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recherches en sciences naturelles et en génie du Canada (CRSNG), [numéro de référence RGPIN-2020-03912].



Abstract

Fix k > 0, and let G be a graph, with vertex set partitioned into k subsets (“blocks”) of approximately
equal size. An induced subgraph of G is “transversal” (with respect to this partition) if it has exactly
one vertex in each block (and therefore it has exactly k vertices). A “pure pair” in G is a pair X,Y
of disjoint subsets of V (G) such that either all edges between X,Y are present or none are; and in
the present context we are interested in pure pairs (X,Y ) where each of X,Y is a subset of one of the
blocks, and not the same block. This paper collects several results and open questions concerning
how large a pure pair must be present if various types of transversal subgraphs are excluded.



1 Introduction

Graphs in this paper are finite, and without loops or parallel edges. Let A,B ⊆ V (G) be disjoint.
We say that A is complete to B, or A,B are complete, if every vertex in A is adjacent to every vertex
in B, and similarly A,B are anticomplete if no vertex in A has a neighbour in B. A pure pair in G
is a pair A,B of disjoint subsets of V (G) such that A,B are complete or anticomplete. The number
of vertices of G is denoted by |G|. The complement graph of G is denoted by G. If X ⊆ V (G), G[X]
denotes the subgraph induced on X.

A blockade B in a graph G is a sequence (B1, . . . , Bk) of pairwise disjoint nonempty subsets of
V (G), called the blocks of B; and the width of B is the minimum cardinality of its blocks, and its
length is k. An induced subgraph H of G is B-rainbow if each of its vertices belongs to a block of
B, and it has at most one vertex in each block; and B-transversal if it is B-rainbow and has exactly
one vertex in each block (and therefore has exactly k vertices). A copy of a graph H in a graph G
means an induced subgraph of G that is isomorphic to H.

In earlier papers of this sequence we proved several theorems that say that if we have a blockade
B and there is no B-rainbow copy of some special graph H, then there must be a pure pair X,Y
with |X|, |Y | large (in terms of the width of the blockade). For instance, in [1] we proved:

1.1 For every forest H, there exists d > 0, such that, for every graph G with a blockade B of length
at least d, if every vertex of G has degree less than W/d, and there is no anticomplete pair X,Y in
G with |X|, |Y | ≥W/d (where W is the width of B), then there is a B-rainbow copy of H in G.

In this paper we investigate what happens if we ask for a B-transversal copy of H rather than just
a B-rainbow copy.

This leads naturally to the question, what if we ask even more? Let H be a graph together
with a fixed linear ordering of its vertex set, say v1, v2, . . . , vk. (We call this an “ordered graph”.)
If B = (B1, . . . , Bk) is a blockade in a graph G, an ordered B-transversal copy of H means a B-
transversal induced subgraph J of G, such that there is an isomorphism φ from H to J , with
φ(vi) ∈ Bi for 1 ≤ i ≤ k. Erdős, Hajnal and Pach [6] proved:

1.2 For every ordered graph H, there exist c, ε > 0, such that for every graph G, and every blockade
B = (B1, . . . , Bk) in G, where k = |H|, either:

• there is an ordered B-transversal copy of H in G; or

• there are distinct i, j ∈ {1, . . . , k}, and X ⊆ Bi and Y ⊆ Bj, such that X,Y is a pure pair, and
|X|, |Y | ≥ εW c, where W is the width of B.

This is where we will start. We would particularly like to know, for which graphs H can we take
c = 1 in the second bullet? (Sadly, almost never: only for graphs H with at most two vertices.) And,
more promising: for which H can we get |X| ≥ εW and |Y | ≥ εW c in the second bullet?

At the other extreme, we cannot get past the following open question, a variant of a conjecture
of Conlon, Fox and Sudakov [2] that is discussed further in [3] (a “triangle” means a copy of the
complete graph K3):

1.3 Question: Do there exist c, ε > 0 with the following property? Let B = (B1, B2, B3) be a
blockade in a graph G, and let W be its width. If there is no B-transversal triangle, then there exist
distinct i, j ∈ {1, 2, 3} and X ⊆ Bi and Y ⊆ Bj, such that X,Y is a pure pair, and |X| ≥ εW , and
|Y | ≥ εW c.
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Settling 1.3 was our initial goal in this research (although we were not able to do it), and it is easy
to see that it can be reduced to the sparse case, when for all distinct i, j ∈ {1, 2, 3}, every vertex in
Bi has at most |Bj |/100 neighbours in Bj (and 100 can be replaced by any other number).

We say a blockade B = (B1, . . . , Bk) has local degree λ if λ ≥ 0 is the maximum of the number
of neighbours of v in Bj , maximized over all distinct i, j ∈ {1, . . . , k} and all v ∈ Bi. (We set this
to be zero if k ≤ 1.) All our results concern blockades with local degree at most a small constant
times the width. Also, we will look for pure pairs X,Y where X,Y are each a subset of a block, and
not the same block; and we will no longer need pure pairs X,Y with X complete to Y . Let us say
a blockade B = (B1, . . . , Bk) is (x, y)-cohesive if for all distinct i, j ∈ {1, . . . , k}, there do not exist
X ⊆ Bi and Y ⊆ Bj such that |X| ≥ x, and |Y | ≥ y, and X is anticomplete to Y . (This is true if
k ≤ 1.) Here are our main results, first for unordered copies of H:

1.4 (Proved in 4.2 and 4.3.) If H is a cycle with k ≥ 4 vertices, then there exist ε, c > 0 with the
following property. Let B = (B1, . . . , Bk) be a blockade in a graph G, with local degree less than εW
and (εW, εW c)-cohesive, where W is its width. Then there is a B-transversal copy of H in G.

This statement for k = 3 is open and equivalent to 1.3.

1.5 (Proved in 2.2.) For every integer k ≥ 1, there exists ε > 0 with the following property. Let
B = (B1, . . . , Bk) be a blockade in a graph G, with local degree less than εW and (εW, εW )-cohesive,
where W is its width. Then there is a B-transversal copy of a k-vertex path in G.

The statement of 1.5 is also true for the tree obtained from a path with k− 2 vertices by adding two
extra vertices, both adjacent to the last vertex of the path, provided that k ≥ 5; and also for the tree
obtained from a path with k − t vertices by adding t extra vertices, each adjacent to the last vertex
of the path, provided that k ≥ t22t. (These are proved in 3.4.) It is not true for the tree obtained
from a (k− 6)-vertex path by adding six extra vertices, three adjacent to the first vertex of the path
and three adjacent to the last. (This is 3.1.)

For ordered copies of H, we have:

1.6 (Proved in 5.1.) If H is an ordered tree with k ≥ 2 vertices, then there exists ε > 0 with the
following property. Let B = (B1, . . . , Bk) be a blockade in a graph G, with local degree less than εW
and (εW, εW 1/(k−1))-cohesive, where W is its width. Then there is an ordered B-transversal copy of
H.

For caterpillars we can strengthen this. A caterpillar is a tree in which all the vertices of degree
more than one belong to one path.

1.7 (Proved in 5.5.) If H is an ordered caterpillar with k vertices, then there exists ε > 0 with the
following property. Let B = (B1, . . . , Bk) be a blockade in a graph G, with local degree less than εW ,
and (εW, εW 1/d)-cohesive, where W is its width, and d is the maximum degree of H. Then there is
an ordered B-transversal copy of H.

And a counterexample (if t ≥ 1 is an integer, St denotes the star with t+ 1 vertices, that is, the
tree in which one vertex is adjacent to all the others):

1.8 (Proved in 5.9.) Let t ≥ 3 be an integer, and let S+
t be obtained from St by linearly ordering

its vertex set. For all c > 1/t and all ε > 0, there is a graph G and a blockade B = (B1, . . . , Bt+1)
in G, with local degree less than εW and (εW, εW c)-cohesive where W is its width, such that there
is no ordered B-transversal copy of S+

t in G.
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2 Two easy covering theorems

We say that a graph H has the strong transversal property if there exists ε > 0 with the following
property: for every graph G, if B = (B1, . . . , B|H|) is a blockade in G, with local degree less than
εW and (εW, εW )-cohesive, where W is its width, then there is a B-transversal copy of H in G. If
this holds we say that ε is an STP-coefficient. We start with asking, which graphs have the strong
transversal property? A sparse random graph of girth at least |H|+ 1 shows that every such graph
H must be a forest, and one might hope that all forests have the property, extending the results
of [1], but this is not true, as we shall see. Nevertheless, some forests have the strong transversal
property: here is what we know about them.

2.1 Let H be a graph.

• If H is not a forest then H does not have the strong transversal property.

• If every component of H has the strong transversal property then so does H (the converse is
false).

• If H is a path, then H has the strong transversal property.

• If |H| > 4 and H is obtained from a path by adding two new vertices adjacent to the last vertex
of the path, then H has the strong transversal property.

• If |H| > 2t(t2 − t+ 1) and H is obtained from a path by adding t new vertices adjacent to the
last vertex of the path, then H has the strong transversal property.

• If H is obtained from a path by adding six new vertices, three adjacent to the first vertex of the
path and three adjacent to the last, then H does not have the strong transversal property.

• If H has a vertex of degree at least d where 2d−1 ≥ |H|, then H does not have the strong
transversal property.

In particular, it is not true that if a graph H has the property then so do all its induced subgraphs,
or indeed all its components: the graph S3 does not have the property (by the last bullet of 2.1) but
if we add a vertex of degree zero, this five-vertex forest has the property. Indeed, it follows from
one of the results of [1] that for any forest, if we add enough vertices of degree zero we will obtain a
forest with the strong transversal property.

We will prove the various statements of 2.1 as separate theorems (except for the first two, which
we leave to the reader).

