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Abstract. We prove that, for integers n ≥ 2 and k ≥ 2, every tree with n vertices

contains an induced subgraph of order at least 2b(n + 2k− 3)/(2k− 1)c with all degrees

congruent to 1 modulo k. This extends a result of Radcliffe and Scott, and answers a

question of Caro, Krasikov and Roditty.
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§1. Introduction

An old result of Gallai (see [3], Problem 5.17) asserts that for every graph G there

is a vertex partition V (G) = V1 ∪ V2 such that the induced subgraphs G[V1] and

G[V2] have all degrees even; it follows immediately that every graph of order n has

an induced subgraph with all degrees even with order at least n/2. Given a graph

G, it is natural to ask for the maximal order f2(G) of an induced subgraph of G

with all degrees odd. It has been conjectured (see [1]) that there is a constant

c > 0 such that every graph G without isolated vertices satisfies f2(G) ≥ c|G|.
Let f2(n) = min{f2(G) : |G| = n and δ(G) ≥ 1}. Caro [1] proved f2(n) ≥ c

√
n,

for n ≥ 2, and Scott [6] proved that f2(n) ≥ n/900 log n.

The conjecture has been proved for some special classes of graph (see [1], [6]).

Caro, Krasikov and Roditty [2] proved a result for trees and conjectured a better

bound. Radcliffe and Scott [4] proved the best possible bound,

f2(T ) ≥ 2

⌊
|T |+ 1

3

⌋
,

for every tree T .

In this paper we consider trees but address the more general problem of deter-

mining fk(T ), the maximal order of an induced subgraph of T with all degrees

congruent to 1 mod k. This problem was raised by Caro, Krasikov and Roditty

[2], who proved that

fk(T ) ≥ 2(|T | − 1)

3k

for every tree T , and conjectured that

fk(T ) ≥ |T |+ 2k − 4

k − 1
.

This conjecture is not correct however. Here we prove the following best possible

bound.
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Theorem 1. For every tree T and every integer k ≥ 2 there is a set S ⊂ V (T )

such that

|S| ≥ 2

⌊
|T |+ 2k − 3

2k − 1

⌋
and |Γ(x) ∩ S| ≡ 1(mod k) for every x ∈ S. This bound is best possible for all

values of |T |.

We remark that, for k = 2, this is the result of Radcliffe and Scott [4] mentioned

above; this theorem therefore generalizes that result. Further results concerning

induced subgraphs mod k can be found in [5].

§2. Proof of Theorem 1

In this section we give a proof of Theorem 1. The result for k = 2 is proved in [4];

we may therefore assume that k ≥ 3.

We begin by showing that the asserted bound is best possible. Let Sa be a star

with a + 1 vertices (i.e. the central vertex has degree a), and let Ca,b be the

graph obtained by taking an Sa−1 and an Sb−1, and joining their centres by an

edge (thus Ca,b is a rather short caterpillar with a + b vertices). It is immediate

to check that, for a, b ≤ k, the graph Ca,b is extremal for the theorem. Larger

extremal examples can be obtained by taking Ca,b (with a, b ≤ k) together with

any number of copies of Ck,k and identifying one endvertex from each graph.

We turn now to the proof that the lower bound holds. Define

f(n) = 2

⌊
n+ 2k − 3

2k − 1

⌋
. (1)

For a tree T , we say that S ⊂ V (T ) has good degrees in T if the subgraph of T

induced by S has all degrees congruent to 1 mod k, and that S is good in T if S

has good degrees in T and |S| ≥ f(|T |).

We use a similar approach to that used in [4]. We suppose that T is a minimal

counterexample to the assertion of Theorem 1; it is readily checked that diam(T ) ≥
4. Let W0 be the set of endvertices of T , let W1 be the set of endvertices of T \W0

and let W2 be the set of endvertices of T \(W0∪W1). For i = 0, 1, 2 and v ∈ V (T ),

let Γi(v) = Γ(v) ∩Wi and let di(v) = |Γi(v)|.
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We begin with two lemmas giving general useful facts about fk and f . The lemmas

which follow tighten our grip on the structure of T until it is squeezed out of

existence.

Lemma 2. For positive integers n and a1, . . . , an, we have

n∑
i=1

f(ai) ≥ f
(
(

n∑
i=1

ai)− n+ 1
)
.

Proof. Straightforward calculation.

Lemma 3. For all a > k we have fk(Sa) ≥ f(|Sa) + k) + 2. For 1 ≤ a ≤ k− 1 we

have fk(Sa) = 2 ≥ f(|Sa|+ k). Also fk(Sk) = 2 = f(|Sk|+ k − 1) = f(2k).

