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Abstract

Turán’s Theorem says that an extremal Kr+1-free graph is r-partite. The Stability
Theorem of Erdős and Simonovits shows that if a Kr+1-free graph with n vertices has
close to the maximal tr(n) edges, then it is close to being r-partite. In this paper we
determine exactly the Kr+1-free graphs with at least m edges that are farthest from
being r-partite, for any m ≥ tr(n) − δrn2. This extends work by Erdős, Győri and
Simonovits, and proves a conjecture of Balogh, Clemen, Lavrov, Lidický and Pfender.

1 Introduction

Turán’s classical theorem [25] from 1941 says that a Kr+1-free n-vertex graph maximizing
the number of edges (an extremal graph) is r-partite; the r = 2 case was established earlier by
Mantel [17], in 1907. The only extremal n-vertex graph is the Turán graph Tr(n), the com-
plete r-partite graph with parts of size bn/rc or dn/re, which has tr(n) =

(
1− 1

r
+ o(1)

) (
n
2

)
edges. Turán’s Theorem lay the foundations of extremal graph theory, and has been highly
influential in the field ever since.

One of the early discoveries related to Turán’s Theorem was that if a Kr+1-free graph is
“close” to extremal in the number of edges, then it must be “close” to the Turán graph in
its structure. Indeed, the famous Stability Theorem of Erdős and Simonovits [9, 22] from
the 1960s implies the following: if G is a Kr+1-free n-vertex graph with tr(n)− o(n2) edges,
then it can be made into the Turán graph Tr(n) by changing only o(n2) edges. It is of little
surprise that this powerful structural description of near-extremal graphs has seen many
important applications and consequences over the past decades (e.g. [1, 4, 19, 24]).

An alternative form of stability for Turán’s Theorem is to look at the distance from
being r-partite (rather than the distance to a specific r-partite graph, namely the Turán
graph). Thus we are looking for a large r-partite subgraph, which is what is wanted for most
applications. The two problems are equivalent if we are only looking for a o(n2) bound on
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the distance. However, for graphs that are closer to extremal, we can obtain more structural
information by measuring the distance from being r-partite. For example, if we move a
constant number of vertices from a smallest vertex class to a largest vertex class of Tr(n)
then the resulting graph has tr(n) − O(1) edges but distance Ω(n) from the Turán graph.
In contrast, a Kr+1-free graph on n vertices with at least tr(n)− crn edges must already be
r-partite. This phenomenon was first studied by Simonovits [20] and later by many other
authors [7, 14, 16, 2, 26]. A tight result was proved by Brouwer [7]:

Theorem 1.1 ([7]). Let r ≥ 2 and n ≥ 2r + 1 be integers. Every Kr+1-free graph with at
least tr(n)− bn/rc+ 2 edges is r-partite.

Let fr(n, t) be the smallest number such that any Kr+1-free graph G with at least tr(n)−t
edges can be made r-partite by deleting at most fr(n, t) edges. For fixed r, Theorem 1.1
tells us that fr(n, t) = 0 for t ≤ n/r + O(1), while the Stability Theorem tells us that
fr(n, t) = o(n2) if t = o(n2). But what happens in between? Better estimates of this
function have only been obtained fairly recently. In a short and elegant paper, Füredi [13]
proved that fr(n, t) ≤ t. Later, Roberts and Scott [18] showed that fr(n, t) = O(t3/2/n) when
t ≤ δn2, and that this bound is tight up to a constant factor (in fact, they proved much more
general results for H-free graphs, where H is edge-critical). Very recently, Balogh, Clemen,
Lavrov, Lidický and Pfender [5] determined fr(n, t) asymptotically, and made a conjecture
on its exact value. The main aim of this paper is to prove their conjecture.

When r = 2, the exact stability problem was already solved by Erdős, Győri and Si-
monovits [12]: they proved that for t ≤ n2/20 the worst triangle-free graph, defining f2(n, t),
is a blowup of C5. One can generalize this construction to obtain a family of Kr+1-free
graphs with many edges as follows. Consider a complete (r − 1)-partite graph with parts
Z,Z3, . . . , Zr, and insert a blowup of C5 on Z with independent sets X, Y1, Y2, Z1, Z2 as in
Figure 1 (so Z = X ∪ Y1 ∪ Y2 ∪ Z1 ∪ Z2). We will call this a pentagonal Turán graph
if it further satisfies |X| ≤ |Y1| = |Y2| ≤ |Zi| for every i ∈ [r], and each of the sets

X ∪ Y1 ∪ Z1, X ∪ Y2 ∪ Z2, Z3, . . . , Zr has size
⌊
n+|X|
r

⌋
or
⌈
n+|X|
r

⌉
.

Balogh, Clemen, Lavrov, Lidický and Pfender [5] conjectured that fr(n, t) is witnessed by
a pentagonal Turán graph if t is small enough. Our main result is a proof of their conjecture.
For a graph G and integer r ≥ 2, let Dr(G) be the minimum number of edges that must be
removed from G to make it r-partite. We prove the following theorem.

Theorem 1.2. For every r ≥ 2 there is a δr > 0 such that the following holds: If G is
a Kr+1-free graph on n vertices with e(G) ≥ tr(n) − δrn2 edges, then there is a pentagonal
Turán graph G∗ on n vertices with e(G∗) ≥ e(G) and Dr(G

∗) ≥ Dr(G).

The rest of the paper is organized as follows. In Section 2, we present a brief overview of
the proof, and collect some necessary tools. We need a special argument when the number
of edges in G is very close to tr(n), and the short proof of this case is presented in Section 3.
Section 4 contains the general argument of the proof of Theorem 1.2. We finish the paper
with some discussion and open problems in Section 5.
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|Z4| = x+ y + z

|Z3| = x+ y + z

|X| = x |Y2| = y |Z2| = z

|Y1| = y |Z1| = z

Z

Figure 1: A pentagonal Turán graph with r = 4

We follow standard notation throughout. G is always a simple graph with vertex set
V (G) and edge set E(G). The number of edges is denoted by e(G) = |E(G)|. We write
ΓG(v) ⊆ V (G) to denote the neighborhood of a vertex v ∈ V (G), and dG(v) = |ΓG(v)| to
denote its degree. When the graph in question is clear, we may omit the subscript. For a
set of vertices S ⊆ V (G), we write G − S for the subgraph induced on V (G) \ S. When
S = {v}, we simply write G− v.

