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Abstract. It is well known that there is a sharp density threshold for a random r-SAT formula
to be satisfiable, and a similar, smaller, threshold for it to be satisfied by the pure literal rule.
Also, above the satisfiability threshold, where a random formula is with high probability (whp)
unsatisfiable, the unsatisfiability is whp due to a large “minimal unsatisfiable subformula” (MUF).

By contrast, we show that for the (rare) unsatisfiable formulae below the pure literal threshold,
the unsatisfiability is whp due to a unique MUF with smallest possible “excess”, failing this whp
due to a unique MUF with the next larger excess, and so forth. In the same regime, we give a precise
asymptotic expansion for the probability that a formula is unsatisfiable, and efficient algorithms
for satisfying a formula or proving its unsatisfiability. It remains open what happens between the
pure literal threshold and the satisfiability threshold. We prove analogous results for the k-core and
k-colorability thresholds for a random graph, or more generally a random r-uniform hypergraph.

1. Introduction

Let r ≥ 3, and consider a random r-SAT formula F with n variables, where each of the 2r
(
n
r

)
possible clauses is present independently with probability p = αn−(r−1). Friedgut [10] showed that
there is a threshold cr = cr(n) for satisfiability: for every ε > 0, as n→∞, if α < (1− ε)cr then F
is with high probability (whp, i.e., asymptotically almost surely) satisfiable, while if α > (1 + ε)cr
then F is whp unsatisfiable. For unsatisfiable formulae, it is natural (and useful) to ask why. If F
is unsatisfiable then it has one or more minimal unsatisfiable subformulae (MUFs); these are the
minimal “obstacles” to satisfiability. Chvátal and Szemerédi [5] showed that, in the unsatisfiable
regime (up to very high clause density) a random formula will not contain any small unsatisfiable
subformula. Thus such a formula is typically unsatisfiable for a non-local reason, which also makes
it difficult to prove unsatisfiability.

The aim of this paper is to develop an analogous picture for the rare unsatisfiable r-SAT formulae
below the satisfiability threshold, and to investigate its algorithmic consequences. We are unable
to completely characterize unsatisfiable formulae below the satisfiability threshold cr, but we can
do so below the smaller “pure literal” threshold α∗r . We show that such a formula F is typically
unsatisfiable for a small reason. Specifically, ranking MUFs in terms of excess (r − 1 times the
number of clauses, less the number of variables) only certain excesses are possible, and there are
only finitely many MUFs with any given excess. Theorem 10 asserts that, whp, F contains a
unique MUF, and this MUF has the minimum possible excess. Furthermore, if we condition on F
having no MUF with excess up to i, then whp F still contains a unique MUF, and this MUF has
the minimum possible excess greater than i. Additionally, Theorem 12 gives a precise asymptotic
expansion for the probability of unsatisfiability: it is a power series in 1/n, each of whose coefficients
is an explicitly computable polynomial evaluated at α. (Failure of the pure literal rule, in place of
unsatisfiability, is characterized similarly, but in terms of minimal full formulae, MFFs.)
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We also consider failure of the pure literal rule (in place of unsatisfiability), obtaining a simi-
lar characterization, but in terms of minimal full subformulae (in place of minimal unsatisfiable
subformulae), and a similar asymptotic expansion for the probability that the pure literal rule fails.

For random graphs and r-uniform hypergraphs (in place of r-SAT formulae), we develop a
completely analogous picture for k-colorability and the existence of a nonempty k-core (in place of
satisfiability and failure of the pure literal rule, respectively).

Algorithmically, our results immediately imply that for a typical unsatisfiable formula in the pure
literal regime (a typical atypical formula), we can quickly find a witness. Additionally, we show that
for sufficiently sparse random formulae (possibly below the pure literal threshold), in polynomial
expected time we can decide satisfiability, output a satisfying assignment for satisfiable formulae,
and for unsatisfiable formulae, output both an assignment satisfying as many clauses as possible,
and a minimal unsatisfiable subformula (with corresponding results for hypergraphs). The hope
is for algorithms efficient up to the pure literal threshold, and if possible up to the satisfiability
threshold. (That goal was already achieved for the special case of 2-variable clauses, namely the
class Max 2-CSP encompassing Max Cut, Max 2-SAT, the Ising model, and more. There, the
two thresholds coincide, and [20] gave an algorithm running in expected linear time, exploiting the
exponentially small probability of components of large excess.)