Proof. Follows easily from fk(Sa) = kb(a− 1)/kc+ 2 and (1), since |Sa| = a+ 1.

Lemma 4. Suppose that x ∈ W2 and set a = d0(x), b = d1(x) and c = |{v ∈
Γ1(x) : d0(v) = k}|. Then

b(k − 1) ≤ a+ c.

Moreover, if b(k − 1) = a+ c then d0(v) ≤ k for all v ∈ Γ1(x).

Proof. Suppose that b(k − 1) > a + c. Write Γ0(x) = {v1, v2, . . . , va} and

Γ1(x) = {w1, w2, . . . , wb}. Renumbering the wi if necessary, we may suppose

that w1, w2, . . . , wc have d0(wi) = k. Let Ti be the component of T \ x containing

wi (i = 1, 2, . . . , b) and let T ′ be the ‘large’ portion remaining. Simply by looking

for a good subset S which does not contain x and using Lemmas 2 and 3, we see
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that

fk(T ) ≥ fk(T ′) +

b∑
i=1

fk(Ti)

= fk(T ′) + cfk(Sk) +
b∑

i=c+1

fk(Ti)

≥ f(|T ′|) + cf(|Sk|+ k − 1) +

b∑
i=c+1

f(|Ti|+ k)

≥ f

(
|T ′|+ 2ck +

( b∑
i=c+1

|Ti|
)

+ (bk − c)− b

)
= f(|T | − a− 1 + b(k − 1)− c),

since |T | = |T ′| + c(k + 1) +
∑b

i=c+1 |Ti| + a + 1. Since, by assumption, b(k −
1) − a − c − 1 ≥ 0 we have fk(T ) ≥ f(|T |), a contradiction. (Recall that T was

supposed to be a minimal counterexample to the theorem.)

Furthermore, if we have the equality b(k − 1) = a + c, then it must be that

d0(wi) ≤ k−1 for i = c+1, . . . , b, for otherwise some Ti has fk(Ti) ≥ f(|Ti|+k)+2

(which again gives fk(T ) ≥ f(|T |)).

Lemma 5. If x ∈W2 then d0(x) ≤ k − 1. In fact if y ∈ Γ1(x) then

d0(y) < k ⇒ d0(x) ≤ k − 1

and

d0(y) ≥ k ⇒ d0(x) ≤ k − 2.

Proof. We begin by proving the first half of the assertion. Suppose on the con-

trary that x ∈ W2, y ∈ Γ1(x), d0(x) ≥ k and d0(y) < k. Let A be any set of k

vertices from Γ0(x) and let z be any element of Γ0(y). Set V0 = A ∪ Γ0(y), so

|V0| ≤ 2k − 1. We can find a good subset S′ in T ′ = T \ V0; let

S =

{
S′ ∪A x ∈ S′
S′ ∪ {z, y} x 6∈ S′.

Note that if x 6∈ S′ then also y 6∈ S′. Clearly S has good degrees in T . Furthermore,

we have

|S| ≥ |S′|+ 2 ≥ f(|T ′|) + 2 = f(|T ′|+ 2k − 1) ≥ f(|T |).
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Thus S is good in T , which is a contradiction.

For the second half of the assertion, let us assume that x ∈ W2, y ∈ Γ1(x),

d0(x) > k − 2 and d0(y) ≥ k. We show that this leads to a contradiction.

Let A be any set of (k− 1) vertices from Γ0(x), let B be any set of k vertices from

Γ0(y), and let z be any element of B. Let V0 = A ∪ B, so |V0| = 2k − 1, and let

T ′ = T \ V0. If S′ is a good subset of T ′ then S is a good subset of T , where

S =

S′ ∪B y ∈ S′
S′ ∪A ∪B ∪ {y} y 6∈ S′, x ∈ S′
S′ ∪ {y, z} x, y 6∈ S′

.

This is a contradiction, and we are done.

Lemma 6. If x ∈W2 then d0(x) = k− 2 and d1(x) = 1. Furthermore, d0(y) = k,

where y is the unique element of Γ1(x).

