
Every tree contains a large induced subgraph with all degrees odd

A.J. Radcliffe

Carnegie Mellon University, Pittsburgh, PA

A.D. Scott

Department of Pure Mathematics and Mathematical Statistics

University of Cambridge, England

Abstract: Caro, Krasikov and Roditty [3] proved that every tree of order n contains

an induced subgraph of order at least dn
2 e with all degrees odd, and conjectured a better

bound. In this note we prove that every tree of order n contains an induced subgraph of

order at least 2bn+1
3 c with all degrees odd; this bound is best possible for every value of n.
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Gallai (see [4], §5 Problem 17) proved that we can partition the vertices of any graph into

two sets, each of which induces a subgraph with all degrees even; we can also partition

the vertices into two sets so that one set induces a subgraph with all degrees even and the

other induces a subgraph with all degrees odd. As an immediate consequence of this, we

see that every graph of order n contains an induced subgraph of order at least dn/2e with

all degrees even.

It is natural to ask whether we can partition every graph into induced subgraphs with

odd degrees, but this turns out not to be possible (consider, for instance, C3). However,

the results for induced subgraphs with even degrees suggest the following conjecture, the

origin of which is unclear (see [2]).

Conjecture. There exists ε > 0 such that every connected graph G contains some W ⊂
V (G) with |W | ≥ ε|G| such that the graph induced by W has all degrees odd.

Caro [2] proved that we can demand |W | ≥ c
√
|G|, and Scott [5] proved that we can

get |W | ≥ c|G|/ log(|G|). If the conjecture is true, then an example of Caro shows that we

must have ε ≤ 2
7 . This can be seen by considering Z7 with each i joined to i± 1 and i± 2.

The conjecture can be proved for some special classes of graph. In particular, Caro,

Krasikov and Roditty [3] showed that for trees we can take |W | ≥ d|V (G)|/2e, and conjec-

tured a better bound in a slightly incorrect form. The result of this paper is the following

best possible bound suggested by B. Bollobás (we use standard notation – see [1]).

Theorem. Let T be a tree of order n. There is a set S ⊂ V (T ) such that

|S| ≥ 2
⌊
n+ 1

3

⌋
and |Γ(x) ∩ S| is odd for every x ∈ S. This bound is best possible for all n.

Remark. In trees, an induced subgraph with even degrees is exactly the same as an

independent set, since any nonempty subgraph of a tree must contain a vertex of degree

1. Since every tree is bipartite, it is obvious that we can always find an independent set of

size d|T |/2e; this is easily seen to be best possible by considering any path.

Proof. We note first that if the first part of the theorem is true then it is best possible

for all n, as can be seen by considering Pn, the path on n vertices. Now suppose that the
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theorem is false, and let T be a smallest counterexample. Trivially |T | > 2, so diam(T ) ≥ 2.

If diam(T ) = 2 then T is a star, in which case one of V (T ) or V (T ) \ {v}, where v is any

endvertex of T , will do for S. If diam(T ) = 3 then T consists of two stars with their centres

joined by an edge, and is easily seen to satisfy the theorem. Thus we may assume that

diam(T ) ≥ 4.

Let W0 be the set of endvertices of T , W1 the set of endvertices of T \W0 and W2

the set of endvertices of T \ (W0 ∪W1). We write Γi(v) for Γ(v)∩Wi and di(v) for |Γi(v)|,
where i = 0, 1, 2. Note that W2 is non-empty, since diam(T ) ≥ 4. Also, d0(v) > 0 if

v ∈W1 and d1(v) > 0 if v ∈W2.

If S ⊂ V (T ) induces a graph with all degrees odd, then |S| must be even. Thus if we

want to prove that we have chosen S such that |S| ≥ 2b(|T | + 1)/3c, it is in fact enough

to prove that |S| ≥ (2|T | − 2)/3. Let us define

f(n) =
2n− 2

3
.