If G is a graph and A,B ⊆ V (G) are disjoint, we say A covers B if every vertex in B has a
neighbour in A. For convenience, let us say a blockade B = (B1, . . . , Bk) in G is ε-coherent if for all
distinct i, j ∈ {1, . . . , k}:

• each vertex in Bi has fewer than ε|Bj | neighbours in Bj , and

• there do not exist X ⊆ Bi and Y ⊆ Bj with |X| ≥ ε|Bi| and |Y | ≥ ε|Bj | and X anticomplete
to Y .
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This is very much like ε-cohesion, but is different when the blocks have different sizes. This new
definition is not really needed, but it works nicely and is a little more compact than using cohesion
(and we used the same concept in earlier papers). Let us first prove the third statement of 2.1, that
is, 1.5, which we restate in a slightly stronger form:

2.2 Let k ≥ 2 be an integer, and 0 < ε ≤ 1/(2k−2). Let B = (B1, . . . , Bk) be an ε-coherent blockade
in a graph G. Then there is a B-transversal k-vertex path in G with an end-vertex in B1.

Proof. We define t1, . . . , tk with {t1, . . . , tk} = {1, . . . , k}, and Ai ⊆ Bi for 1 ≤ i ≤ k, as follows. Let
t1 = 1. Inductively, let 1 ≤ i ≤ k, and suppose that t1, . . . , ti and At1 , . . . , Ati−1 have been defined,
with the properties that

• ∅ 6= Ath ⊆ Bth for 1 ≤ h < i;

• for 1 ≤ h < i− 1, Ath covers Ath+1
;

• for 1 ≤ g < h < i with h− g ≥ 2, there are no edges between Atg and Ath ;

• for each j ∈ {1, . . . , k}\{t1, . . . , ti}, at least (1−2(i−1)ε)|Bj | vertices in Bj have no neighbour
in At1 ∪ · · · ∪Ati−1 ; and

• if i ≥ 2, at least ε|Bti | vertices in Bti have a neighbour in Ati−1 and have no neighbour in
At1 ∪ · · · ∪Ati−2 .

Let J = {1, . . . , k}\{t1, . . . , ti}. For each j ∈ J , let Cj be the set of vertices in Bj with no neighbour
in At1 ∪ · · · ∪ Ati−1 ; thus |Cj | ≥ (1 − 2(i − 1)ε)|Bj |. If i = 1 let D = Bti , and if i ≥ 2 let D be
the set of vertices in Bti that have a neighbour in Ati−1 and have no neighbour in At1 ∪ · · · ∪ Ati−2 ;
thus |D| ≥ ε|Bti |. If i = k, let Ati = D and the inductive definition is complete, so we assume that
i ≤ k−1. For each j ∈ J , fewer than ε|Bj | vertices in Bj have no neighbour in D, since |D| ≥ ε|Bti+1 |
and the blockade is ε-coherent; and since |Cj | ≥ (1− 2(i− 1)ε)|Bj | ≥ 2ε|Bj |, at least ε|Bj | vertices
in Cj have a neighbour in D.

Since J 6= ∅, there exists Ati ⊆ D minimal such that for some j ∈ J , at least ε|Bj | vertices in
Cj have a neighbour in Ati . From the minimality of Ati , for each j ∈ J there are fewer than 2ε|Bj |
vertices in Cj with a neighbour in Ati , and hence there are at least |Cj | − 2ε|Bj | ≥ (1 − 2iε)|Bj |
vertices in Cj with no neighbour in Ati . Choose j ∈ J such that at least ε|Bj | vertices in Cj have a
neighbour in Ati , and define ti+1 = j. This completes the inductive definition.

Choose atk ∈ Atk . Since Atk−1
covers Atk , there exists atk−1

∈ Atk−1
adjacent to atk ; and similarly

for i = k−2, k−3, . . . , 1 there exists ati ∈ Ati adjacent to ati+1 . But for 1 ≤ i < j ≤ k with j ≥ i+2,
there are no edges between Ati , Atj ; so at1-at2- · · · -atk is an induced path. This proves 2.2.

A somewhat similar proof (the proofs of 2.2 and 2.3 are both specializations of the proof of the
main theorem of [7]) shows:

2.3 Let k ≥ 1 be an integer, let K = 2k−1 + 1, and let 0 < ε ≤ 3−K . Let B = (B1, . . . , BK) be an
ε-coherent blockade in a graph G. Then there is a B-rainbow copy of Sk in G.
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Proof. If J ⊆ {1, . . . ,K}, a star-partition of B (see figure 1) with element set J is a sequence

(h1, I1, h2, I2, . . . , ht, It)

where J = {h1, . . . , ht} ∪ I1 ∪ · · · ∪ It, and a choice of a nonempty subset Ai ⊆ Bi for each i ∈ J ,
with the following properties:

• t ≥ 1, and h1, . . . , ht ∈ {1, . . . ,K} are distinct, and the sets I1, . . . , It are pairwise disjoint
subsets of {1, . . . ,K} \ {h1, h2, . . . , ht};

• for 1 ≤ s ≤ t, and all j ∈ Is, Aj covers Ahs ;

• for 1 ≤ s ≤ t and all j ∈ Is, Aj is anticomplete to

– all the sets Aj′ for j′ ∈ Is \ {j};
– all the sets Ahs′ for s′ ∈ {1, . . . , t} \ {s}; and

– all the sets Aj′ for s′ ∈ {1, . . . , t} \ {s} and j′ ∈ Is′ .

Ah1 Ah2 Aht

Bh1 Bh2 Bht

I1 I2 It

Figure 1: A star-partition.

The linkage of a star-partition is the maximum over all distinct i, j ∈ {h1, . . . , ht} of the maximum
over v ∈ Ai of n/|Bj | where n is the number of neighbours of v in Aj (or zero if t ≤ 1). Its length
is t, and its value is 2|I1| + · · · + 2|It|. There is a star-partition with linkage less than ε, length K
and value K, since we may set t = K and the sets I1, . . . , IK all empty, and Ai = Bi for 1 ≤ i ≤ K.
Choose t ≥ 1 minimum such that there is a star-partition with linkage less than ε3K−t, length t and
value at least K, say

(h1, I1, h2, I2, . . . , ht, It)

and Ai ⊆ Bi for each i ∈ J , where J is its element set.
Suppose that t ≥ 2. We may assume that |It| ≤ |I1|, . . . , |It−1|. Choose Cht ⊆ Aht minimal such

that Cht covers at least one-third of one of the sets Ah1 , . . . , Aht−1 , say of Ah1 . Let Ch1 be the set
of vertices in Ah1 with a neighbour in Cht , and for 2 ≤ s ≤ t − 1, let Chs be the set of vertices in
Aht with no neighbour in Cht . Thus |Ch1 | ≥ |Ah1 |/3, and from the minimality of Cht , and since the
linkage is less than ε3K−t, it follows that

|Chs | ≥ (2/3− ε3K−t)|Ahs | ≥ |Ahs |/3
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for 2 ≤ s ≤ t− 1. Let J ′ = J \ It, and for each i ∈ J ′ with i /∈ {h1, . . . , ht−1, ht} let Ci = Ai. Then

(h1, I1 ∪ {ht}, h2, I2, . . . , ht−1, It−1)

and the sets Ci (i ∈ J ′) form a star-partition with linkage less than ε3K−t+1, length t− 1 and value
at least K, contrary to the minimality of t.

Hence t = 1, and so 2|I1| ≥ K, and therefore |I1| ≥ k. We may assume that h1 = 1, and
2, . . . , k + 1 ∈ I1. Choose u ∈ A1; then for 2 ≤ i ≤ k + 1 there exists vi ∈ Ai adjacent to u, and the
subgraph induced on {u, v1, . . . , vk} is a B-rainbow copy of Sk. This proves 2.3.

Next we show that the expression 2k−1 + 1 in 2.3 is best possible, and hence the final statement
of 2.1 holds, because of the following:

2.4 For every integer k ≥ 2, and all ε > 0, there is a graph G, and an ε-coherent blockade B in G
of length 2k−1, such that there is no B-rainbow copy of Sk in G.

The proof needs the following two lemmas, which will also be needed later in the paper. The first is
a standard estimate:

2.5 If n ≥ k ≥ 1 are integers then
(
n
k

)
≤ (en/k)k (where e is Euler’s number).

Proof. By Stirling’s formula [8], we have

k! ≥
√

2πkk+1/2e−k+1/(12k+1) ≥ (k/e)k

for k ≥ 1, and so (
n

k

)
≤ nk/k! ≤ nk(k/e)−k = (en/k)k.

This proves 2.5.

The second lemma is also a well-known result.

2.6 Let ε > 0; then there exists d > 0 such that for all sufficiently large n, there is a bipartite graph
with bipartition (A,B), where |A| = |B| = n, such that every vertex has degree less than d, and there
do not exist anticomplete sets A′ ⊆ A and B′ ⊆ B with |A′|, |B′| ≥ εn.

Proof. Choose c > 4ε−2 log 2, and choose d with 2 log 2 < d log(d/(2ce)). Now let n be sufficiently
large, and let A,B be disjoint sets both of cardinality 2n. For each u ∈ A and v ∈ B, let u, v be
adjacent with probability c/n, independently. The expected number of anticomplete pairs (A′, B′)
with A′ ⊆ A and B′ ⊆ B and with |A′|, |B′| ≥ εn is at most

24n(1− c/n)ε
2n2 ≤ 24ne−cε

2n ≤ 1/2

(since cε2 > 4 log 2) if n is sufficiently large. The probability that a given vertex v ∈ A ∪ B has
degree at least d is at most (

2n

d

)
(c/n)d ≤ (2en/d)d(c/n)d = (2ce/d)d,
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by 2.5. Consequently the probability that at least n vertices in A have degree at least d is at most
22n(2ce/d)nd < 1/4 (since 2 log 2 < d log(d/(2ce))) if n is sufficiently large. Hence, if n is sufficiently
large, with positive probability there is no anticomplete pair (A′, B′) with A′ ⊆ A and B′ ⊆ B and
with |A′|, |B′| ≥ εn, and at most n vertices in A, and at most n vertices in B have degree at least
d. Thus by deleting the n vertices in A with largest degree, and the same for B, we obtain a graph
satisfying the theorem. This proves 2.6.

To prove 2.4, for inductive purposes we will prove something a little stronger, the following.