2 Overview and tools

Given an r-partition of the vertices of a graph G, we say that an edge connecting different
parts is crossing, and an edge connecting vertices in the same part is internal. So Dr(G) is
the minimum number of internal edges in an r-partition of the vertices of G.

In their proof of the triangle-free case of Theorem 1.2, Erdős, Győri and Simonovits
[12] start with a close to optimal bipartition of G, and construct a pentagonal Turán graph
(in this case, a blowup of C5) with the same number of internal edges, but more crossing
edges. An important idea in their proof is to find a large matching of internal edges: as G
is triangle-free, this can be used to show that many crossing edges are missing from G.

Our proof for the general case follows a similar spirit, although we need to work harder
to find the necessary missing edges when Kr+1 is forbidden instead of K3.

We will need several estimates comparing Turán numbers tr(n) for various r and n. Recall
that tr(n) is the number of edges in the Turán graph Tr(n), which is the complete r-partite
graph on an r-equipartitioned vertex set, i.e., when each part has size bn/rc or dn/re. It
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is easy to see that tr(n) ≥ tr(n − 1) + r−1
r

(n − 1), by adding a vertex to a smallest part of
Tr(n − 1). Similarly, tr(n − 1) ≥ tr(n) − r−1

r
n can be obtained by deleting a vertex from a

largest part of Tr(n).
The next lemma follows from these inequalities by iterating them, and by noting that

tr(n) is the unique integer between tr(n− 1) + r−1
r

(n− 1) and tr(n− 1) + r−1
r
n.

Lemma 2.1. Let r ≥ 2 and n be integers. Then:

1. tr(n) = tr(n− 1) +
⌈
r−1
r

(n− 1)
⌉

= tr(n− 1) +
⌊
r−1
r
n
⌋
,

2. tr(n
′) + r−1

r
n(n− n′) ≥ tr(n) ≥ tr(n

′) + r−1
r
n′(n− n′), for every n′ ≤ n,

3. r−1
r

(
n+1

2

)
≥ tr(n) ≥ r−1

r

(
n
2

)
.

To find a large matching among the internal edges, we will use the following lemma,
which follows easily from the Tutte-Berge formula (and is a special case of a theorem of
Chvátal and Hanson [8]). We include a sketch of the argument for completeness.

Lemma 2.2. Let G be a graph on n vertices with maximum degree ∆ and let k ≥ 1 be an
integer. If e(G) > (k − 1)∆ and ∆ ≥ 2k − 1, then G contains a matching of size k.

Proof sketch. If G has no k-matching, then it contains a set S such that G− S has at least
n− 2(k− 1) + |S| odd components (note that perforce |S| ≤ k− 1). The number of edges in
this setup is maximized when G− S is the union of n− 2(k − 1) + |S| − 1 singletons and a
(2(k−1−|S|)+1)-clique. Then G−S induces (k−1−|S|)(2(k−1−|S|)+1) ≤ (k−1−|S|)∆
edges, and S touches at most |S|∆ edges, so G has at most (k − 1)∆ edges, contradicting
our assumption.

For an integer vector n = (n1, . . . , nr) ∈ Nr, let Kn be the complete r-partite graph with
parts of size n1, . . . , nr.

The next lemma will be our main tool for bounding the number of missing crossing edges
using the Kr+1-freeness of our graph. We will generally apply it to the neighborhood of
a vertex. This is a folklore result (see, for example, [6]), but we include a short proof for
completeness.

Lemma 2.3. Let r ≥ 2 and let n = (n1, . . . , nr) ∈ Nr be such that n1 ≤ n2 ≤ · · · ≤ nr.
Then any Kr-free subgraph of Kn contains at most e (Kn)− n1n2 edges.

Proof. There are exactly
∏r

i=1 ni copies of Kr in Kn. Each edge is contained in at most∏r
i=3 ni of these copies, so a Kr-free subgraph must have at least n1n2 missing edges.

We will also make use of the following classical result saying that every Kr+1-free graph
with relatively large minimum degree is r-partite.

Theorem 2.4 (Andrásfai-Erdős-Sós [3]). Let r ≥ 2 and let G be a Kr+1-free graph n vertices.
If the minimum degree δ of G is strictly greater than 3r−4

3r−1
n, then G is r-partite.
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A blowup H = G[n1, . . . , nk] of a k-vertex graph G is defined on vertex set
⋃
i∈[k] Wi with

|Wi| = ni, where the Wi are disjoint, and w ∈ Wi and w′ ∈ Wj are adjacent in H if and
only if vi and vj are adjacent in G. Note that every pentagonal Turán graph is a blowup
Lr[x, y, y, n1, . . . , nr], where Lr is the graph whose first five vertices induce the pentagon
v1v2v5v4v3, and all other edges are present. Indeed, let us call such a blowup a complete
pentagon-r-partite (or CPR) graph if x ≤ y ≤ ni for every i ∈ [r]. A pentagonal Turán
graph is then a CPR graph such that the numbers x + y + n1, x + y + n2, n3, . . . , nr do not
differ by more than 1 (i.e., each of them is equal to

⌊
n+x
r

⌋
or
⌈
n+x
r

⌉
).

The following statement tells us how to make blowups r-partite. We sketch the proof for
completeness.

Theorem 2.5 (Erdős-Győri-Simonovits [12]). Let H = G[n1, . . . , nk]. Then one can delete
Dr(H) edges from H to obtain G′[n1, . . . , nk] for some r-partite subgraph G′ of G.

