Lemma 4.2 implies (P1) for T̃ with c = ε̃, which is exactly what we wanted to show.

We are now ready to prove our theorem.

Theorem 4.4. Every ε-intransitive tournament on n ≥ ε−41000k vertices contains the k-th power

of a cycle of length at least εn/1500.

Proof. Let us apply Corollary 4.3 to T , and let T̃ be the ε̃-intransitive ñ-vertex subtournament we

obtain, where ε̃ñ ≥ εn/5 and 1/4 ≥ ε̃ ≥ ε. Note that this implies ε̃ñ ≥ ε−40950k ≥ ε̃−40950k.

Fix any median ordering τ of T̃ . Then there is a set Eτ of ε̃2ñ2/4 backward edges in T̃ such

that every edge e ∈ Eτ has length lenτ (e) ≥ ε̃ñ/4.
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Let us split the ñ vertices of T̃ into t = 12/ε̃ intervals A1 ≺ · · · ≺ At of size m = ñ/t = ε̃ñ/12 ≥
ε̃−40900k each. Then every edge of Eτ must connect two intervals Ai and Ai′ with at least 2 other

intervals in between (i.e., i′ ≥ i + 3). In particular, there must be at least |Eτ |/t2 ≥ ε̃2m2/200

backward edges going from Ab to Aa for some a, b satisfying b ≥ a + 3. Now, split each Ai into

t′ = m/ε̃20400k ≥ ε̃−20500k consecutive subintervals Ai,1 ≺ · · · ≺ Ai,t′ of size m′ = ε̃−20400k.

Claim. There are at least ε̃2t′

800 disjoint pairs {Aa,j , Ab,j′} such that d(Ab,j′ , Aa,j) ≥ ε̃2

400 .

Proof. Note that
∑

j,j′ d(Ab,j′ , Aa,j) = t′2 ·d(Ab, Aa) ≥ ε̃2t′2/200. This means that at least ε̃2t′2/400

of the pairs satisfy d(Ab,j′ , Aa,j) ≥ ε̃2/400. We can then greedily choose ε̃2t′/800 of these pairs so

that they are disjoint from each other.

Let r = m′

50k ≤ ε̃
−20400k ≤ ε̃2t′

800 and let {Aa,j1 , Ab,j′1}, . . . , {Aa,jr , Ab,j′r} be disjoint pairs provided

by the claim. We may assume that j1 > · · · > jr.

As m′ > ( ε̃
400)−160k, we can apply Corollary 2.5 to find sets Zi ⊆ Aa,ji and Z ′i ⊆ Ab,j′i , for every

i ∈ [r], that induce transitive tournaments of size 32k and satisfy Z ′i ⇒ Zi.

Next, we apply Lemma 2.9 one by one for every i ∈ [r] to the interval Aa,ji∪Aa,ji+1∪· · ·∪Aa+1,t′

with X = Zi to find 4k-sets Xi,1, . . . , Xi,si such that each of them induces a transitive tournament,

and they satisfy Xi,1 ⊆ Zi and Xi,1 ⇒ · · ·⇒ Xi,si . The lemma also implies that for every j ∈ [t′−1],

one of these sets is contained in Aa+1,j ∪ Aa+1,j+1 (for example, Xi,si ⊆ Aa+1,t′−1 ∪ Aa+1,t′). In

particular, Xi,1 ∪ · · · ∪Xi,si contains at least 2kt′ vertices from Aa+1.

Moreover, by defining the set of forbidden vertices in the lemma as F =
⋃
i′<i(Xi′,1∪· · ·∪Xi′,si′

)

(which is allowed because |F ∩ Aα,j | ≤ 4kr ≤ m′

8 for every α ∈ {a, a + 1} and j ∈ [t′]), we can

ensure that the path blowups Xi,1 ⇒ · · · ⇒ Xi,si are vertex-disjoint over i ∈ [r]. Combining this

with the fact that each such path blowup contains at least 2kt′ vertices, we see that the r path

blowups together cover at least 2kt′r = t′m′

25 = m
25 = ε̃ñ

300 ≥
εn

1500 vertices.

All we are left to do is connect the path blowups into one big cycle power. We use Corollary 2.11

with X = Xi,si and X ′ = Z ′i+1 for every i ∈ [r]. More precisely, let ti ∈ {t − 1, t} be the index

such that X = Xi,si ∈ Aa+1,ti , and let X ′ be any 4k-set in Z ′i+1 (or Z ′1 if i = r). We will apply

Corollary 2.11 to the interval Aa+1,ti ∪ · · · ∪ Ab,j′i+1
to get k-sets Yi,0 ⇒ · · · ⇒ Yi,s′i such that

Yi,0 ⊆ Xi,si and Yi,s′i ⊆ Z ′i+1 and each of these sets induces a transitive subtournament. This

is possible because the interval (which contains the entire Aa+2) is split into at least t′ > 60

subintervals of size m′ ≥ 240500k.

To make the path blowups Yi,0 ⇒ · · ·⇒ Yi,s′i vertex-disjoint over i ∈ [r], we just need to forbid

all vertices F =
(⋃

i′∈[r]Xi′,si′

)
∪
(⋃

i′∈[r] Z
′
i′

)
∪
(⋃

i′<i(Yi′,0 ∪ · · · ∪ Yi′,s′i′ )
)

that are already used

by other path blowups. As s′i ≤ 5 for every i ∈ [r], this set contains |F | ≤ 4kr + 8kr + 6kr =

18kr ≤ m′/2 vertices, so can indeed be used in our applications of Corollary 2.11.

All in all, we found disjoint vertex sets Xi,j and Yi,j that each induce transitive subtournaments
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of size at least k, together contain at least εn
1500 vertices, and satisfy

X1,1 ⇒ · · ·⇒ X1,s1−1 ⇒ Y1,0 ⇒ · · ·⇒ Y1,s′1
⇒ X2,1 ⇒ · · ·⇒ Yr,s′r ⇒ X1,1

This sequence contains the blowup of a cycle of length εn
1500 , as needed.
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