2.7 Let ε > 0. For every integer k ≥ 2, and every integer p ≥ 0, there exists W (k, p) such that for
all integers W ≥ W (k, p), if H is a graph with 2k−1W vertices, and with maximum degree at most
p, there is a graph G with the same vertex set and with H as a subgraph, and an ε-coherent blockade
B in G of length 2k−1, such that there is no B-rainbow copy of Sk in G.

Proof. We prove 2.7 by induction on k. Suppose first that k = 2. Choose d and n0 such that 2.6
holds for all n ≥ n0. Let W (2, p) = max(n0, (p+ d)/ε); we claim that W (2, p) satisfies the theorem.
Let W ≥ W (2, p), and let H be a graph with 2W vertices, and with maximum degree at most p.
Let B1, B2 be two disjoint subsets of V (H) both of cardinality W . By 2.6 there is a graph J with
bipartition (B1, B2), such that every vertex has degree less than d, and there is no anticomplete pair
(A′, B′) with A′ ⊆ B1 and B′ ⊆ B2 and with |A′|, |B′| ≥ εW , that is, in J the blockade B = (B1, B2)
has local degree less than d and is (εW, εW )-cohesive. Let G be the union of H,J ; then in G the
same blockade B has local degree less than p + d and is (εW, εW )-cohesive. Since it only has two
blocks and therefore there is no B-rainbow copy of S2, the result holds.

Now we assume inductively that k ≥ 3 and the theorem holds for k − 1. Choose d and n0 such
that 2.6 holds for all n ≥ n0, with ε replaced by 22−kε.

Let
W (k, p) = max

(
n0, (p+ d)/ε,W (k − 1, p+ (p+ d)2)

)
.

We claim that W (k, p) satisfies the theorem. Let W ≥ W (k, p), and let H be a graph with 2k−1W
vertices, and with maximum degree at most p. Let V1, V2 be two disjoint subsets of V (H) both of
cardinality 2k−2W . By 2.6 there is a graph J with bipartition (V1, V2), such that every vertex has
degree less than d, and there is no anticomplete pair (A′, B′) with A′ ⊆ V1 and B′ ⊆ V2 and with

|A′|, |B′| ≥ (22−kε)|A′| = εW.

For i = 1, 2, let Hi be the graph with vertex set Vi, in which distinct vertices u, v ∈ Vi are adjacent
if and only if either they are H-adjacent, or they have a common (H ∪J)-neighbour in V (H) \Vi. It
follows that Hi has maximum degree at most p+(p+d)2. Since W (k, p) ≥W (k−1, p+(p+d)2), the
inductive hypothesis implies that for i = 1, 2 there is a graph Gi with vertex set Vi and with Hi as a
subgraph, and an ε-coherent blockade Bi in Gi of length 2k−2, such that there is no Bi-rainbow copy
of Sk−1 in Gi. Let G be the union of G1, G2 and H ∪J , and let B be the blockade with blocks all the
blocks of B1 and all those of B2 (in some order). It follows that, in G, the blockade B is ε-coherent
(since p+ d ≤ εW ). Suppose there is a B-rainbow copy T of Sk in G, and let v be the vertex of Tk
that has degree k in Tk. From the symmetry we may assume that v ∈ V1. Since all neighbours of v
in V2 are pairwise adjacent (since H2 ⊆ G2 ⊆ G) and T is induced in G, it follows that at most one
vertex of T belongs to V2, and so there is a B1-rainbow copy of Sk−1 in G1, a contradiction. This
proves 2.7.
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3 Brooms

Let P be a path with vertices p1, . . . , pk in order; and let H be obtained from P by adding t new
vertices, each adjacent to pk. We define B(k, t) = H; such a graph is a broom.

If instead we add s + t new vertices to P , s of them adjacent to p1 and the other t to pk, the
graph we produce is called a double broom and is denoted B(k, s, t). We still have three parts of 2.1
to prove (namely that B(k, 2) has the strong transversal property, and so does B(k, t) if k � t, and
that B(k, 3, 3) does not), and we will do that in this section. We begin with the easiest:

3.1 For every integer k ≥ 1, the double broom B(k, 3, 3) does not have the strong transversal
property.

Proof. Suppose that B(k, 3, 3) has the strong transversal property, with STP-coefficient ε. Choose
d and n0 such that 2.6 holds for all n ≥ n0. Let

W = max
(
n0,

(
((k + 3)d+ 2d+ 3(k + 3)d2)4 + d+ 3(k + 3)d2

)
/ε
)
.

Let B1, . . . , Bk+6 be pairwise disjoint sets each of cardinality W . Let B = (B1, . . . , Bk+6), and
V1 = Bk+4 ∪ Bk+5 ∪ Bk+6, and V2 = B1 ∪ · · · ∪ Bk+3. For 1 ≤ i < j ≤ k + 6, let Ji,j be a graph
with bipartition (Bi, Bj) with maximum degree less than d, such that there is no anticomplete pair
A′, B′ with A′ ⊆ Bi and B′ ⊆ Bj and |A′|, |B′| ≥ εW . Let J be the union of all the graphs Ji,j . Let
L be the graph with vertex set V1 in which distinct u, v are adjacent if there is a B-rainbow path in
J with ends u, v, of length one or two and with its interior vertex (if any) in V2. Let R be the graph
with vertex set V2 in which distinct u, v are adjacent if there is a B-rainbow path of J ∪L with ends
u, v and with every internal vertex in V1. Let G = J ∪ L ∪R.

Since J is a subgraph of G it follows that B is (εW, εW )-cohesive in G. The only edges of G
between V1, V2 are those of J ; and L has maximum degree at most 2d+ 3(k+ 3)d2, since each vertex
in V1 has degree at most (k + 3)d in J , and each of those neighbours has degree at most 3d in J . If
P is a B-rainbow path of J ∪ L with ends in V2 and with every internal vertex in V1, then P has at
most five vertices; and since J ∪L has maximum degree at most (k+ 3)d+ 2d+ 3(k+ 3)d2, it follows
that each vertex in V2 is an end of at most ((k + 3)d + 2d + 3(k + 3)d2)4 such paths, and so R has
maximum degree at most ((k + 3)d+ 2d+ 3(k + 3)d2)4.

Consequently B has local degree at most

(k + 3)d+ 2d+ 3(k + 3)d2)4 + d+ 3(k + 3)d2 < εW.

From the choice of ε, there is a B-rainbow copy H of B(k, 3, 3) in G. Let it be constructed from a
k-vertex path with vertices p1, . . . , pk in order, by adding three new vertices q1, q2, q3 adjacent to p1
and three new vertices r1, r2, r3 adjacent to pk. Every path of H with both ends in V2 has all its
internal vertices in V2, since otherwise there would be an induced B-rainbow path of G with both
ends in V2 and all internal vertices in V1, with its ends nonadjacent; and this would contradict the
construction of R. If one of p1, . . . , pk belongs to V1 then one of q1, q2, q3 and one of r1, r2, r3 belongs
to V2, contradicting the claim just made; so p1, . . . , pk ∈ V2. So exactly three of q1, q2, q3, r1, r2, r3
belong to V1; and so two of them have a common neighbour in V2, contradicting the definition of L.
This proves that there is no such ε, and so proves 3.1.
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Let B = (B1, . . . , Bk) be a blockade in G, and let J be a digraph with vertex set {1, . . . , k}.
(Digraphs in this paper do not have loops or parallel edges, but they may have antiparallel edges.
Thus, if there is an edge from i to j then it is unique, but there might also be an edge from j to i.)
For τ > 0, we say that J is a τ -covering digraph for B if for 1 ≤ i ≤ k there exists Ai ⊆ Bi, and for
each edge ij of J there exists Xij ⊆ Bi, with the following properties:

• |Ai| ≥ τ |E(J)||Bi| for 1 ≤ i ≤ k;

• for each edge ij of J , Xij covers Aj and Xij is anticomplete to Ah for all h ∈ {1, . . . , k}\{i, j};
and

• for all edges ij, i′j′ of J with i 6= i′, and i 6= j′ and i′ 6= j, the sets Xij , Xi′j′ are anticomplete.

We call the sets (A1, . . . , Ak) a core for J . There is a τ -covering digraph, because we can take J with
no edges and Ai = Bi for each i. A τ -covering digraph for B is optimal if no τ -covering digraph for B
has strictly more edges. If X ⊆ V (G) we denote by N(X) or NG(X) the set of vertices in V (G) \X
that have a neighbour in X.

3.2 Let B = (B1, . . . , Bk) be a blockade in a graph G, let τ > 0, and let J be an optimal τ -covering
digraph for B, with core (A1, . . . , Ak). Suppose that for all distinct i, j ∈ {1, . . . , k}, every vertex in
Bi has fewer than (1− 2τ)τ |E(J)||Bj | neighbours in Bj. Let 1 ≤ i ≤ k and X ⊆ Ai. Then either

• there exists j ∈ {1, . . . , k} \ {i} such that ij ∈ E(J) and |Aj \N(X)| < τ |E(J)|+1|Bj |; or

• for every j ∈ {1, . . . , k} \ {i} such that ij /∈ E(J) we have |Aj ∩N(X)| < τ |E(J)|+1|Bj |.

Proof. Let s = |E(J)|. We assume the second bullet of the theorem is false, so there exists
j ∈ {1, . . . , k} \ {i} with ij /∈ E(J) such that |Aj ∩ N(X)| ≥ τ s+1|Bj |. Choose Y ⊆ X minimal
such that there exists j ∈ {1, . . . , k} \ {i} with ij /∈ E(J) such that |Aj ∩ N(Y )| ≥ τ s+1|Bj |. Let
Cj = Aj ∩ N(Y ), let Ci = Ai, and for each h ∈ {1, . . . , k} \ {i, j} let Ch = Ah \ N(Y ). Thus
|Cj | ≥ τ s+1|Bj |. If |Ch| ≥ τ s+1|Bh| for every h ∈ {1, . . . , k} \ {i, j}, then adding the edge ij to
J gives a τ -covering digraph for B with core (C1, . . . , Ck), contrary to the optimality of J . Thus
there exists h ∈ {1, . . . , k} \ {i, j] with |Ch| < τ s+1|Bh|. If ih /∈ E(J), the minimality of Y and the
hypothesis about local degree imply that

|Ah \ Ch| <
(
τ s+1 + ((1− 2τ)τ s)

)
|Bh| =

(
τ s − τ s+1

)
|Bh|,

and so
|Ch| ≥ τ s+1|Bh|,

a contradiction. Thus ih ∈ E(J). Since |Ch| < τ s+1|Bh|, and

Ah \N(X) ⊆ Ah \N(Y ) = Ch,

the first bullet of the theorem holds. This proves 3.2.
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We deduce:

3.3 Let B = (B1, . . . , Bk) be a blockade of length at least two in a graph G, and let J be an optimal
τ -covering digraph for B, with core (A1, . . . , Ak). If B is (1− 2τ)τ |E(J)|-coherent, then every vertex
of J has outdegree at least one.