Stepping back, our exploration of unsatisfiable formulae in the satisfiable regime is complemen-
tary to existing explorations of the other three cases. Characterization of unsatisfiable formulae
in the unsatisfiable regime was the main goal of [5]. Algorithms for satisfiable formulae in the
unsatisfiable regime are often sought in the “planted” model, but recently there has been success
in the uniform model [8]. Vast attention has been paid to algorithms for satisfiable formulae in the
satisfiable regime, and we note just one recent result, [7].

A similar type of structural result — where if a likely property fails to hold, it most likely does so
for a smallest reason, otherwise most likely for a second-smallest reason, and so forth — occurs in
the context of random triangle-free graphs, although the proofs are completely different. A random
triangle-free graph is whp bipartite [9], and otherwise can whp be made bipartite by deleting one
vertex, otherwise whp by deleting two vertices, and so on [18]. It would be interesting to see other
examples of this phenomenon.

2. Structural results for random instances of r-SAT

In this section, we prove our results for random instances of r-SAT. In order to prove our main
result, we must first build up a structural picture of random formulae. Any minimum unsatisfiable
formula must be full (all variables appear both with and without negation), and it turns out to
be simpler to concentrate on full subformulae rather than minimum unsatisfiable subformulae. We
divide our analysis into three ranges:

• Subformulae of size at most K: In this range, we determine rather precisely the joint
distribution of full subformulae.
• Subformulae of size between K and εn: We show that with probability O(n−s) there are

no full subformulae in this range.
• Subformulae of size at least εn: We show that, with exponentially small failure probability,

there are no full subformulae in this range (provided the density is below the pure literal
threshold).

Here, we can choose any value for s, and then K and ε > 0 are carefully chosen constants (K must
be sufficiently large in terms of s, and then ε must be sufficiently small in terms of K), while n is
the number of variables. We begin in Section 2.1 by giving definitions. The analysis for the three
ranges is given in Sections 2.2, 2.3 and 2.4; we put the pieces together in Section 2.5.

2.1. Basic definitions and random model. A conjunctive normal form (CNF, or “SAT”) for-
mula consists of a set of literals (signed variables, i.e., variables and their negations) and a set of
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clauses over these literals, each clause comprised of distinct variables with arbitrary signs. In an
r-SAT formula each clause contains r literals; note that for a formula on n variables there are 2r

(
n
r

)
possible r-clauses. A formula F is satisfiable if there is some assignment of True and False values
to its variables such that each clause contains at least one True literal (a literal corresponding to a
variable inherits its truth assignment, while the negated variable gets the negated assignment).

We define a random formula F ∈ Frn,p in analogy with a random graph G ∈ Gn,p, letting each
possible r-clause be present with probability p. We are primarily interested in random formulae
where the expected number of clauses scales linearly with the number of variables. In any case, we
work with three parametrizations, given by p, c, and α (all potentially functions of n), related by

p =
cn

2r
(
n
r

) = αn−(r−1),(1)

where p is the clause probability, cn is the expected number of clauses, and α is a parametrization
that is convenient because it is in fixed proportion to p but has the same desirable scaling behavior
as c, since α = (1 +O(1/n))2−rr!c.

The order |H| of a formula H is the number of variables (not literals); the size e(H) is the number
of clauses. We call a formula empty if it has no clauses, i.e., e(H) = 0. We define the excess of a
formula in analogy with an established definition for hypergraphs, itself a natural extension of the
excess (of edges over vertices) of a graph:

ex(H) = (r − 1)e(H)− |H|.(2)

Two order-n formulae H and H ′ are isomorphic if there is remapping of their variables and their
signs (under the action of the obvious group with 2nn! elements). An automorphism of H is an
isomorphism between H and itself, and we write autH for the automorphism group.
H is a (proper) subformula of F if H’s variable and clause sets are subsets of F ’s (and at least

one of the containments is proper). We shall say that H ′ is a copy of H in F if H ′ is a subformula
of F that is isomorphic to H (note that the isomorphism might involve changing signs). If F has
any subformula H ′ isomorphic to H we may simply say that F contains H.