If T ′ is any tree then we say that S′ ⊂ V (T ′) has odd degrees in T ′ if |Γ(x)∩S′| is odd for

every x in S′; we say that S′ is good in T ′ if S′ has odd degrees in T ′ and |S′| ≥ f(|T ′|).
It is enough to prove that for every tree T ′ there is some S′ ⊂ V (T ′) that is good in T ′.

We shall use the following method repeatedly. We pick V0 ⊂ V (T ) so that T ′ = T \V0

is connected. Then, since T is minimal, we can find some set S′ ⊂ V (T ′) that is good in

T ′. If we can now find S0 ⊂ V (T ) \ S′ such that S = S′ ∪ S0 has odd degrees in T and

|S0| ≥ 2|V0|/3, then S is good in T , since |S| ≥ f(|T ′|) + 2|V0|/3 = f(|T |).

This method is used to prove the next three lemmas. Each lemma limits the structure

of T by eliminating configurations that would enable us to exhibit a subset S ⊂ V (T )

good in T . We successively refine our understanding of the structure of the minimal

counterexample T until we are ready to show that no such T can exist, thus establishing

the theorem.

Lemma 1. If x ∈W2 then d0(x) = 0.

Proof. Suppose x ∈W2 and d0(x) > 0, say v ∈ Γ0(x). Let w be any vertex in Γ1(x).

If d0(w) = 1, say Γ0(w) = {y}, then consider T ′ = T \ {v, w, y}. Since |T ′| < |T |,
and T ′ is connected, we can find S′ ⊂ V (T ′) that is good in T ′. If x ∈ S′ then let
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S = S′ ∪ {v, w}; if x 6∈ S′ then let S = S′ ∪ {w, y}. In both cases, S has odd degrees in T ,

and |S| = |S′|+ 2 ≥ f(|T ′|) + 2 = f(|T |), so S is good in T .

If d0(w) > 1 then pick y, z ∈ Γ0(w). Consider T ′ = T \ {v, y, z}. We can find some

S′ ⊂ V (T ′) that is good in T ′. Then if w ∈ S′ let S = S′ ∪ {y, z}; if w 6∈ S′ and x ∈ S′

then let S = S′ ∪ {v, w}; and if w 6∈ S′ and x 6∈ S′ then let S = S′ ∪ {w, y}. In each case

it is easily seen that S is good in T .

Thus if x ∈W2 we must have d0(x) = 0.

Lemma 2. If x ∈W2 then d1(x) = 1; and if Γ1(x) = {v}, say, then d0(v) = 2.

Proof. Let x be any vertex in W2. We know from Lemma 1 that d0(x) = 0. Suppose

first that d1(x) > 1.

If d0(v) = 1 for every v in Γ1(x) then let V0 = {x} ∪ Γ1(x) ∪ {Γ0(v) : v ∈ Γ1(x)}, so

|V0| = 2d1(x) + 1 ≥ 5. We can find S′ good in T \ V0. Setting S0 = V0 \ {x}, we find that

S = S′ ∪ S0 has odd degrees in T and |S0| = |V0| − 1 > 2|V0|/3, since |V0| ≥ 5, so S is

good in T .

Thus if d1(x) > 1 we cannot have d0(v) = 1 for every v in Γ1(x). Pick two vertices v,

w in Γ1(x) to maximise d0(v) + d0(w).

If d0(v) + d0(w) = 3, say Γ0(v) = {y0} and Γ0(w) = {y1, y2}, then set V0 =

{v, w, y0, y1, y2} and T ′ = T \ V0. We can find S′ good in T ′. If x ∈ S′ then let

S0 = V0 \ {y0}; if x /∈ S′ then let S0 = V0 \ {y1}. In either case, S = S′ ∪ S0 has

odd degrees in T and |S| = |S′|+ 4 ≥ f(|T | − 5) + 4 > f(|T |), so S is good in T .

If d0(v) + d0(w) ≥ 4 then pick y0 ∈ Γ0(v) and y1 ∈ Γ0(w). Let V0 = {v, w} ∪ Γ0(v) ∪
Γ0(w) and T ′ = T \ V0. We can find S′ good in T ′. Let S0 = V0 \ Y , where Y is some

subset of {y1, y2} chosen to ensure that |Γ(v) ∩ (S′ ∪ S0)| and |Γ(w) ∩ (S′ ∪ S0)| are odd.