Proof. Suppose that i has outdegree zero in J ; we may assume that i = 1. Let |E(J)| = s. Since
k ≥ 2 and B is (1− 2τ)τ s-coherent and |A1| ≥ τ s|B1|, it follows that |A2 \N(A1)| < (1− 2τ)τ s|B2|,
and so

|A2 ∩N(A1)| > |A2| − (1− 2τ)τ s|B2| ≥ τ s+1|B2|.

But then both the outcomes of 3.2 (with i = 1 and X = A1) are false, a contradiction. This proves
3.3.

We use these results to prove one of the remaining parts of 2.1:

3.4 Let k, t ≥ 0 be integers with t ≥ 2 and k ≥ 2t(t2 − t + 1) − t + 1. Then B(k, t) has the strong
transversal property.

Proof. Let τ = 1/6, and let ε = τ (k+t)23−k; we will show that B(k, t) has the strong transversal
property with STP-coefficient ε.

Thus, let B = (B1, . . . , Bk+t) be an ε-coherent blockade in a graph G. We must show that there
is a B-transversal copy of B(k, t) in G. Let J be an optimal τ -covering digraph for B, with core
(A1, . . . , Ak+t). Let z = |E(J)|. By 3.3, every vertex of J has outdegree at least one.

Since |Ai| ≥ τ z|Bi| for 1 ≤ i ≤ k + t, and τ z ≥ τ (k+t)2 , and ε ≤ τ (k+t)23−k, and B is ε-coherent,
it follows that the blockade (A1, . . . , Ak) is 3−k-coherent.

(1) We may assume that every vertex of J has indegree less than t.

Suppose that, say, k is J-adjacent from each of k+ 1, . . . , k+ t. Thus for each j ∈ {k+ 1, . . . , k+ t},
there exists Xj,k ⊆ Bj as in the definition of τ -covering digraph. Since the blockade (A1, . . . , Ak) is
3−k-coherent, by 2.2 there is an (A1, . . . , Ak)-transversal k-vertex path in G with an end-vertex in
Ak, say with vertices p1, . . . , pk in order, where pi ∈ Ai for 1 ≤ i ≤ k. For each j ∈ {k+ 1, . . . , k+ t},
choose qj ∈ Xj,k adjacent to pk (this exists, since Xj,k covers Ak). Then qk+1, . . . , qk+t are pairwise
nonadjacent, and nonadjacent to p1, . . . , pk−1, from the properties of the sets Xj,k. Hence the sub-
graph induced on {p1, . . . , pk, q1, . . . , qt} is a B-transversal copy of B(k, t), as required. This proves
(1).

(2) There is a subset of 2t + 1 elements of {1, . . . , k + t}, pairwise nonadjacent in J , and such
that no two of them have a common out-neighbour in J .

From (1) and averaging, there is a vertex i of J with outdegree less than t; and so the set of
vertices that are either equal to i, J-adjacent to i, J-adjacent from i, or share a J-outneighbour with
i, has cardinality at most 1 + 2(t− 1) + (t− 1)(t− 2) = t2 − t+ 1. By deleting this set from J , we
obtain some digraph; again we find a vertex with outdegree at most t− 1 in this digraph, and again
delete the corresponding set of vertices, and continue. We can repeat this at least 2t + 1 times, since
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|J | = k+ t > 2t(t2− t+ 1). Thus we construct a set of 2t + 1 vertices of J satisfying (2). This proves
(2).

From (2) we may assume that {1, . . . , 2t + 1} is a stable set in J and no two of its members
have a common J-outneighbour. If F is a B-rainbow copy of St+1, then it has a vertex of degree
t + 1, that belongs to a block Bi say, and t + 1 other vertices, in blocks Bj (j ∈ I) say, where
I ⊆ {1, . . . , k + t} \ {i} with |I| = t+ 1. Let us call (i, I) the type of F .

(3) We may assume that for some n ≥ 0 there are copies F1, . . . , Fn of St+1, each (A1, . . . , At+2)-
transversal and pairwise disjoint, and all with type (1, {2, . . . , t+2}), and there exist r ∈ {1, . . . , t+2}
and s ∈ {t+ 3, . . . , t+ k} with |N(F ∩Ar) ∩As| ≥ |As|/(2t+ 4), where F = V (F1) ∪ · · · ∪ V (Fn).

Choose a maximal set F of pairwise disjoint (A1, . . . , A2t+1)-rainbow copies of St+1, and for 1 ≤ i ≤
2t+1 let Di be the set of vertices of Ai that are not in any member of F . There is no (D1, . . . , D2t+1)-
rainbow copy of St+1; and so by 2.3, the blockade (D1, . . . , D2t+1) is not 3−2

t−1-coherent (or one
of the sets Di is empty); and it follows that |Dr| < ε32

t+1|Br| for some r ∈ {1, . . . , 2t + 1}. Since
|Ar| ≥ τ (k+t)2 |Br| and ε32

t+1 ≤ τ (k+t)2/2, it follows that

|Ar \Dr| ≥
(
τ (k+t)2 − ε32t+1

)
|Br| ≥ τ (k+t)2 |Br|/2.

Hence there is a subset F ′ ⊆ F with cardinality at least τ (k+t)2 |Br|/2, such that each of its members
has a vertex in Ar.

There are only at most (2t+1)t+2 possible types of A-rainbow copies of St+1; so within our set F ′
there is a subset of τ (k+t)2(2t + 1)−t−2|Br|/2 of them all with the same type, and from the symmetry
we may assume this common type is (1, {2, . . . , t+ 2}), and r ∈ {1, . . . , t+ 2}.

Thus there are n pairwise disjoint (A1, . . . , At+2)-rainbow copies of St+1, all of type (1, {2, . . . , t+
2}), say F1, . . . , Fn, where n ≥ τ (k+t)2(2t + 1)−t−2|Br|/2. Let F = V (F1) ∪ · · · ∪ V (Fn). Since
τ (k+t)2(2t + 1)−t−2/2 ≥ ε, fewer than ε|Bt+3| vertices in Bt+3 have no neighbour in F ∩Ar, and so

|N(F ∩Ar) ∩At+3| ≥ |At+3| − ε|Bt+3| ≥ |At+3|/2 ≥ |At+3|/(2t+ 4).

We deduce that (3) holds, setting s = t+ 3. This proves (3).

Let us choose n minimum satisfying (3), and let F = V (F1) ∪ · · · ∪ V (Fn). We recall that
z = |E(J)|.

(4) For each i ∈ {1, . . . , t+ 2}, there is no j ∈ {1, . . . , k + t} \ {i} such that

|Aj \N(F ∩Ai)| ≤ τ z+1|Bj |.

Consequently, if j ∈ {1, . . . , k + t} \ {i} and |N(F ∩Ai) ∩Aj | ≥ τ z+1|Bj |, then j is J-adjacent from
i, and so j ≥ t+ 3.

For the first assertion, suppose that such i, j exist. It follows that

|Aj ∩N(F ∩Ai)| > |Aj | − τ z+1|Bj |.
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From the minimality of n, we deduce that

|Aj ∩N(F ∩Ai)| ≤ |Aj |/(2t+ 4) + ε|Bj |.

Consequently
|Aj | − τ z+1|Bj | < |Aj |/(2t+ 4) + ε|Bj |,

and so
(1− 1/(2t+ 4))|Aj | < (τ z+1 + ε)|Bj |.

Since |Aj | ≥ τ z|Bj |, it follows that (1 − 1/(2t + 4))τ z < τ z+1 + ε, contrary to the choice of ε. This
proves the first assertion. The second follows immediately from 3.2, and so this proves (4).

Choose r, s as in (3). Let us say a vertex v ∈ As is good if v has a G-neighbour in F ∩ Ar and
has no G-neighbour in F \Ar. Let Cs be the set of all good vertices in As.

(5) |Cs| ≥ |As|/(4t+ 8).

We have seen that s is J-adjacent from r. Since no two of 1, . . . , t+2 have a common J-outneighbour,
s is not J-adjacent from any element in {1, . . . , t + 2} \ {r}. From the second assertion of (4),
|N(F ∩Ai)∩As| < τ z+1|Bs| for each i ∈ {1, . . . , t+ 2} \ {r}. Hence at most (t+ 1)τ z+1|Bs| vertices
in Bs have a G-neighbour in F \Ar; and so at least |As|/(2t+ 4)− (t+ 1)τ z+1|Bs| vertices in As are
good. Since

(t+ 1)τ z+1|Bs| ≤ τ z|Bs|/(4t+ 8) ≤ |As|/(4t+ 8)

we deduce that |Cs| ≥ |As|/(4t+ 8). This proves (5).

We know that r ∈ {1, . . . , t + 2}, but the argument to come depends on whether r = 1 or not.
If r = 1 let t′ = t + 1 and F ′ = F \ At+2, and otherwise let t′ = t + 2 and F ′ = F . For 1 ≤ m ≤ n
let F ′m = Fm \ At+2 if r = 1, and otherwise let F ′m = Fm. Thus if r = 1, F ′m is a copy of St, and
otherwise F ′m is a copy of St+1. For each j ∈ {t′ + 1, . . . , k + t} with j 6= s, let Cj be the set of all
vertices in Aj with no neighbour in F ′.