For formulae H and F , we write XH(F ) for the number of copies of H in F . For a random formula
F ∈ Frn,p, recalling (1) and (2) and using the falling factorial notation n(k) = n(n−1) · · · (n−k+1),

EXH =
1

| autH|

(
n

|H|

)
|H|!2|H|pe(H)

= 1
| autH|n(|H|)2

|H|
(
αn−(r−1)

)e(H)

=
n(|H|)

nH
2|H|

| autH|α
e(H)n− ex(H)(3)

= (1 +O(1/n)) 2|H|

| autH|α
e(H)n− ex(H).(4)

We say that a literal of F is pure if its complement does not appear in any clause of F . The
pure literal rule chooses a pure literal of F (if there is any), and produces a smaller formula F ′ by
deleting the literal’s variable from F ’s set of variables, and deleting all clauses containing the literal
from F ’s set of clauses. Note that F is satisfiable iff F ′ is, and if F is satisfiable then a satisfying
assignment for F can be recovered from a satisfying assignment to F ′ by setting the selected literal
True. The pure literal rule succeeds if F is eventually reduced to an empty formula, for then it
produces a satisfying assignment for F ; otherwise it is said to fail (and no conclusion can be drawn
about the satisfiability of the original formula).

We call a formula H full if it is nonempty and has no pure literals (i.e., every variable and
complemented variable of H appears in some clause); we say that H is a full formula (FF). We
call a formula H a minimal full formula (MFF), if H is full and has no full proper subformula. It
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is well known, and easy to see, that, regardless of how the pure literal rule chooses pure literals, it
fails on F iff F contains a full subformula or equivalently iff F contains a MFF.

We call a formula H a minimal unsatisfiable formula (MUF) if H is unsatisfiable and contains
no unsatisfiable proper subformula. It is clear that F is unsatisfiable iff it contains a MUF (F may
itself be a MUF, or may properly contain one or more MUFs), and that a MUF is necessarily a
FF. For a formula F , a contained MUF can be thought of as an obstruction to F ’s satisfiability,
and a contained MFF as an obstruction to satisfying F using the pure literal rule. We will be
interested in the probability that a random formula contains MUFs and MFFs of various sizes, and
in particular whether typical obstructions are large or small.

2.2. Small subformulae. We begin by considering subformulae of constant size, and give fairly
precise results for their distribution. These results hold for random formulae of any bounded density
c = c(n) = O(1) (equivalently α = α(n) = O(1)).

Lemma 1. Suppose that r ≥ 3. If H is full then ex(H) > 0. Furthermore, for every s > 0, there
are (up to isomorphism) only finitely many full formulae H with ex(H) = s.

Proof. If H is a full formula of order t, then by definition each of the t variables of H must occur
at least twice (once with each sign) in the clauses of H. So e(H) ≥ 2|H|/r, which implies

ex(H) ≥ 2(r − 1)|H|/r − |H| = (r − 2)|H|/r.
Since r > 2, this is strictly positive, the lemma’s first assertion. Flipping the inequality, if ex(H) = s
then |H| ≤ rs/(r − 2), which implies that there are only finitely many possibilities for H. �

Since every MUF is a FF, there are also finitely many MUFs of each excess.
The following proposition shows that fullness plays a role somewhat like that of strict balance

condition for graphs (see for example [2, Chapter IV]). A strictly balanced graph is one where every
proper subgraph has strictly smaller density (ratio of edges to potential edges), and this can be used
to show that a union of two strictly balanced graphs of equal density is a graph with strictly greater
density. Here we have a property of a stronger type: the union of two non-nested full formulae
(with possibly different excesses) is a formula with excess strictly greater than that of either.

Proposition 2. Suppose that r > 2. For full formulae H1 and H2, with H1 6⊆ H2, ex(H1 ∪H2) ≥
ex(H2) + 1.

Proof. If V (H1) ⊆ V (H2) then |H1∪H2| = |H2| while e(H1∪H2) > e(H2), implying ex(H1∪H2) >
ex(H2). Since ex is integer-valued, this implies ex(H1 ∪H2) ≥ ex(H2) + 1.

Otherwise, let t = |V (H1) \ V (H2)| > 0. Then H1 ∪ H2 contains 2t more literals than H2,
and therefore contains at least 2t/r more clauses. So ex(H1 ∪ H2) ≥ ex(H2) + (r − 1)2t/r − t =
ex(H2) + r−2

r t > ex(H2). Since ex is integer-valued, this implies ex(H1 ∪H2) ≥ ex(H2) + 1. �

Claim 3. Let r ≥ 3, let p = αn−(r−1) where α = α(n) = O(1), and let F ∈ Frn,p be a random
formula. For any fixed, full formula H,

P(∃ a copy of H in F ) = (1 +O(1/n)) 2|H|

| autH|α
e(H)n− ex(H).