Proof sketch. Take an r-partite subgraph of H obtained by deleting Dr(H) edges from H,
and “symmetrize” it, i.e., for i = 1, . . . , k, carry out the following: Pick some v ∈ Wi with
d(v) largest. Then for each w ∈ Wi\v, change the edges touching w so that its neighborhood
Γ(w) becomes the same as Γ(v).

Through this process, the graph remains an r-partite subgraph of H, and the number
of edges in it does not decrease (thus stays equal to e(H) − Dr(H)). At the end, we have
Γ(v) = Γ(w) whenever v and w belong to the same blowup part Wi, so the resulting graph
is the blowup of some G′ ⊆ G itself.

Deleting any edge of Lr makes it r-partite, so we get the following.

Corollary 2.6. If G = Lr[x, y, y, n1, . . . , nr] is a CPR graph with x ≤ y ≤ ni for every
i ∈ [r], then Dr(G) = xy.

This means that an optimal r-partition of a CPR graph (minimizing the number of
internal edges) can be obtained by putting Y1 ∪ Z1 in the first part, X ∪ Y2 ∪ Z2 in the
second, and Zi in the ith part for every i ≥ 3. Let us call this the standard r-partition of
such a graph.

As a benchmark, it will be helpful to understand roughly how many internal edges there
are in the conjectured extremal graphs, so that we can cut short some edge cases in our
analysis.

Lemma 2.7. For any integers r ≥ 2, n and 0 ≤ s ≤ n
r4

, there is a CPR graph G with n

vertices and at least tr(n)− sn
r

(1 + 1/r3) edges such that Dr(G) ≥
√
s3n
r2

.

Proof. If s = 0, then G = Tr(n) satisfies the conditions, so we may assume that s ≥ 1.

Let t =
⌈√

sn
r2

⌉
. As

√
s ≤

√
n
r2

, we have s ≤
√
sn
r2
≤ t ≤ 2

√
sn
r2
≤ 2n

r4
. We claim that

the graph G = Lr[s, t, t, n1, . . . , nr] works if each of the numbers n1 + t + ds/2e , n2 + t +
bs/2c , n3, n4, . . . , nr is equal to dn/re or bn/rc, in a non-increasing order. This graph is
well-defined because, using s ≤ t ≤ 2n

r4
and 2 ≤ r,

t+ ds/2e ≤ t+ s ≤ 2t ≤ 4n

r4
≤ n

2r
.
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Moreover, since b2xc ≥ 2bxc for any x > 0, this shows that s ≤ t ≤ ni for every i ∈ [r], so

by Corollary 2.6, Dr(G) = st ≥
√
s3n
r2

.
To count the edges in G, let us split X into two sets X1 and X2 of size ds/2e and bs/2c,

respectively, and note that (X1 ∪ Y1 ∪ Z1, X2 ∪ Y2 ∪ Z2, Z3, Z4, . . . , Zr) is an r-equipartition
of the vertex set with exactly st internal edges. There are tr(n) potential crossing edges, but
|X1|(|X2|+ |Z2|) + |X2|(|X1|+ |Z1|)− |X1||X2|+ |Y1||Y2| of them are missing.

Here |Y1||Y2| = t2 =
⌈√

sn
r2

⌉2

≤ sn
r4

+ 2t − 1 because (dxe − 1)2 ≤ x2, and therefore

dxe2 ≤ x2 + 2 dxe − 1 for every x ≥ 1. Also, |X1||X2| = bs/2c ds/2e = bs2/4c. Finally,
|X1| + |Z1| and |X2| + |Z2| are both at most dn/re − t ≤ n

r
+ 1 − t, so we get |X1|(|X2| +

|Z2|) + |X2|(|X1|+ |Z1|) ≤ s(n
r

+ 1− t).
In total, this gives at least

st+tr(n)−s
(n
r

+ 1− t
)

+

⌊
s2

4

⌋
−
(sn
r4

+ 2t− 1
)

= tr(n)− sn
r
− sn
r4

+2st−2t+

⌊
s2

4

⌋
−s+1

edges in G. We can see that this is at least tr(n)− sn
r

(1 + 1/r3) using the fact that 2st ≥ 2t
and bs2/4c+ 1 ≥ s hold for every integer s ≥ 1.

3 Very dense graphs

Theorem 1.1 says that every Kr+1-free graph G with very close to tr(n) edges is r-partite.
The next lemma shows that G is at most one vertex away from being r-partite, even if we
allow slightly fewer edges.

Lemma 3.1. Let r ≥ 2, and suppose G is a Kr+1-free graph on n ≥ 9r4 vertices with at
least tr(n)− n

r
(1 + 1/r3) edges. Then there is a vertex v ∈ V (G) such that G− v is r-partite.

Proof. If the minimum degree of G is greater than 3r−4
3r−1

n, then by Theorem 2.4, G itself is

r-partite. Otherwise, there is a vertex v of degree at most 3r−4
3r−1

n, and hence G− v has

e(G− v) ≥ tr(n)− n

r
(1 + 1/r3)− 3r − 4

3r − 1
n

≥ tr(n− 1) +
r − 1

r
n− r − 1

r
− n− 1

r
− 1

r
− n

r4
− 3r − 4

3r − 1
n

= tr(n− 1)− n− 1

r
+

1

r(3r − 1)
n− n

r4
− 1

≥ tr(n− 1)− n− 1

r
+

n

3r4
− 1

≥ tr(n− 1)− n− 1

r
+ 2

edges, where we used tr(n) ≥ tr(n − 1) + r−1
r

(n − 1) from Lemma 2.1 in the second line,
3r2 ≤ 3r4/4 in the fourth, and n ≥ 9r4 in the fifth. But then G − v is r-partite by
Theorem 1.1.
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This structural lemma allows us to establish our main result when the number of edges
is very close to extremal.

Theorem 3.2. Let r ≥ 2 and n ≥ 28r4, and suppose G is a Kr+1-free graph with n vertices
and at least tr(n) − n

r
(1 + 1/r3) edges. Then there is a CPR graph G∗ such that Dr(G

∗) ≥
Dr(G) and e(G∗) ≥ e(G).