Proof. Using the notation of Lemma 4, set a = d0(x), b = d1(x) and c = |{v ∈
Γ1(x) : d0(v) = k}|. It follows from Lemma 5 that a ≤ k − 1, and from Lemma 4

we have b(k− 1) ≤ a+ c. If a < k− 2 this inequality has no solutions (since b > 0

and 0 ≤ c ≤ b). If a = k − 2 then we get

(b− 1)(k − 1) ≤ c− 1, (2)

while if a = k − 1 then

(b− 1)(k − 1) ≤ c. (3)

The only solution of (2) is b = c = 1, which is what was claimed. In (3), however,

for a = k − 1, there are more possibilities. Let us first consider the general case

when b = 1, and so Γ1(x) = {y}, say. Suppose that d0(y) 6= k, and so c = 0. Thus

we have equality in (3), and it follows from Lemma 4 that d0(y) ≤ k. Therefore

we have b = 1, d0(x) = k − 1 and d0(y) ≤ k − 1. Set V0 = Γ0(x) ∪ Γ0(y) ∪ {y}.
Now |V0| ≤ 2k− 1 and by the minimality of T we can find a good subset S′ in the

tree T ′ = T \ V0. Let z be any element of Γ0(y) and set

S =

{
S′ ∪ y ∪ Γ0(x) x ∈ S′
S′ ∪ {y, z} otherwise.
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S is good in T , which is a contradiction. Therefore we must have d0(y) = k, as

asserted.

If b 6= 1, the only possibility is the special case a = b = c = 2 and k = 3. Let

y1 and y2 be the two elements of Γ1(x), pick z1 and z2 with zi ∈ Γ0(yi) and pick

w ∈ Γ0(x). Set V0 = Γ0(x) ∪ {y1, y2} ∪ Γ0(y1) ∪ Γ0(y2), so |V0| = 10. There is

some set S′ ⊂ T \ V0 which is good in T \ V0. Set

S =

{
S′ ∪ (V0 \ {w}) x ∈ S′
S′ ∪ {y1, z1, y2, z2} x 6∈ S′.

Then S has good degrees in T and |S| ≥ |S′|+ 4 ≥ f(|T | − 10) + 4 = f(|T |). Thus

S is good in T , which is a contradiction.

So far we have proved that if a = k − 1 then b = 1 and d0(y) = k; but this

contradicts Lemma 5. The only remaining possibility is that asserted in the lemma.

We are now ready to finish the proof of Theorem 1. Lemma 6 has given us a

great deal of information about the neighbourhood of any x ∈ W2. Now let

x0x1x2 . . . xm be a path in T of maximal length. Since diam(T ) ≥ 4 we know that

m ≥ 4 and xi ∈Wi, for i = 0, 1, 2.

We split the proof into cases according to whether d0(x3) = 0 or not.

If d0(x3) = 0 then we shall find a large good subset in each component of T \ x3.

These components consist of: some number, possibly zero, of stars (coming from

elements of Γ1(x3)); at least one copy of Ck−1,k+1, one for each element of Γ2(x3);

and the rest of the tree, say T ′. Let S′ be a good subset of T ′. From each star T ′′

we can pick a good subset of size at least 2|T ′′|/(2k− 1) and from each caterpillar

we can pick a good subset of size k + 2. Because of the form of f we simply need

to ensure that the good subsets we find have total size at least 2|T \ T ′|/(2k− 1).

This is clearly achieved in the stars, and more than achieved in the caterpillars,

with enough spare to account to x3. Thus the union of S′ with these smaller good

subsets is a good subset of T .
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If d0(x3) > 0 then we use a slightly different approach. Let v be an element of

Γ0(x3) and consider V0 = Γ0(x1) ∪ Γ0(x2) ∪ {v}. Note that |V0| = 2k − 1. Let S′

be a good subset of T ′ = T \ V0 and let

S =

S′ ∪ Γ0(x1) x1, x2 ∈ S′
S′ 4 {v, x0, x1, x2} x2 ∈ S′, x1 6∈ S′
S′ ∪ {x0, x1} x1, x2 6∈ S′

.

Then S has good degrees in T and

|S| ≥ |S′|+ 2 ≥ f(|T ′|) + 2|V0|/(2k − 1) = f(|T |).

Therefore S is good in T , which contradicts the claim that T is a counterexample

to the theorem. We have therefore proved Theorem 1.

The problem of determining for a tree T the largest S ⊂ V (T ) such that T [S] has

all degrees congruent to 0 modulo k is equivalent to the problem of determining

the largest independent set. It would, however, be interesting to give bounds on

the size of the largest S ⊂ V (T ) such that all vertices in S[T ] have either degree

1 or degree congruent to 0 modulo k.

In general, for graphs with minimal degree sufficiently large, it would also make

sense to ask for bounds on the size of the largest induced subgraph with all degrees

congruent to i modulo k, where 0 ≤ i ≤ k.
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