Proof. WithXH the number of copies ofH in F , the probability in question is P(∃ a copy of H in F ) =
P(XH > 0). It follows from inclusion-exclusion that

EXH ≥ P(XH > 0) ≥ EXH −
1

2
EXH(XH − 1).(5)

We will exploit Proposition 2 to show that EXH(XH − 1) is small compared with EXH .
We know already from (4) that

EXH = (1 +O(1/n)) 2|H|

| autH|α
e(H)n− ex(H).(6)
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Note that XH(XH −1) is the number of ordered pairs 〈H1, H2〉 of distinct (but possibly overlap-
ping) copies of H in F . Let H be the set of isomorphism classes of all formulae H ′ = H1∪H2 with
H1 and H2 isomorphic to H. Note that H is a finite collection of formulae and depends on H alone,
not F or n: to enumerate H it suffices to consider formulae H1 and H2 on variables 1, . . . , 2|H|.
Each copy in F of 〈H1, H2〉, corresponds in a 1-to-1 fashion to a copy in F of some H ′ ∈ H along
with a covering of H ′ by an ordered pair 〈H1, H2〉 where H1 and H2 are both subformulae of H ′

and are both isomorphic to H. For H ′ ∈ H, let b(H ′) denote the number of ways of writing H ′ as
a union of an ordered pair 〈H1, H2〉 of subformulae of H ′ that are copies of H. Then we have

E[XH(XH − 1)] =
∑
H′∈H

b(H ′)E(XH′(F ))

= (1 +O(1/n))
∑
H′∈H

b(H ′) 2|H
′|

| autH′|α
e(H′)n− ex(H′) (by (4))

≤ (1 +O(1/n))

( ∑
H′∈H

b(H ′) 2|H
′|

| autH′|

)
αe(H)+1n−(ex(H)+1)

= O(1) αe(H)+1n−(ex(H)+1)

= O(α/n) E[XH ],

where the inequality uses Proposition 2, the following equality uses that the set H is independent

of F , and the final line similarly uses that the 2|H|

| autH| in E[XH ] (see (4) again) is independent of F ,

and α = O(1).
With (5) and (6) this establishes the claim. �

Claim 3 already tells us something about the likelihood of small subformulae. Medium and large
subformulae will be treated in subsequent sections, but while we are considering fixed subformulae
we give two more lemmas that will be used for the structural results of Theorems 10 and 11.

Lemma 4. Let r ≥ 3, let p = αn−(r−1) where α = α(n) = O(1), and let F ∈ Frn,p be a random
formula. Let H1 and H2 be fixed full formulae. Then

P(F contains non-nested copies of H1 and H2) = O
(
n−max{ex(H1),ex(H2)}−1

)
.

Proof. Let H be the set of all isomorphism classes of unions of a copy of H1 and a copy of H2, where
the two copies are not nested. By Proposition 2, any H ′ ∈ H has ex(H ′) ≥ max{ex(H1), ex(H2)}+1
and so the assertion follows from Claim 3 by summing over H. (As in the previous proof, H is a
finite set, and is independent of F and n.) �

Lemma 5. Let r ≥ 3, let p = αn−(r−1) where α = α(n) = O(1), and let F ∈ Frn,p be a random
formula. If H1, . . . ,Hs are distinct FFs then

P(F ⊃ H1 | F 6⊃ H2, . . . , F 6⊃ Hs) = (1 +O(1/n))P(F ⊃ H1).

Proof. First consider the case of just two FFs. Because H1 and H2 are distinct, they cannot be
nested, and so we can use Lemma 4. Let Ei be the event that F contains a copy of Hi. Then

P(E1 | ¬E2) =
P(E1 ∩ ¬E2)

P(¬E2)
=

P(E1)− P(E1 ∩ E2)

1− P(E2)
= (1 +O(1/n))P(E1),

where the last equality follows from Claim 3 and Lemma 4.
In the general case,

P(
k⋂
i=2

¬Ei) ≥ 1−
k∑
i=2

P(Ei) = 1−O(1/n).
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Also,

P(E1 ∩
k⋂
i=2

¬Ei) ≥ P(E1)−
k∑
i=2

P(E1 ∩ Ei) = P(E1)−O(P(E1)/n),

where the last equality follows from Claim 3 and Lemma 4. Combining,

P(E1 |
k⋂
i=2

¬Ei) =
P(E1 ∩

⋂k
i=2 ¬Ei)

P(
⋂k
i=2 ¬Ei)

= (1 +O(1/n))P(E1).