(6) |Cj | ≥ |Aj |/(4t+ 8) for each j ∈ {t′ + 1, . . . , k + t}.

Let j ∈ {t′ + 1, . . . , k + t}. By (5) we may assume that j 6= s. From the minimality of n, for
1 ≤ i ≤ t′ at most |Aj |/(2t + 4) + ε|Bj | vertices in Aj have a neighbour in F ′ ∩ Ai; and so at most
(t+ 2)(|Aj |/(2t+ 4) + ε|Bj |) have a neighbour in F . Thus

|Cj | ≥ |Aj | − |Aj |/2− (t+ 2)ε|Bj | = |Aj |/2− (t+ 2)ε|Bj | ≥ |Aj |/(4t+ 8).

This proves (6).

From (6) the blockade (Ct′+1, . . . , Ck+t) is (4t + 8)ετ−z-coherent, and since (4t + 8)ετ−z ≤
31−(k+t)+t′ (because z ≤ (k+ t)(k+ t−1) and t′− t ≤ 2) 2.2 implies that there is a (Ct′+1, . . . , Ck+t)-
transversal path P with end-vertex in Cs. Let its end in Cs be v. From the definition of Cs, there
exists u ∈ F ′ ∩ Ar adjacent to v. Let u ∈ F ′m say, where 1 ≤ m ≤ n. Since v ∈ Cs, v is good and so
has no neighbour in F ′m except u; and since every other vertex of P belongs to some set Cj where
j ∈ {t′ + 1, . . . , k + t} \ {s}, the edge uv is the only edge of G between V (P ) and V (F ′m). Thus the
union of P, Fm and the edge uv is a B-rainbow copy of B(k, t). This proves 3.4.
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Thus, if t ≤ log2 k − (2 + o(1)) log log2 k, 3.4 tells us that B(k, t) has the strong transversal
property, and for t > (1 + o(1)) log2 k, 2.7 tells us that it does not. More exactly, for t ≥ 2, if
k ≥ 2t(t2 − t + 1) − t + 1 then B(k, t) has the property, and if 2 ≤ k ≤ 2t − t then it does not. We
have not decided the values of k in the middle, except when t = 2. In that case 3.4 tells us that
B(k, 2) has the property when k ≥ 11, but this can be improved to:

3.5 If k = 1 or k ≥ 3 then B(k, 2) has the strong transversal property, and if k = 2 it does not.

Proof. We just sketch the proof, since it is similar to that of 3.4. The claims for k = 1 and k = 2
follow from 1.5 and 2.4 respectively, so we assume that k ≥ 3. With an appropriate choice of τ and
ε, we choose an optimal τ -covering digraph J ; and we may assume no vertex has indegree more than
one in J , as in the proof of 3.4, and every vertex has outdegree at least one, by 3.3. Consequently J
is a disjoint union of directed cycles. Next we use a lemma (we omit the proof here), that for any
τ -covering digraph J and for every directed cycle of J , some edge of the cycle is in a directed cycle
of length two (this is true in general, not just in the present context). Consequently J is the disjoint
union of directed cycles of length two, and in particular, |J | is even. Thus there are three pairwise
nonadjacent vertices of J , say 1, 2, 3; and as in the proof of 3.4 we find many pairwise disjoint copies
of S2, all (A1, A2, A3)-rainbow and all with middle vertex in A1. (Note that we look for copies of
S2, not for copies of S3, which is what setting t = 2 in the proof of 3.4 would suggest.) We may
assume that 4, 5 and 6 are J-adjacent to and from 1, 2, 3 respectively. Now the proof is finished
more-or-less as in 3.4; with notation as in 3.4, if r = 1 we follow the proof of 3.4, that is, we delete
from A4, . . . , Ak+2 the small number of vertices with the wrong adjacency to F , and then apply 2.2
to the resulting blockade (C4, C5, . . . , Ck+2), finding a path with first vertex in C4. If r = 2 say, we
do the same, but apply 2.2 to the blockade (C5, . . . , Ck+2), finding a path with first vertex in C5,
and then turning this into a copy of B(2, k) by adding Fm and a vertex of X4,1. We omit further
details.

4 The cycle

Our remaining results all concern looking for an anticomplete pair of sets that have polynomial size
rather than linear size. So, we are not working with the strong transversal property any more, nor
with ε-coherence.

In this section we prove 1.4. We handle the cases k = 4 and k ≥ 5 separately. Both proofs are
related to the proofs of theorems in [4]. (These theorems have recently been superceded by theorems
in [5], but the proof methods of the latter are quite different.)

We will need the following lemma:

4.1 Let 0 < ε ≤ 1/2, and let B = (B1, B2) be a blockade in a graph G, with local degree less than
εW and (εW, εW c)-cohesive where W is its width. Then εW c > 1; and if X ⊆ B1 with |X| ≥ 2εW ,
there are fewer than εW c vertices in B2 that have at most W 1−c/2 neighbours in X.

Proof. Let v ∈ B1. Since B has local degree less than εW , v has at most εW neighbours in B2;
and so has at least (1 − ε)W ≥ εW non-neighbours in B2. Thus B is not (εW, 1)-cohesive, and so
εW c > 1. This proves the first assertion.
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Suppose the second assertion is false; then there exists Y ⊆ B2 with |Y | = dεW ce, such that
every vertex in Y has at most W 1−c/2 neighbours in B2. Since εW c > 1, it follows that |Y | ≤ 2εW c.
Hence at most |Y |W 1−c/2 ≤ εW vertices in X have a neighbour in Y , and since |X| ≥ 2εW , X has
a subset of cardinality at least εW that is anticomplete to Y , a contradiction. This proves 4.1.

First we show the following, which is a strengthening of the k = 4 case of 1.4:

4.2 Let ε = 1/4, and let B = (B1, . . . , B4) be a blockade in a graph G, with local degree less than
εW and (εW, εW 1/3)-cohesive where W is its width. Then there is a B-transversal copy of a cycle
of length four in G.

Proof. Let B = (B1, . . . , B4) be a blockade in a graph G, with local degree less than εW and
(εW, εW 1/3)-cohesive where W is its width. From 4.1:

(1) εW 1/3 > 1; and if i, j ∈ {1, . . . , 4} are distinct, and X ⊆ Bi with |X| ≥ 2εW , and Y is a
set of vertices in Bj each with at most W 2/3/2 neighbours in X, then |Y | < εW 1/3.

Let v3 ∈ B3 and v4 ∈ B4 be adjacent. We say the edge v3v4 is

• 1-good if v3 has at least W 2/3/2 neighbours in B4;

• 2-good if it is 1-good and v4 has at least W 2/3/2 neighbours in B2 that are nonadjacent to v3.

We claim:

(2) More than half the edges between B3, B4 are 2-good.

By (1), fewer than εW 1/3 vertices in B3 have at most W 2/3/2 neighbours in B4, so at most
εW 1/3W 2/3/2 = εW/2 edges between B3, B4 are not 1-good. Now let v3 ∈ B3 and let N4 be
the set of its neighbours in B4, and let N2 be the set of its neighbours in B2. Thus |N2| < ε|B2|, and
so |B2 \N2| ≥ (1−ε)|B2| ≥ 2εW ; so by (1), fewer than εW 1/3 vertices in N4 have fewer than W 2/3/2
neighbours in B2 \N2. Consequently at most εW 1/3 of the edges between v3 and N4 are 1-good and
not 2-good. Since this holds for every choice of v3 ∈ B3, it follows that at most εW 1/3|B3| edges
between B3, B4 are 1-good and not 2-good. Hence in total, at most εW 1/3|B3|+εW/2 edges between
B3, B4 are not 2-good. But at least |B3| − εW 1/3 vertices in B3 have at least W 2/3/2 neighbours in
B4, so there are at least

(|B3| − εW 1/3)W 2/3/2

edges between B3, B4. Since

εW 1/3|B3|+ εW/2 < (|B3| − εW 1/3)W 2/3/4

because, for instance,

(W 2/3/4− εW 1/3)|B3| ≥ (W 2/3/4− εW 1/3)W > εW/2 + εW/4,

this proves (2).
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(3) We may assume that there exist anticomplete subsets C1 ⊆ B1 and C2 ⊆ B2, with |C1|, |C2| ≥
W 2/3/2.

By (2), and the same statement with B3, B4 exchanged and B1, B2 exchanged, it follows that there
is an edge v3v4 with v3 ∈ B3 and v4 ∈ B4, such that v4 has at least W 2/3/2 neighbours in B2 that
are nonadjacent to v3, and v3 has at least W 2/3/2 neighbours in B1 that are nonadjacent to v4. Let
C1 be the set of vertices in B1 that are adjacent to v3 and not to v4, and define C2 ⊆ B2 similarly.
If there is an edge between C1, C2, then adding v3, v4 makes a B-transversal cycle of length four; so
we may assume there is no such edge. This proves (3).

Choose C1, C2 as in (3).

(4) There exists v3 ∈ B3 with at least εW 1/3 neighbours in C1 and at least εW 1/3 neighbours in
C2.

Suppose that there is a set A3 ⊆ B3 with cardinality d2εW e, such that each of its members has
fewer than εW 1/3 neighbours in C1. By (1), fewer than εW 1/3 vertices in C1 have fewer than W 2/3/2
neighbours in A3; and so there are at least

(|C1| − εW 1/3)W 2/3/2

edges between C1, A3. But from the definition of A3, there are at most |A3|εW 1/3 such edges; so

(|C1| − εW 1/3)(W 2/3/2) < |A3|(εW 1/3).

Since |C1| ≥W 2/3/2, and |A3| ≤ 3εW (since ε = 1/4 and W ≥ 64), it follows that

(W 2/3/2− εW 1/3)(W 2/3/2) < 3εW (εW 1/3),

which (since ε = 1/4) simplifies to W 1/3 < 2, a contradiction since W 1/3 ≥ ε−1 = 4. Thus there are
fewer than 2εW vertices in B3 with fewer than εW 1/3 neighbours in C1; and fewer than 2εW vertices
in B3 with fewer than εW 1/3 neighbours in C2, similarly. Since 4εW = W ≤ |B3|, this proves (4).