Proof. If G is r-partite, then we can just take G∗ = Tr(n), so let us assume that G is
not r-partite. By Lemma 3.1, there is a vertex v such that G − v is r-partite, say with
parts U1, . . . , Ur of size n1, . . . , nr. Let ai be the number of neighbors of v in Ui. We
may assume that a1 ≤ · · · ≤ ar. Then clearly, 1 ≤ Dr(G) ≤ a1. We claim that G∗ =
Lr[1, a1, a1, n1 − a1, n2 − a1, n3, n4 . . . , nr] works.

To show this, note that G has

e(G) ≤
∑
i<j

ninj − a1a2 +
∑
i∈[r]

ai (1)

edges. This is because there are
∑

i<j ninj potential edges in the r-partite graph induced by
U = U1 ∪ · · · ∪ Ur, but the neighborhood of v is Kr-free, so by Lemma 2.3, at least a1a2 of
these edges are missing. The number of edges in G not induced by U is precisely

∑
i∈[r] ai.

On the other hand,

e(G∗) =
∑
i<j

ninj − a2
1 + 2a1 +

r∑
i=3

ni ≥
∑
i<j

ninj − a2
1 + a1 − a2 +

∑
i∈[r]

ai.

As a1a2 ≥ a2
1 − a1 + a2 for any positive integers a2 ≥ a1, we get e(G∗) ≥ e(G).

To conclude the argument, it is enough to prove that ni ≥ 2a1 for every i ∈ [r]. Indeed,
this will establish that G∗ is a CPR graph, and, using Corollary 2.6, imply that Dr(G

∗) = a1.
We can show this through a fairly straightforward calculation.

As the number of edges in an r-partite graph is maximized by the Turán graph, we have∑
i<j ninj ≤ tr(n). Combining this with (1), we get e(G) ≤ tr(n)−a1a2 +n. But we assumed

that e(G) > tr(n)− n, so a1 ≤
√

2n.
On the other hand, suppose that ni′ ≤ 3

√
n for some i′ ∈ [r]. Let n = (n1, . . . , nr) and

n′ = (n1, . . . , ni′−1, ni′+1, . . . , nr). Once again, the maximality of Turán graphs gives∑
i<j

ninj = e (Kn) ≤ e (Kn′) + ni′n ≤ tr−1(n− ni′) + ni′n ≤ tr−1(n) + ni′n.

We can therefore further bound (1) as

e(G) ≤ tr−1(n) + 3n3/2 + n ≤ r − 2

r − 1
· n

2

2
+ 4n3/2 ≤ r − 1

r
· n

2

2
− n2

2r2
+
n2

4r2
≤ tr(n)− n,

using n ≥ 28r4 and r−1
r
· n2

2
+n ≥ tr(n) ≥ r−1

r
· n2

2
−n from Lemma 2.1. But this contradicts

our assumption on e(G), so indeed, ni ≥ 3
√
n ≥ 2a1 for every i ∈ [r].
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4 Proof of Theorem 1.2

It will be more convenient for us to prove the following, slightly weaker analog of Theorem 1.2.

Theorem 4.1. For every r ≥ 2 there is a δr > 0 such that the following holds: If G is a
Kr+1-free graph on n vertices with e(G) ≥ tr(n)− δrn2 edges, then there is a CPR graph G∗

on n vertices with e(G∗) ≥ e(G) and Dr(G
∗) ≥ Dr(G).

This statement easily implies the full theorem:

Proof of Theorem 1.2. Theorem 4.1 shows the existence of a CPR graph G∗, such that
e(G∗) ≥ e(G) and Dr(G

∗) ≥ Dr(G). Let us choose such a G∗ so that e(G∗) is maximum.
We claim that this G∗ is in fact a pentagonal Turán graph.

We know that G∗ = Lr[x, y, y, n1, . . . , nr] such that x ≤ y ≤ ni for every i ∈ [r].
Note that e(G∗) ≤ tr(n) − y2 − xn1 + xy ≤ tr(n) − y2, so if δr < r−10, then y ≤ n

4r
.

To show that G∗ is a pentagonal Turán graph, we just need to check that the numbers
x+ y+n1, x+ y+n2, n3, . . . , nr do not differ by more than 1. Suppose that the i-th of these
quantities is the largest among them, and the j-th is the smallest. If their difference was
at least 2, then the graph G̃ = Lr[x, y, y, n1, . . . , ni − 1, . . . , nj + 1, . . . , nr] would have more

edges than G∗. Also, x + y + ni ≥ n
r

and x ≤ y ≤ n
4r

, so G̃ is a CPR graph with Dr(G̃) =
xy = Dr(G

∗). This contradicts the maximality of G∗ and establishes the theorem.

Our proof of Theorem 4.1 divides into two main parts: defining a CPR graph G∗ based
on our G, and comparing the number of edges in G and G∗. In the first part of the proof, we
find an appropriate r-partition of G, with a large enough matching of internal edges, and use
structural considerations to construct a G∗ that has at least as many internal edges in its
standard r-partition as G. Then in the second part, we use the Kr+1-freeness of G to prove
that it misses many of its crossing edges, and ultimately show that G∗ has more crossing
edges in its standard r-partition.

4.1 The candidate CPR graph G∗

Proof of Theorem 4.1. We will start with defining an r-partition on G.
Let δr = r−60, and suppose our Kr+1-free graph G = (V,E) has tr(n) − δn2 edges for

some δ ∈ (0, r−60). We may assume that δn2 ≥ 1, and hence n ≥ δ−1/2 ≥ r20. Now if
δn2 ≤ n

r
(1 + 1/r3), then we can apply Theorem 3.2, noting that n ≥ r20 ≥ 28r4, to obtain

the desired G∗. So we may also assume that δn2 > n
r
(1 + 1/r3), and in particular, n ≥ 1

δr
.