�

2.3. Medium subformulae. We now turn to a middle range of subformula size, namely between a
large constant and a small linear size. Once again, our results hold at all densities with α bounded.

The following is the sort of bound computed in [5].

Lemma 6. Let r ≥ 3, let p = αn−(r−1) where α = α(n), and let F ∈ Frn,p be a random formula.

For 1 ≤ t ≤ n/2α1/(r−1), the probability that F contains any full subformula with t variables is at
most ((

4(r−1)/reα2/r
)

(t/n)1−2/r
)t
.(7)

Proof. Let the set of variables be v1, . . . , vn. We order all 2n literals as v1 < ¬v1 < v2 < ¬v2 < · · · .
A full subformula H of F with order t must contain at least 2t/r clauses. We let s = d2t/re and

define a subformula H∗ = H∗(H) with s clauses as follows. Let L be the set of 2t literals occurring
in clauses of H. Let x1 be the smallest literal in L, and let C1 be the lexicographically smallest
clause of H (sorting the literals within each clause as above) that contains x1. For i = 2, . . . , s, let xi
be the smallest literal in L that does not appear in any Cj , j < i, and let Ci be the lexicographically
smallest clause of H that contains xi. (xi is well defined since we are always excluding literals from
at most s− 1 clauses, which together contain at most (s− 1)r < 2t distinct literals.) We then take
H∗ to be the conjunction of C1, . . . , Cs.

Over all full formulae H on a given set of t variables, the number of formulae H∗ = H∗(H) is

at most
(

2t
r−1
)s

(there are at most
(

2t
r−1
)

choices for each Ci, as it is forced to contain xi), so the

number of formulae of type H∗ that could possibly be subformulae of F is at most
(
n
t

)(
2t
r−1
)s

. Let
X be the number of full subformulae of F with order t, and let Y be the number of subformulae of
type H∗ of F . Then clearly X > 0 implies Y > 0 (if X counts H, then Y counts H∗(H)), so

P(X > 0) ≤ P(Y > 0) ≤ E(Y ) ≤
(
n
t

)(
2t
r−1
)s
ps

≤ (en/t)t(2t)s(r−1)(α/nr−1)s

= (en/t)t
(
α(2t/n)(r−1)

)s
≤ (en/t)t

(
α(2t/n)(r−1)

)2t/r
,

which equals (7). �

Corollary 7. Let r ≥ 3, let p = αn−(r−1) where α = α(n) = O(1), and let F ∈ Frn,p be a random
formula. For any positive integer s, there exist an integer t0 > 0 and a real value ε0 > 0 such that
the probability that F contains any full subformula with between t0 and ε0n variables is o(n−s).

Proof. Since the probability above is increasing in α, it is enough to prove the result for α constant,
replacing α(n) by α = max{supn α(n), 1}. We first choose ε0 small enough that ε0 < 1/2α1/(r−1)

(so that any t ≤ ε0n satisfies the hypothesis of Lemma 6) and that

4(r−1)/reα2/rε
1−2/r
0 ≤ 1/e.
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Thus (7) is at most e−t for all 0 < t ≤ ε0n. Summing over t, it follows that the probability that F
contains a full subformula with between 2s log n and ε0n variables is o(n−s).

Now let t0 = 1 + dsr/(r − 2)e. For t0 ≤ t ≤ 2s log n, (7) is at most(
4(r−1)/reα2/r(2s log n/n)1−2/r

)t0
≤
(

8eαs log n

n(r−2)/r

)t0
= O(n−s−1/r(log n)s+1) = o

(
n−s

log n

)
.

So the probability that F contains a full subformula with between t0 and 2s log n variables is o(n−s).
�

2.4. Large subformulae. Finally, we show that large subformulae are unlikely. This is the most
delicate regime, and we will need to bound α more strictly. Some bound on α is certainly necessary:
if α lies above the satisfiability threshold then a random subinstance is whp unsatisfiable, but (as
shown by Chvátal and Szemerédi [5]) whp any unsatisfiable subinstance has size Ω(n). We will
prove that large subformulae are unlikely for α below the pure literal threshold; what happens
between the two thresholds is an open question.