Choose v3 as in (4), and for i = 1, 2 let Ai be the set of neighbours of v3 in C1 and in C2

respectively. Since B is (εW, εW 1/3)-cohesive, fewer than εW vertices in B4 have no neighbour in
A1; fewer than εW vertices in B4 have no neighbour in A2; and fewer than εW vertices in B4 are
adjacent to v3. Since 3εW < W ≤ |B4|, there exists v4 ∈ B4 with a neighbour v1 ∈ A1, and a
neighbour v2 ∈ A2, and non-adjacent to v3. But then there is a B-transversal 4-cycle induced on
{v1, v2, v3, v4}. This proves 4.2.

To complete the proof of 1.4, next we prove the following, a strengthening of 1.4 when k ≥ 5:

4.3 Let k ≥ 5 be an integer, and let ε = 1/(3k). Let B = (B1, . . . , Bk) be a blockade in a graph
G, with local degree less than εW and (εW, εW 1/2)-cohesive where W is its width. Then there is a
B-transversal copy of a cycle of length k in G.
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Proof. Let B = (B1, . . . , Bk) be a blockade in a graph G, with local degree less than εW and
(εW, εW 1/2)-cohesive where W is its width. From 4.1:

(1) εW 1/2 > 1; and if i, j ∈ {1, . . . , k} are distinct, and X ⊆ Bi with |X| ≥ 2εW , and Y is a
set of vertices in Bj each with fewer than W 1/2/2 neighbours in X, then |Y | < εW 1/2.

Next we prove the following:

(2) Let i1, i2, . . . , is ∈ {1, . . . , k} be distinct, and let Dir ⊆ Bir for 1 ≤ r ≤ s, such that |Di1 | ≥ εW 1/2,
and |Dir | ≥ εs|Bir | for 2 ≤ r ≤ s. There there is an induced path of G with vertices vi1- · · · -vis,
where vir ∈ Dir for 1 ≤ r ≤ s.

We proceed by induction on s; if s = 1 the result is trivial, so we assume that s ≥ 2 and the
result holds for s − 1. Let i1, i2, . . . , is and Dir ⊆ Bir for 1 ≤ r ≤ s as above. From the symmetry
we may assume that ir = r for 1 ≤ r ≤ s. Since s ≥ 2, and consequently |D2| ≥ sε|B2| ≥ 2ε|B2|, (1)
implies that there exists v1 ∈ D1 with at least W 1/2/2 neighbours in D2. Let E2 be the set of these
neighbours, and for 3 ≤ r ≤ s let Er be the set of vertices in Dr nonadjacent to v1. Since v1 has
fewer than ε|Br| neighbours in Br, it follows that |Er| ≥ |Dr| − ε|Br| ≥ ε(s− 1)|Br|. Hence from the
inductive hypothesis applied to 2, . . . , s and the sets E2, . . . , Es, there is an induced path of G with
vertices v2- · · · -vs, where vr ∈ Er for 2 ≤ r ≤ s. Adding v1 and the edge v1v2 gives a path satisfying
(2). This proves (2).

From (1), all vertices in B1 except at most εW 1/2 have at least W 1/2/2 neighbours in B2, and
the same for B3; so there exists v1 ∈ B1 with at least W 1/2/2 neighbours in B2 and at least W 1/2/2
neighbours in B3. For i = 2, 3 let Ai be the set of neighbours of v1 in Bi, and for 4 ≤ i ≤ k let Ai be
the set of vertices in Bi that are nonadjacent to v1. Thus |A2|, |A3| ≥W 1/2/2. Since v1 has at most
ε|Bj | neighbours in Bj , it follows that |Aj | ≥ (1− ε)|Bj | for 4 ≤ j ≤ k.

All except at most εW vertices in A4 have a neighbour in A2, so we may choose C2 ⊆ A2 minimal
such that for some j ∈ {4, . . . , k}, at least |Bj |/3 vertices in Aj have a neighbour in C2. Choose some
such j; and from the symmetry we may assume that j = 4. Let C4 be the set of vertices in A4 that
have a neighbour in C2. For 5 ≤ i ≤ k, let Ci be the set of vertices in Ai with no neighbour in C2.
Thus |C4| ≥ |B4|/3; and from the minimality of C2, it follows that fewer than |Bi|/3 + ε|Bi| have a
neighbour in C2, for each i ∈ {5, . . . , k}. Hence for each i ∈ {5, . . . , k},

|Ci| ≥ |Ai| − |Bi|/3− ε|Bi| ≥ (1− ε)|Bi| − |Bi|/3− ε|Bi| = (2/3− 2ε)|Bi| ≥ |Bi|/3.

By (1), at most εW 1/2 vertices in A3 have fewer than W 1/2/2 neighbours in C5 (this is where we use
k ≥ 5); and since |A3| ≥ W 1/2/2 > εW 1/2, there exists v3 ∈ A3 with at least W 1/2/2 neighbours in
C5.

Let D5 be the set of neighbours of v3 in C5; let C1 = B1, and for i ∈ {1, 4} ∪ {6, . . . , k}, let Dh

be the set of vertices in Ch nonadjacent to v3. Hence |D5| ≥W 1/2/2, and

|Dh| ≥ |Ch| − ε|Bh| ≥ (2/3− 3ε)|Bi|

for i ∈ {1, 4} ∪ {6, . . . , k}.
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Every vertex in D4 has a neighbour in C2, which may or may not be adjacent to v3. So either at
least |D4|/2 vertices in D4 have a neighbour in C2 nonadjacent to v3, or at least |D4|/2 vertices in
D4 have a neighbour in C2 adjacent to v3. We handle these two cases separately.

First, assume that at least |D4|/2 vertices in D4 have a neighbour in C2 nonadjacent to v3; let
D2 be the set of vertices in C2 nonadjacent to v3, and let D′4 be the set of vertices in D4 with a
neighbour in D2. Thus

|D′4| ≥ |D4|/2 ≥ (2/3− 3ε)|B4|/2 ≥ (k − 3)ε|B4|,

since ε ≤ 1/(3k). By (2), there is an induced path P of G v5-v6- · · · -vk-v4, where vr ∈ Dr for
5 ≤ r ≤ k and v4 ∈ D′4. Choose v2 ∈ D2 adjacent to v4; then the union of P and the path
v4-v2-v1-v3-v5 gives a B-transversal cycle satisfying the theorem.

Now we assume that at least |D4|/2 vertices in D4 have a neighbour in C2 adjacent to v3; let D2

be a subset of C2, all adjacent to v3, minimal such that either at least |D4|/2 vertices in D4, or at
least |D1|/2 vertices in D1, have a neighbour in D2.

Suppose there is a set D′4 ⊆ D4 with cardinality at least |D4|/2, all with a neighbour in D2. From
the minimality of D2, at most |D1|/2 + ε|B1| vertices in D1 have a neighbour in D2, and so there is
a subset D′1 ⊆ D1 with cardinality at least |D1|/2 − ε|B1| ≥ (k − 2)ε|B1|, anticomplete to D2. By
(2), there is an induced path P of G with vertices v5- · · · -vk-v′1-v4, where vr ∈ Dr for 5 ≤ r ≤ k and
v′1 ∈ D′1 and v4 ∈ D′4. Choose v2 ∈ D2 adjacent to v4; then the union of P and the path with vertices
v4-v2-v3-v5 gives a B-transversal cycle satisfying the theorem.

Finally we may assume that there is a set D′1 ⊆ D1 with cardinality at least |D1|/2, all with a
neighbour in D2. From the minimality of D2, at most |D4|/2 +ε|B4| vertices in D4 have a neighbour
in D2, and so there is a subset D′4 ⊆ D4 with cardinality at least |D4|/2 − ε|B4| ≥ (k − 2)ε|B4|,
anticomplete to D2. By (2), there is an induced path P of G with vertices v5- · · · -vk-v4-v

′
1, where

vr ∈ Dr for 5 ≤ r ≤ k and v4 ∈ D′4 and v′1 ∈ D′1. Choose v2 ∈ D2 adjacent to v′1; then the union
of P and the path with vertices v′1-v2-v3-v5 gives a B-transversal cycle satisfying the theorem. This
proves 4.3.

We do not know whether the exponents of 1/3 (in 4.2) and 1/2 (in 4.3) are best possible.

5 Ordered transversal subgraphs

Now we turn to excluding ordered graphs. We begin with 1.6, which we restate:

5.1 If H is an ordered tree with k ≥ 1 vertices, then there exists ε > 0 with the following property.
Let B = (B1, . . . , Bk) be a blockade in a graph G, with local degree less than εW and (εW, εW 1/(k−1))-
cohesive where W is its width. Then there is an ordered B-transversal copy of H.

To prove this we need to prove a strengthening (which implies 5.1 by setting c = 1/(k − 1)):

5.2 Let H be an ordered tree with k ≥ 1 vertices, and let c > 0 with (k− 1)c ≤ 1. Let ε = 41−k. Let
B = (B1, . . . , Bk) be a blockade in a graph G, with local degree less than εW and (εW, εW c)-cohesive
where W is its width. Then there are at least 41−kW k−(k−1)c ordered B-transversal copies of H.
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Proof. We proceed by induction on k. The result is trivial for k = 1, so we assume that k ≥ 2
and the result holds for k − 1. Let the ordering of H be p1, . . . , pk. We may assume that pk has
degree one in H, and pk−1 is its unique neighbour. Let B = (B1, . . . , Bk) be a blockade in a graph
G, with local degree less than εW and (εW, εW c)-cohesive where W is its width. We may assume
that |Bi| = W for 1 ≤ i ≤ k. From 4.1:

(1) εW c > 1; and if X ⊆ Bk with |X| ≥ 2εW , there are fewer than εW c vertices in Bk−1 that
have at most W 1−c/2 neighbours in X.

In particular, there are at least (W − εW c)W 1−c/2 ≥W 2−c/4 edges between Bk−1 and Bk, so if
k = 2 the result is true. Thus we may assume that k ≥ 3.