Then S = S′ ∪ S0 has odd degrees in T , and |V0| ≥ 6, so |S| ≥ f(|T | − |V0|) + |V0| − 2 =

f(|T |) + |V0|/3− 2 ≥ f(|T |). Therefore S is good in T .

We have proved that we must have d1(x) = 1, say Γ1(x) = {v}. Now suppose that

d0(v) 6= 2. Let V0 = {v, x} ∪ Γ0(v) and T ′ = T \ V0; we can find S′ good in T ′. If d0(v)

is odd then take S0 = V0 \ {x} and if d0(v) is even take S0 = V0 \ {x, y}, where y is any

element of Γ0(v). In either case |S0| ≥ 2|V0|/3, and we see that S = S′ ∪ S0 is good in T .

Thus we have shown that Γ1(x) = {v}, for some v, and d0(v) = 2.
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The final lemma, which follows, and the proof of the theorem each proceed by consid-

ering a longest path in T . Let x0, . . . , xm be such a path, where m = diam(T ) ≥ 4. Note

that xi ∈Wi for i = 0, 1, 2. The following lemma limits the possibilities for the neighbours

of x3.

Lemma 3. The vertex x3 satisfies d0(x3) = 0.

Proof. Suppose that d0(x3) > 0, say v ∈ Γ0(x3). We know by Lemma 1 that d0(x2) = 0,

and by Lemma 2 we know that Γ1(x2) = {x1} and Γ0(x1) = {y, z}, say. Let T ′ =

T \{v, y, z}. We can find some S′ good in T ′. If x1 ∈ S′ then let S = S′∪{y, z}; if x1 6∈ S′

and x2 ∈ S′ then x3 ∈ S′, so let S = (S′ \ {x2}) ∪ {v, x1, y}; if x1 6∈ S′ and x2 6∈ S′ then

let S = S′ ∪ {x1, y}. In each case S is good in T .

We are now ready to complete the proof of the theorem. We claim that by deleting

x3, and taking from each resulting component a large set that has odd degrees in that

component (and thus in T ), we can find a set that is good in T . Now T \ {x3} has d(x3)

components, say T1, . . . , Tk. It is enough to find sets Si ⊂ V (Ti) such that Si has odd

degrees in Ti, i = 1, . . . , k, and
∑k

i=1 |Si| ≥ f(|T |), for then S =
⋃k

1 Si is good in T .

Each component of T \ {x3} contains one neighbour of x3. We may assume that T1

contains x4 and T2 contains x2. The remaining components are all stars. Indeed, we

know from Lemma 3 that d0(x3) = 0, thus each remaining Ti contains a vertex from

Γ1(x3) ∪ Γ2(x3). If Ti contains v ∈ Γ1(x3) it is clearly a star; if Ti contains v ∈ Γ2(x3)

then Lemma 2 tells us that it must be a star. It is then trivial to verify that, since Ti is a

star, we can find Si ⊂ V (Ti) having odd degrees in Ti such that |Si| ≥ 2|Ti|/3, for i > 2.

Now we can find S1 good in T1, and by Lemma 2 we have that T2 has all degrees odd, so

setting S2 = V (T2) we have
k∑

i=1

|Si| ≥ |S1|+ 4 +
∑
i>2

|Si|

≥ f(|T1|) + 4 +
2
3

(|T | − |T1| − 5)

> f(|T1|) +
2
3

(|T | − |T1|)

= f(|T |).

Thus if we set S =
⋃k

i=1 Si, then S is good in T . This contradicts the supposition that T

contains no good set, thereby establishing the theorem.
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Let us note that there are many extremal graphs for the theorem. Indeed, let

P1, . . . , Pk be paths, with |Pi| ≡ 1 mod 3. Then the tree T obtained by taking an endvertex

xi in Pi for each i and then identifying x1 . . . xk gives equality in the theorem.
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