We first show that G contains a large induced subgraph with high minimum degree.

Proposition 4.2. There is a vertex subset S ⊆ V with |S| ≤ 2δr10n such that for all
v ∈ V \ S,

dG−S(v) ≥ n
(
r−1
r
− r−10

)
.
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Proof. Let us iteratively remove vertices of degree less than n( r−1
r
− r−10). If this procedure

stops with at most 2δr10n removals, then we are done by choosing S to be the set of removed
vertices. So suppose otherwise, and let B be the set of the first d2δr10ne vertices deleted.
Then the number of edges in the graph J = G−B can be bounded by

e(J) ≥ e(G)− n
(
r−1
r
− r−10

)
|B| = tr(n)− δn2 − n

(
r−1
r
− r−10

)
|B|.

By Lemma 2.1, we have tr(n) ≥ tr(n− |B|) + r−1
r

(n− |B|)|B|, and hence

e(J) ≥ tr(|J |)− δn2 + r−10n|B| − r−1
r
|B|2.

Note that |B| ≥ 2 (as 2δr10n ≥ 2r9 > 1), so 2δr10n ≤ |B| ≤ 4δr10n. Using 1 > δr60 > 16δr20,
this yields

r−10n|B| ≥ 2δn2 > δn2 + 16δ2r20n2 ≥ δn2 + |B|2.

But then e(J) > tr(|J |), contradicting the fact that J is Kr+1-free.

Theorem 2.4 implies that G − S is r-partite. Let U1 ∪ · · · ∪ Ur be an r-partition of
G − S. By the minimum degree condition of G − S, every vertex x ∈ Ui has at least
n( r−1

r
− r−10) neighbors in G− S − Ui, so |Ui| ≤ n(1

r
+ r−10)− |S| for each i. On the other

hand, |Ui| ≥ n− |S| −
∑

j 6=i |Uj|, so we get that for every i,

|Ui| ≥ n
(

1
r
− (r − 1)r−10

)
. (2)

This also means that the neighborhood of each vertex in Ui misses at most r−9n vertices in⋃
j 6=i Uj and so the number of crossing edges missing between the Ui is at most r−9n2.

Now let us extend this partition into an r-partition V = V1 ∪ · · · ∪Vr of the entire vertex
set of G that maximizes the number of crossing edges, assuming Ui ⊆ Vi. In particular, each
vertex of S has at most as many neighbors in its own part as in any other part, i.e., for
s ∈ S ∩ Vi,

|Γ(s) ∩ Vi| = min
j∈[r]
|Γ(s) ∩ Vj|. (3)

Let us define ∆ to be the maximum internal degree of G in this partition, i.e.,

∆ = max
i∈[r]

max
v∈Vi
|Γ(v) ∩ Vi|

Claim 4.3. We may assume that ∆ is the internal degree of some vertex u ∈ S, and that

6|S| ≤ ∆ ≤ 2r−4.5n.

Proof. Note that all internal edges are incident with S and so Dr(G) ≤ |S|∆. If ∆ is smaller
than 6|S|, then Dr(G) ≤ 6|S|2 ≤ 24δ2r20n2. We claim that there is a CPR graph G∗ with at
least tr(n)− δn2 edges such that Dr(G

∗) is larger than this. Indeed, apply Lemma 2.7 with

s =
⌊

δrn
1+1/r3

⌋
to obtain the graph G∗ with at least tr(n) − δn2 edges and Dr(G

∗) ≥
√
s3n
r2

.

9



Our previous assumption that δn2 > n
r
(1 + 1/r3) implies that s ≥ 1, and therefore s ≥ δrn

4
.

This means that

Dr(G
∗) ≥ δ3/2r3/2n2

8r2
>
δ2r29n2

8
> 24δ2r20n2 ≥ Dr(G),

as required (we used 1 >
√
δr30 and r ≥ 2).

So we may assume that ∆ ≥ 6|S|. In particular, as the internal degree of each vertex in
V \ S is at most |S|, a vertex of maximum internal degree ∆ must lie in S. Let u be any
such vertex.

Now we see from (3) that |Γ(u) ∩ Ui| ≥ ∆ − |S| ≥ 5∆
6

for every i ∈ [r]. Since Γ(u) is

Kr-free, Lemma 2.3 tells us that there are at least
(

5∆
6

)2 ≥ ∆2/2 crossing edges missing
between the Ui. On the other hand, we have seen that there are at most r−9n2 such edges
missing, so ∆ ≤ 2r−4.5n.

Let u ∈ S be the vertex from Claim 4.3. By (3), it has at least ∆ neighbors in each Vi.
For each i ∈ [r], fix a set Pi ⊆ Γ(u) ∩ Vi with |Pi| = ∆.

We now come to finding a suitable matching consisting of internal edges. Let H =⋃
i∈[r] G[Vi] be the subgraph of G containing only the internal edges. Then H has at most

∆|S| edges and maximum degree ∆. Let k =
⌈
e(H)

∆

⌉
and note that k ≤ |S|, so ∆ ≥ 6|S| ≥ 2k.

Therefore, by Lemma 2.2, we can find a matching M of size k in H.
For each i ∈ [r], let Mi = M [Vi] be the set of matching edges in Vi. Further split each

Mi into three sets Mi = Ai ∪Bi ∪ Ci according to the matching pairs’ interaction with Pi:

Ai = {uv ∈Mi : u, v /∈ Pi} ,
Bi = {uv ∈Mi : u ∈ Pi, v /∈ Pi} ,
Ci = {uv ∈Mi : u, v ∈ Pi} .

Then define ai = |Ai|, bi = |Bi| and ci = |Ci|, and set a =
∑

i∈[r] ai, b =
∑

i∈[r] bi, and

c =
∑

i∈[r] ci (so we have k = a + b + c). Note that if V A
i , V

B
i , V

C
i and V M

i denote the

vertex sets of the matchings Ai, Bi, Ci and Mi respectively, then |V A
i | = 2ai, |V B

i | = 2bi and
|V C
i | = 2ci. We denote the unions over i ∈ [r] by V A, V B, V C and V M , so |V M | = 2k (see

Figure 2).