Let H ′ be the ordered tree obtained from H by deleting pk (with ordering p1, . . . , pk−1), and
similarly let H ′′ be the ordered forest obtained by deleting both pk, pk−1. Let B′ = (B1, . . . , Bk−1),
and B′′ = (B1, . . . , Bk−2). Let H be the set of all ordered B-transversal copies of H, let H′ be the set
of all ordered B′-transversal copies of H ′, and let H′′ be the set of all ordered B′′-transversal copies
of H ′′.

For each F ∈ H′′, let n(F ) be the number of vertices v ∈ Bk−1 such that the subgraph induced on
V (F )∪{v} is an ordered B′-transversal copy of H ′. Let m(F ) be the number of edges uv with u ∈ Bk

and v ∈ Bk−1 such that the subgraph induced on V (F )∪{u, v} is an ordered B-transversal copy of H.

(2) For each F ∈ H′′, m(F ) ≥ (n(F )− εW c)W 1−c/2.

Let F ∈ H′′ and let N be the set of vertices v ∈ Bk−1 such that the subgraph induced on V (F )∪{v}
is an ordered B′-transversal copy of H ′. Let X be the set of vertices in Bk with no neighbours in
V (F ). Thus

|X| ≥ |B1| − (k − 2)ε|B1| ≥ 2εW,

(since ε ≤ 1/k), and so by (1), there are fewer than εW c vertices in N that have at most W 1−c/2
neighbours in X. All the others have more than W 1−c/2 neighbours in X, and every such edge
contributes to m(F ). This proves (2).

Summing n(F ),m(F ) and 1 over all F ∈ H′′ gives |H|, |H′| and |H′′| respectively, so by summing
the inequality of (2) over all F ∈ H′′, we deduce that

2|H| ≥W 1−c|H′| − εW |H′′| ≥W 1−c|H′| − εW k−1.

But from the inductive hypothesis,

|H′| ≥ 42−kW k−1−(k−2)c ≥ 2εW k−2+c

(the latter since c ≤ 1/(k − 1) and ε = 41−k). Consequently

2|H| ≥W 1−c|H′|/2 ≥ 42−kW k−1−(k−2)cW 1−c/2 = 2 · 41−kW k−(k−1)c.

This proves 5.2.
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The exponent of 1/(k−1) in 5.1 is best possible in the sense that for the tree Sk−1, the exponent
cannot be replaced by any larger constant, as we shall see. But perhaps it can be replaced by 1/d
where d is the maximum degree of the tree? We propose:

5.3 Conjecture: If H is an ordered tree with k ≥ 1 vertices and maximum degree d, then there
exists ε > 0 with the following property. Let B = (B1, . . . , Bk) be a blockade in a graph G, with
local degree less than εW and (εW, εW 1/d)-cohesive where W is its width. Then there is an ordered
B-transversal copy of H.

The next result shows that this is true for caterpillars:

5.4 Let H be an ordered caterpillar with k ≥ 1 vertices and maximum degree d, and let ε = 4−d/k.
Let B = (B1, . . . , Bk) be a blockade in a graph G, with local degree less than εW and (εW, εW 1/d)-
cohesive where W is its width. Then there is an ordered B-transversal copy of H.

For inductive purposes it is helpful to prove something stronger. If H is a caterpillar, there is a path
of H containing all vertices of H with degree more than one. If there is such a path with one end v
we call v a head of the caterpillar. (Thus, the head is not necessarily unique.) We will show:

5.5 Let H be an ordered caterpillar with k ≥ 1 vertices, with ordering v1, . . . , vk where v1 is a
head. Let v1 have degree d1, and let every vertex of H have degree at most d, and let ε = 4−d/k.
Let B = (B1, . . . , Bk) be a blockade in a graph G, with local degree less than εW and (εW, εW 1/d)-
cohesive where W is its width. Let C1 ⊆ B1, where |C1| ≥ 4d1−dW d1/d. Then there is an ordered
(C1, B2, . . . , Bk)-transversal copy of H.

Proof. Let G, B = (B1, . . . , Bk) and C1 be as in the theorem. We may assume that |B1|, . . . , |Bk| =
W . If k = 1 the result is trivial; and if k = 2, then d1 = d = 1, and so |C1| ≥ W , and therefore
there is an edge between C1, B2 and the claim holds. So we may assume that k ≥ 3, and proceed by
induction on k.

Suppose first that d1 ≥ 2, and let vk say be a neighbour of v1 that has degree one in H. Let H ′

be obtained from H by deleting vk. By 4.1, there are fewer than εW 1/d vertices in C1 that have at
most W 1−1/d/2 neighbours in Bk. Hence there are at least (|C1|−εW 1/d)W 1−1/d/2 ≥ |C1|W 1−1/d/4
edges between C1 and Bk, since |C1| ≥W d1/d ≥ 2εW 1/d. Consequently some vertex uk ∈ Bk has at
least |C1|W−1/d/4 neighbours in C1. Let C ′1 be the set of these neighbours; then

|C ′1| ≥ |C1|W−1/d/4 ≥ 4d1−dW d1/dW−1/d/4 ≥ 4d1−1−dW (d1−1)/d.

For 2 ≤ i ≤ k − 1, let B′i be the set of vertices in Bi nonadjacent to uk; so |B′i| ≥ (1 − ε)W . Let
the blockade (B1, B

′
2, . . . , B

′
k−1) have width W ′ say; then W ′ ≥ (1 − ε)W . Let ε′ = 4−d/(k − 1);

then ε′W ′ ≥ εW , and so (B1, B
′
2, . . . , B

′
k−1) has local degree less than ε′W ′ and is (ε′W ′, ε′(W ′)1/d)-

cohesive. (Note that ε′(W ′)1/d ≥ εW 1/d.) From the inductive hypothesis, there is an ordered
(C ′1, B

′
2, . . . , B

′
k−1)-transversal copy of H \ {vk}; and adding uk gives an ordered B-transversal copy

of H containing a vertex of C1.
So we may assume that d1 = 1; let v2 be the unique neighbour of v1 in H, and let H ′ be obtained

from H by deleting v1. Thus v2 is a head of H ′.
By 4.1, since |C1| ≥ 41−dW 1/d > εW 1/d, there is a vertex u1 ∈ C1 with at least W 1−1/d/2

neighbours in B2; let C2 be the set of these neighbours. For 3 ≤ i ≤ k, let B′i be the set of vertices
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in Bi nonadjacent to u1, so |B′i| ≥ (1 − ε)W . Let the blockade (B2, B
′
3, . . . , B

′
k) have width W ′

say. Then W ′ ≥ (1− ε)W , and as before, it has local degree less than ε′W ′ and is (ε′W ′, ε′(W ′)1/d)-
cohesive where ε′ = 4−d/(k−1). From the inductive hypothesis, there is an ordered (C2, B

′
3, . . . , B

′
k)-

transversal copy of H \ {v1}, and adding u1 gives a an ordered B-transversal copy of H containing
a vertex of C1. This proves 5.5.

Finally, let us see that the exponents in 5.4 and 5.5 cannot be replaced by any larger constant.
We need the following three lemmas:

5.6 Let t ≥ 3 be an integer. Let 0 < ε < 1 be rational, and let c > d > 1/t, where d − 1/t <
(c− 1/t)/(t− 1), and d < 2/t, and c, d are rational. Let K > ε log(e/ε)/(− log(1− ε)). Let n be an
integer such that nc, nd, n1−d, n1/t, εn are all integers. If n is sufficiently large, there is a graph with
bipartition A,B , where |A| = n and |B| = n2/t, such that

• every vertex in A has degree at most t− 1;

• for every X ⊆ A with |X| ≥ εnc, there are at least Knd vertices in B that have a neighbour in
X;

• for every X ⊆ A with |X| ≥ εn, there are at least (ε/e)|B| vertices in B with a neighbour in
X; and

• every vertex in B has less than n1−d neighbours in A.

Proof. Let A,B be disjoint sets of cardinalities n, n2/t respectively. For each v ∈ A, choose
v1, . . . , vt−1 in B uniformly and independently at random (and therefore not necessarily distinct),
and add edges to make v adjacent to v1, . . . , vt−1. Let G be the graph this constructs. We claim
that if n is sufficiently large then with high probability G satisfies the theorem.

Let X ⊆ A with |X| = εnc, and let Y ⊆ B with |Y | = Knd. The probability that for every
vertex in X, all its neighbours are in Y , is((

Knd
)
/|B|

)ε(t−1)nc

=
(
Knd−2/t

)ε(t−1)nc

.

By 2.5 there are at most ((e/ε)n1−c)n
c

choices of X, and at most ((e/K)n2/t−d)Knd
choices of Y .

Thus the probability that there is a choice of X,Y such that for every vertex in X, all its neighbours
are in Y , is at most the product of these, that is(

Knd−2/t
)ε(t−1)nc (

(e/ε)n1−c
)εnc (

(e/K)n2/t−d
)Knd

.

The logarithm of this (L say) is

ε(t−1)nc (logK + (d− 2/t) log n)+εnc (log(e/ε) + (1− c) log n)+Knd (log(e/K) + (2/t− d) log n) .

Since c > d, 1/t, for sufficiently large n the two terms containing nc log n are much larger than
the others, and the sum of their coefficients is ε(t − 1)(d − 2/t) + ε(1 − c). This is negative, since
d− 1/t < (c− 1/t)/(t− 1); and so for sufficiently large n, L is large and negative, and therefore with
high probability, the second bullet of the theorem holds.
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Now let X ⊆ A and Y ⊆ B, with |X| = εn and |Y | = b(ε/e)|B|c. The probability that for every
vertex in X, all its neighbours are in Y , is at most (ε/e)(t−1)εn. By 2.5 there are at most (e/ε)εn

choices of X, and at most 2n
2/t

choices of Y . Thus the probability that there is a choice of X,Y such
that for every vertex in X, all its neighbours are in Y , is at most

(ε/e)(t−1)εn(e/ε)εn2n
2/t
.

The logarithm of this (L say) is

(t− 1)εn log(ε/e) + εn log(e/ε) + n2/t log 2.