Finally, we set Ri = Vi \ (Pi ∪ V M
i ) and κi = |Ri|. With this notation at hand, we note

that |Vi| = κi + ∆ + 2ai + bi for each i ∈ [r]. To bound κi from below, recall that Ui ⊆ Vi is
an independent set, so at most k ≤ |S| of its vertices are covered by M . So by (2), δ < r−60,
Proposition 4.2 and Claim 4.3, we have

κi ≥ |Ui| − |S| −∆ ≥ n

(
1

r
− (r − 1)r−10

)
− 2δr10n− 2r−4.5n

≥ n
(
r−1 − r−9 − 2r−50 − 2r−4.5

)
≥ r−4.5n

(
r3.5 − 3

)
≥ 8r−4.5n ≥ 4∆.
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RQ = P ∪ V B
V A

V M

V1R1P1

|Ri| = κi|Pi| = ∆ |Vi| = κi + ∆ + 2ai + bi

Figure 2: The structure of G

We may assume without loss of generality that κ1 ≤ κ2 ≤ · · · ≤ κr. Together with Claim 4.3,
we get the following relationship between our quantities, which we will use throughout the
rest of the proof:

κr ≥ · · · ≥ κ2 ≥ κ1 ≥ 4∆ ≥ 24k. (4)

We are now ready to introduce our candidate CPR graph that will satisfy Theorem 4.1.
Let G∗ = Lr[k,∆,∆, n1, . . . , nr] be the graph on vertex set X ∪ Y1 ∪ Y2 ∪ Z1 ∪ · · · ∪ Zr as
defined in the introduction, where |X| = k, |Y1| = |Y2| = ∆, |Zj| = nj = κj + ∆ + 2aj + bj
for j ≥ 3, and

|Z1| = n1 = κ1 + a1 − c1

|Z2| = n2 = κ2 + a1 + b1 + c1 + 2a2 + b2 − k.

Note that |Vj| = |Zj| for j ≥ 3, and |V1|+ |V2| = |X|+ |Y1|+ |Y2|+ |Z1|+ |Z2|, so G and G∗

have an equal number of vertices.
The proof of Theorem 4.1 therefore reduces to establishing Proposition 4.4 below.

Proposition 4.4. G∗ satisfies both e(G∗) ≥ e(G) and Dr(G
∗) ≥ Dr(G).

11



4.2 Comparing G and G∗

Proof of Proposition 4.4. Corollary 2.6 and (4) give Dr(G
∗) = k∆. Here the definition of k

implies k∆ ≥ e(H) and we clearly have e(H) ≥ Dr(G), thus Dr(G
∗) ≥ Dr(G), and G∗ has

at least as many internal edges in its standard r-partition as G. It is therefore enough to
show that G∗ also has at least as many crossing edges as G. We start with a lower bound
for G∗.

Proposition 4.5. The number of crossing edges in G∗ is at least∑
i<j

|Vi||Vj| −
(

∆2 + b1b2 + (a1 + b1 + c1)κ2 + (k − a1 − b1 − c1)κ1 + (a1 + a2)
∆

2

)
.

Proof. First of all, as |V1 ∪ V2| = |Z1 ∪ Z2 ∪ Y1 ∪ Y2 ∪ X|, and |Vi| = |Zi| for every i ≥ 3,
there are exactly

∑
i<j |Vi||Vj| − |V1||V2| crossing edges in G∗ incident to

⋃r
i=3 Zi.

As for the edges induced by Z = Z1 ∪ Z2 ∪ Y1 ∪ Y2 ∪X, there are

(|Y1|+ |Z1|)(|X|+ |Y2|+ |Z2|) =
(
|V1| − (a1 + b1 + c1)

)(
|V2|+ (a1 + b1 + c1)

)
= |V1||V2| − (|V2| − |V1|+ a1 + b1 + c1)(a1 + b1 + c1)

potential crossing edges in the standard r-partition of G∗ (see Figure 1), out of which

|Y1||Y2|+ |X||Z1| = ∆2 + k(κ1 + a1 − c1)

are missing. Here |V2| − |V1|+ a1 + b1 + c1 = κ2− κ1 + 2a2 + b2− a1 + c1, so by rearranging,
we get that the number of crossing edges in G∗ is∑

i<j

|Vi||Vj| −
(
∆2 + b1b2 + (a1 + b1 + c1)κ2 + (k − a1 − b1 − c1)κ1 + Λ

)
,

where

Λ = a1(k + 2a2 + b2 − a1 − b1) + a2(2b1 + 2c1)− c1(k − b1 − b2 − c1) ≤ (a1 + a2) · 3k,

where we used that k = a+b+c ≥ a2 +b1 +b2 +c1. The result then follows from ∆ ≥ 6k.

Recall that there are exactly
∑

i<j |Vi||Vj| potential crossing edges in G. It therefore
suffices to show that at least

∆2 + b1b2 + (a1 + b1 + c1)κ2 + (k − a1 − b1 − c1)κ1 + (a1 + a2)
∆

2
(5)

of them are missing from G.
It will be easier to split the graph into two, and bound the number of missing edges

separately. Let Qi = Pi ∪ V B
i be the set obtained by extending Pi with the vertices of the

matching Bi for every i ∈ [r] (see Figure 2), so that V A
i , Qi and Ri partition Vi, and let

Q =
⋃
i∈[r] Qi. We first count the number of crossing edges with both endpoints in Q, and

then the ones with at most one end in Q.
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Lemma 4.6. G misses at least ∆2 + b1b2 of the crossing edges induced by Q.