The two terms linear in n dominate for large n, and the sum of their coefficients is

(t− 1)ε log(ε/e) + ε log(e/ε) = −(t− 2)ε log(e/ε) < 0,

so for sufficiently large n, L is large and negative, and therefore with high probability, the third
bullet of the theorem holds.

Finally, let v ∈ B and let X ⊆ A with |X| = n1−d. The probability that v is adjacent to every

vertex in X is at most
(
(t− 1)n−2/t

)n1−d

. The number of choices of X is at most
(
end

)n1−d

, so the
probability that some vertex in B has degree at least n1−d is at most(

(t− 1)n−2/t
)n1−d (

end
)n1−d

n.

The logarithm of this is

n1−d (log(t− 1)− (2/t) log n) + n1−d(1 + d log n) + log n.

The n1−d log n terms dominate, for large n, and the sum of their coefficients is −2/t+ d; and this is
negative since d < 2/t. Consequently with high probability, the fourth bullet of the theorem holds.

This proves 5.6.

5.7 Let t ≥ 3 be an integer. Let 0 < ε < 1 be rational, and let c > d > 1/t, where d − 1/t <
(c − 1/t)/(t − 1) and d < 2/t, and c, d are rational. Let K > log(e/ε). Let n be an integer such
that nc, εnc, nd, n1/t, εn, n1−d, (ε/2)nd are all integers. If n is sufficiently large, there is a graph with
bipartition B,C, where |B| = n2/t and |C| = n, such that

• every vertex in B has degree at most n1−d;

• for every X ⊆ B with |X| ≥ Knd, there are more than (1 − ε)n vertices in C that have a
neighbour in X; and

• for every X ⊆ B with |X| ≥ (ε/e)|B|, there are more than n−εnc vertices in C with a neighbour
in X.

• every vertex in C has degree at most (ε/2)nd.
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Proof. Let B,C be disjoint sets of cardinalities n2/t, n respectively. For each v ∈ B, choose n1−d

vertices in B uniformly and independent at random (and therefore not necessarily distinct), and
add edges to make v adjacent to them. Let G be the graph this constructs. We claim that if n is
sufficiently large then with high probability G satisfies the theorem.

Let X ⊆ B with |X| = Knd, and let Y ⊆ C with |Y | = (1− ε)n. The probability that for every
vertex in X, all its neighbours are in Y , is

(1− ε)Kn ≤ e−εKn.

By 2.5 there are at most
(
(e/K)n2/t−d

)Knd

choices of X, and at most (e/ε)εn choices of Y . Thus
the probability that there is a choice of X,Y such that for every vertex in X, all its neighbours are
in Y , is at most

e−εKn
(

(e/K)n2/t−d
)Knd

(e/ε)εn.

The logarithm of this is

−εKn+Knd (log(e/K) + (2/t− d) log n) + εn log(e/ε).

For sufficiently large n the terms linear in n dominate, and the sum of their coefficients is −εK +
ε log(e/ε); and this is negative since K > log(e/ε), so with high probability, the second bullet of the
theorem holds.

Now let X ⊆ B and Y ⊆ C, with |X| = d(ε/e)|B|e and |Y | = n− εnc. The probability that for
every vertex in X, all its neighbours are in Y , is at most(

1− εnc−1
)(ε/e)n2/tn1−d

=
(
1− εnc−1

)(ε/e)n1+2/t−d

≤ e−εnc−1(ε/e)n1+2/t−d
= e−(ε

2/e)nc+2/t−d
.

By 2.5 there are at most 2n
2/t

choices of X, and at most
(
(e/ε)n1−c

)εnc

choices of Y . Thus the
probability that there is a choice of X,Y such that for every vertex in X, all its neighbours are in
Y , is at most

e−(ε
2/e)nc+2/t−d

2n
2/t (

(e/ε)n1−c
)εnc

.

The logarithm of this is

−(ε2/e)nc+2/t−d + n2/t log 2 + εnc (log(e/ε) + (1− c) log n) .

Since c + 2/t − d > max(2/t, c), the first term dominates if n is sufficiently large, and so with high
probability, the third bullet of the theorem holds.

Let v ∈ C and let X ⊆ B with |X| = (ε/2)nd. The probability that v is adjacent to every vertex

in X is
(
n−d

)(ε/2)nd

= n−(ε/2)dn
d
. There are at most

(
(2e/ε)n2/t−d

)(ε/2)nd

choices of X by 2.5, and n
choices of v, so the probability that there is a choice of v,X such that v is adjacent to every vertex
in X, is at most

n−(ε/2)dn
d
(

(2e/ε)n2/t−d
)

(ε/2)ndn.

The logarithm of this is

−(ε/2)dnd log n+ (ε/2)nd (log(2e/ε) + (2/t− d) log n) + log n.

The terms in nd log n dominate for large n, and the sum of their coefficients is

−(ε/2)d+ (ε/2)(2/t− d) = ε(1/t− d) < 0.

Consequently with high probability the fourth bullet holds. This proves 5.7.

22



5.8 Let 0 < c ≤ 1. If n is sufficiently large, and εn, εnc are both integers, there is a graph with
bipartition A,B, where |A| = |B| = n, such that every vertex has degree at most (2/ε2)n1−c, and the
blockade (A,B) is (εn, εnc)-cohesive.

We leave the proof to the reader; it is like that of 2.6. The three preceding lemmas are used for
the following:

5.9 Let t ≥ 3, and let S+
t be obtained from St by ordering its vertex set. For all c > 1/t and all

ε > 0, there is a graph G, and a blockade (B1, . . . , Bt+1) in G, with local degree less than εW and
(εW, εW c)-cohesive where W is its width, such that there is no ordered B-rainbow copy of S+

t in G.

Proof. We may assume that c, ε are rational, by slightly decreasing them if necessary. We call the
vertex of St of degree t its centre. From the symmetry we may assume that the centre is the last in
the ordering of S+

t . Choose d such that c > d > 1/t, where d− 1/t < (c− 1/t)/(t− 1) and d < 2/t,
and d is rational. Choose an integer n such that nc, nd, n1/t, εn, n1−d, εnd are all integers, and n is
large enough to satisfy each of 5.6, 5.7 and 5.8. Choose K as in 5.6 and 5.7.

Take t + 2 pairwise disjoint sets B0, B1, . . . , Bt+1, where |B0| = n2/t and B1, . . . , Bt+1 all have
cardinality n. We attach bipartite graph onto various pairs of the sets B0, . . . , Bt+1 as follows:

• Let Jt+1,0 be a copy of the graph of 5.6 with bipartition Bt+1, B0.

• For 1 ≤ i ≤ t, let J0,i be a copy of the graph of 5.7 with bipartition (B0, Bi).

• For 1 ≤ i < j ≤ t, let Ji,j be a copy of the graph of 5.8 with bipartition Bi, Bj .

Now for 1 ≤ i < j ≤ t+1, and all u ∈ Bi and v ∈ Bj , add an edge between u, v if they have a common
neighbour in B0. Finally, delete B0; this defines a graph G, with a blockade B = (B1, . . . , Bt+1) of
width W = n, and we claim it satisfies the theorem.

Suppose first that there is an ordered B-rainbow copy of S+
t in G. Thus there exists vt+1 ∈ Bt+1

adjacent in G to some vi ∈ Bi for 1 ≤ i ≤ t, such that v1, . . . , vt are pairwise G-nonadjacent. From
the construction, for 1 ≤ i ≤ t every vertex of Bi G-adjacent to vt+1 is J0,i-adjacent to a vertex
w ∈ B0 that is Jt+1,0-adjacent to vt+1. There are only t− 1 such vertices, because of the properties
of Jt+1,0; so there exist distinct i, j ∈ {1, . . . , t} and w ∈ B0, such that vi, vj , vt+1 are all adjacent
(in J0,i, J0,j , Jt+1,0 respectively) to w. But then vi is G-adjacent to vj , a contradiction. This proves
that there is no ordered B-rainbow copy of S+

t in G.
To check the local degree of B: each vertex in Bt+1 is Jt+1,0-adjacent to at most t− 1 vertices in

B0; and each of these neighbours has at most n1−d J0,i-neighbours in Bi; so each vertex in Bt+1 has
at most (t− 1)n1−d G-neighbours in Bi, for 1 ≤ i ≤ t, and (t− 1)n1−d < εn if n is large enough.

Each vertex in Bi is J0,i-adjacent to at most (ε/2)nd vertices in B0, and they have degree less
than n1−d in Jt+1,0; so each vertex in Bi has at most εn/2 G-neighbours in Bt+1, for 1 ≤ i ≤ t.

For 1 ≤ i < j ≤ t, each vertex in Bi has at most (2/ε2)n1−c Ji,j-neighbours in Bj ; and in
addition, it is J0,i-adjacent to most (ε/2)nd vertices in B0, and they have degree at most n1−d in
J0,j . Consequently each vertex in Bi is G-adjacent to at most (2/ε2)n1−c + (ε/2)ndn1−d vertices in
Bj . For large n, this is less than εn. The same holds for j > i. Consequently B has local degree less
than εn.

To check that it is (εn, εnc)-coherent: first, let X ⊆ Bt+1 and Y ⊆ Bi where 1 ≤ i ≤ t, with
|X| ≥ εn and |Y | ≥ εnc. From the properties of Jt+1,0 there is a set Z ⊆ B0 with |Z| ≥ (ε/e)n2/t,
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and all its members have a Jt+1,0-neighbour in X; and from the properties of J0,i, more than n− εnc
vertices in Bi have a J0,i-neighbour in Z; and consequently some vertex in Y is G-adjacent to a
vertex in X.

Next, let X ⊆ Bt+1 and Y ⊆ Bi where 1 ≤ i ≤ t, with |X| ≥ εnc and |Y | ≥ εn. By a similar
argument it follows that X,Y are not anticomplete in G.

Finally, let 1 ≤ i < j ≤ t, and let X ⊆ Bi and Y ⊆ Bj , with |X| ≥ εn and |Y | ≥ εnc. From the
properties of Ji,j , X,Y are not anticomplete in Ji,j and hence not in G. This proves 5.9.
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