Proof. We use a similar argument to the proof of Lemma 2.3. Let F be the family of all
r-sets {v1, . . . , vr} such that vi ∈ Pi for every i = 1, . . . , r, but v1 /∈ V B

1 or v2 /∈ V B
2 . Then

|F| = ∆r− b1b2∆r−2. Similarly, let G be the family of all (r+ 2) sets {v1, . . . , vr, v
′
1, v
′
2} such

that v1v
′
1 ∈ B1, v2v

′
2 ∈ B2, and vi ∈ Pi for every i = 3, . . . , r. Then |G| = b1b2∆r−2.

Recall that P1, . . . , Pr were all in the neighborhood of some vertex u. This means that
there must be a (crossing) edge missing in G[X] for every X ∈ F . Also, for Y ∈ G, G[Y ] is
a Kr+1-free graph on r + 2 vertices and so must be missing at least two edges. As v1v

′
1 and

v2v
′
2 are both present in G, the missing edges in G[Y ] are also crossing.
Summing over the sets in F ∪ G gives at least ∆r + b1b2∆r−2 missing crossing edges in

total. It is easy to check that each missing edge vivj (or v′ivj or v′iv
′
j) in G is contained in

exactly ∆r−2 sets from F ∪ G, so G[Q] misses at least ∆2 + b1b2 crossing edges.

Lemma 4.7. G misses at least

(a1 + b1 + c1)κ2 + (k − a1 − b1 − c1)κ1 + (a1 + a2)∆/2 (6)

crossing edges with at most one endvertex in Q.

Proof. As a first attempt, we try to find a set of missing crossing edges for each matching
edge in M so that they are all disjoint and not induced by Q. More specifically, we want to
show that for every edge e ∈ M1, there are κ2 missing edges between e and R =

⋃
i∈[r] Ri,

and for every remaining edge e ∈ M \M1, there are κ1 missing edges between e and R.
Moreover, for every e ∈ A1 ∪ A2, we want ∆/2 additional missing edges between e and Q.
As |M | = k and |M1| = a1 + b1 + c1, this would be exactly the amount we need.1

Of course, it may well be that some edge in M is incident to fewer missing edges. Let
M ′

1 = M1 and M ′
2 = M \M1. To first bound the number of crossing edges between M and

R, we define τ to be the largest “deficit” in the above counting, i.e., the smallest nonnegative
integer such that for each i = 1, 2 and every edge vv′ ∈M ′

i , there are at least κ3−i−τ missing
edges between {v, v′} and R \Ri.

To count the missing edges between A1 ∪ A2 and Q, we split Ai into Agi ∪ Abi for each
i = 1, 2 as follow. Agi is the set of “good” edges vv′, such that there are at least κ3−i−τ+∆/2
edges missing between {v, v′} and (Q ∪ R) \ (Qi ∪ Ri), and Abi is the set of “bad” edges,
where this is not the case.

So far this gives at least

|Ag1|(κ2 − τ) + |Ag2|(κ1 − τ) + (|Ag1|+ |A
g
2|)∆/2

missing crossing edges between the good edges of A and Q ∪R, and another

(|M ′
1| − |A

g
1|)(κ2 − τ) + (|M ′

2| − A
g
2)(κ1 − τ)

1The reader might find it helpful to check what the bound means when G is a CPR graph: the r-partition
V1 ∪ · · · ∪ Vr is much like the standard r-partition, except the set X might be split between V1 and V2. In
any case, we always have M = B1∪B2 (in particular, a1 = a2 = 0), and every edge in Bi contributes exactly
κ3−i missing edges: one to each vertex of R3−i.
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between all other edges of M and R. This is a total of

|M ′
1|(κ2 − τ) + |M ′

2|(κ1 − τ) + (|Ag1|+ |A
g
2|)∆/2 (7)

missing edges between V M and R. To get (6), we need to analyze the structure a bit.

Let vv′ ∈ Abi be some fixed bad edge for some i. Then there are at most κ3−i − τ + ∆/2
missing edges from {v, v′} to (R∪Q) \ (Ri∪Qi), and by the definition of τ , at least κ3−i− τ
of these are incident with R \Ri. So vv′ must have at least ∆/2 common neighbors in each
Pj with j 6= i. In particular, as k ≤ ∆/6 and hence |V M | = 2k ≤ ∆/3, we get that for every
j 6= i there is a set Nj ⊆ Pj \ (V B

j ∪ V C
j ) of at least ∆/6 common neighbors in Pj that is

disjoint from V M .
Choose i′ 6= i so that Γ(v) ∩ Γ(v′) ∩Ri′ is smallest. Then for every j 6= i, i′,

|Γ(v) ∩ Γ(v′) ∩Rj| ≥
|Γ(v) ∩ Γ(v′) ∩ (Ri′ ∪Rj)|

2

≥ (κi′ + κj)− (κ3−i + ∆/2)

2
≥ κ2

2
− ∆

4
≥ 7κ2

16
(8)

because there are at most κ3−i + ∆/2 missing edges from {v, v′} to Ri′ ∪ Rj, and we also
used κi′ + κj ≥ κ2 + κ3−i and ∆ ≤ κ2/4, which follow from (4) for any distinct i ∈ {1, 2}, i′
and j.

Observation 4.8. We may assume that every triangle induced by Vi ∪ V ′i has at most κ2/4
common neighbors in some Rj with j 6= i, i′.

Indeed, the common neighborhood of this triangle is κr−2-free. The case r ≤ 3 is then
vacuously true, so suppose r ≥ 4. Then if the triangle has at least κ2/4 common neighbors
in every Rj with j 6= i, i′, then by Lemma 2.3, G[R] misses at least κ2

2/16 crossing edges.
But κ2

2/16 ≥ k(κ2 + ∆) ≥ (6), so we are done.

This means that for the above bad edge vv′, we can assume that every triangle vv′w with
w ∈ Ni′ has at most κ2/4 common neighbors in some Rj with j 6= i, i′. Using (8), we see
that there are at least 7κ2

16
− κ2

4
= 3κ2

16
> 4k missing edges between w and R \ (Ri ∪ Rj).

Summing over all w ∈ Ni′ , we find at least

4k∆/6 ≥ k∆/2 ≥ (|Ab1|+ |Ab2|)∆/2 (9)

missing edges between Q \ V M and R.

If τ = 0, then we are already done: (7) and (9) together give enough edges for (6). So let
us assume that τ > 0, i.e., there is an edge vv′ ∈ M ′

i for some i such that there are exactly
κ3−i − τ missing edges between {v, v′} and R \Ri.

Once again, choose i′ 6= i so that Γ(v) ∩ Γ(v′) ∩Ri′ is smallest. Then, similarly to (8),

|Γ(v) ∩ Γ(v′) ∩Ri′| ≥ κi′ − (κ3−i − τ) ≥ τ
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and for every j 6= i, i′,

|Γ(v) ∩ Γ(v′) ∩Rj| ≥
κi′ + κj − (κ3−i − τ)

2
≥ κ2

2
.

By Lemma 2.3, there must be at least

κ2

2
· τ ≥ kτ (10)

missing edges induced by R. Adding (7), (9) and (10) together, we get (6).

Putting Proposition 4.5 and Lemmas 4.6 and 4.7 together yields Proposition 4.4, and
finishes the proof of our main result.

5 Concluding remarks

With Theorem 1.2 in hand, finding the exact pentagonal Turán graph G that maximizes
Dr(G) assuming e(G) ≥ tr(n) − δn2 is a matter of calculation. The result of Balogh,
Clemen, Lavrov, Lidický and Pfender [5] shows that among pentagonal Turán graphs with

tr(n)− δn2 edges, Dr(G) is maximized when x ≈ 2r
3
δn, y ≈

√
δ
3
n, nj ≈ (1

r
+ 2

3
δ)n for j ≥ 3,

and ni ≈ (1
r
− 2(r−1)

3
δ −

√
δ
3
)n for i = 1, 2, and the maximum is Dr(G) ≈ 2r

3
√

3
δ3/2n2.

It would be very interesting to find exact stability results for other classes of graphs.
Of course, this is generally a harder problem than determining the exact extremal graphs,
which is often already a difficult task on its own. A natural next step is to consider H-free
graphs where H is a graph with a critical edge, that is, there is an edge e ∈ E(H) such that
the deletion of e from H reduces the chromatic number. Examples of such graphs include
cliques and odd cycles.

An old theorem of Simonovits [21] says that when H is an (r + 1)-chromatic graph
with a critical edge, the Turán graph Tr(n) is the unique H-free graph maximizing the
number of edges, provided n is large enough. But even in this case, it seems unclear what
the right conjecture should be for the set of H-free graphs G that maximize Dr(G) when
e(G) ≥ tr(n)− t. We think that the theorem of Erdős, Győri and Simonovits should at least
generalize to odd cycles in the following sense: Among C2k−1-free graphs of close to extremal
size, some C2k+1-blowup is farthest from being bipartite.

Unfortunately, this might fail when the number of edges is very close to the extremal
number. For example, let G be the graph obtained from C6[1, 1, 1, 1, n/2 − 2, n/2 − 3] by
adding a vertex adjacent to the first three (singly blown up) vertices. Then G is a C5-free
graph satisfying D2(G) = 1, but with strictly more edges than any blowup of C7 (itself being
a supergraph of the densest C7-blowup). Nevertheless, we believe that the existence of such
examples is an artifact of the small blowup factors, and C2k+1-blowups are still optimal when
the density of G is bounded away from 1/4.
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Conjecture 5.1. Fix k ≥ 2 and let δ be small enough. Then for any δ > δ0 > 0 and
large enough n, the following holds. For every C2k−1-free graph G on n vertices with (1

4
−

δ0)n2 ≥ e(G) ≥ (1
4
− δ)n2 edges, there is a C2k+1-blowup G∗ satisfying e(G∗) ≥ e(G) and

D2(G∗) ≥ D2(G).

Blowups of C2k+1 might also be optimal for every 3-chromatic graph H with a critical
edge, whose shortest odd cycle has length 2k − 1. Such graphs are certainly H-free, and
results of Roberts and Scott [18] imply that the bound they give on D2(G) (with e(G) fixed)
is tight up to a constant factor.

It is also tempting to guess that when H is a general (r + 1)-chromatic graph with a
critical edge, then the optimum Dr(G) is attained by complete C2k+1-Turán graphs (defined
analogously to pentagonal Turán graphs by inserting a blowup of C2k+1 into a part of a
complete (r − 1)-partite graph), where k is some parameter depending only on H.

A closely related problem, which served as the main motivation for the paper of Erdős,
Győri and Simonovits [12], is the old conjecture of Erdős [10] claiming D2(G) ≤ n2

25
for every

K3-free graph G on n vertices. This trivially holds when e(G) ≤ 2n2

25
, and was proved for

e(G) ≥ n2

5
by Erdős, Faudree, Pach and Spencer [11]. If true, the conjecture is tight for a

balanced blowup of C5.
This problem led to further research into how far Kr+1-free graphs can be from being

bipartite. Sudakov [23] proved a variant of the conjecture for 4-cliques, showing that D2(G)
is maximized by G = T3(n) among K4-free graphs. Sudakov conjectured that this generalizes
to larger cliques (i.e., among Kr+1-free graphs, D2(G) is maximum when G = Tr(n)). A
proof of this for K6 has been announced by Hu, Lidický, Martins, Norin and Volec [15]. The
remaining cases remain wide open.
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[5] J. Balogh, F.C. Clemen, M. Lavrov, B. Lidický and F. Pfender, Making Kr+1-free graphs r-partite,
Combin. Probab. Comput. 30 (2021), 609–618.

[6] J. Balogh, R. Morris, W. Samotij and L. Warnke, The typical structure of sparse Kr+1-free graphs,
Trans. Amer. Math. Soc. 368 (2016), 6439–6485.

[7] A.E. Brouwer, Some lotto numbers from an extension of Turán’s theorem, Math. Centr. report
ZW152, Amsterdam (1981), 6pp.
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