Molloy [17] showed that there is a sharp threshold for the pure literal rule. Specifically, for r ≥ 3,
the threshold is1

α∗ = min
y>0

(r − 1)!y

2r−1(1− e−y)r−1
.(8)

For any constant α, letting p = αn−(r−1) and letting F ∈ Frn,p be a random formula,

P(pure literal rule finds a solution)→

{
1 if α < α∗

0 if α > α∗.

Achlioptas and Peres showed [1] that, as r → ∞, the threshold for satisfiability (though not
proved to be a constant rather than a function of n) is cSAT = (1 + o(1))2r log 2, leading via (1) to
αSAT = (1 + o(1))r! log 2. By setting y = r in (8) one can verify that the thresholds α∗ and αSAT

diverge for large r: the gap in our knowledge of the behavior between the two is a wide one.
We need to show that large minimal unsatisfiable subinstances are unlikely; we therefore need a

large deviation bound for values of α below the satisfiability threshold. We shall need the following
version of the Azuma-Hoeffding inequality, given by McDiarmid [12].

Lemma 8. Let X1, . . . , Xn be independent random variables, with Xk taking values in a set Ak for
each k. Suppose that a measurable function f :

∏
Ak → R satisfies |f(x) − f(x′)| ≤ ck whenever

the vectors x and x′ differ only in the k-th coordinate. Let Z be the random variable f(X1, . . . , Xn).
Then for any t > 0, P(|Z − EZ| ≥ t) ≤ 2 exp

(
−2t2

/∑
c2k
)
.

We prove the following lemma.

Lemma 9. Let r ≥ 3, let p = αn−(r−1) where α = α(n) satisfies supn α(n) < α∗r, and let F ∈ Frn,p
be a random formula. For every ε > 0 there is δ > 0 such that, for all sufficiently large n,

P(F contains a full subformula of order > εn) < exp(−δn).

Proof. Since the probability above is increasing in α, it is enough to prove the result for α constant,
replacing α(n) by α = supn α(n). We will show that, with the required high probability, the pure
literal rule leaves fewer than εn variables, establishing the lemma. (A full subformula is not affected
by the pure literal rule, so if the “kernel” left is small, F contained no large subformula.)

Consider the following instantiation of the pure literal rule: Set F0 = F , so |F0| = n. For i ≥ 0,
obtain Fi+1 from Fi by setting all pure literals to True, and then removing these literals and the

1An earlier version of the paper, [16], had an erroneous formula a factor of 2 smaller.
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clauses they satisfied. Molloy showed that (for any α < α∗) there is a sequence λs → 0 such that,
for any s,

E|Fs| = (1 + o(1))λsn.

Let us pick s such that λs < ε/8. The result will follow from a concentration argument which we
now give in detail.

A path of length l in F is a sequence v0, C0, v1, C1, . . . , Cl, vl, alternating between variables and
clauses, such that each clause Ci contains the variables that precede and follow it (either with
or without negation). For a variable v and positive integer l, we define the ball Bl(v) to be the
subformula of F containing all variables and clauses that lie on paths of length at most l starting
at v. (Note that each clause in a ball is fully supported by variables in it.)

It is part of Molloy’s argument, and clear with a little thought, that the event that v belongs
to Fs depends only on Bs(v). We shall say that a variable v is good if it has the following two
properties:

• v does not belong to V (Fs) (the set of variables of Fs), and
• no variable in Bs(v) belongs to more than K(s, α) clauses.

Here, K(s, α) is a constant chosen sufficiently large that the second property holds with probability
at least 1 − ε/8. There exists such a K(s, α) independent of n because the scaling of (1) was
chosen precisely to make the local structure of an instance independent of n. For a simple rigorous
argument, the degree of any variable in Bs(v) is at most |Bs+1(v)|, E[|Bs+1(v)|] is obtained by
multiplying the number of paths by their probability of being present and has an upper bound
independent of n, and taking K(s, α) to be 8/ε times this value, the desired probability follows
from Markov’s inequality.

Since the first property occurs with probability 1−λs+ o(1), we see that for large enough n, v is
good with probability greater than 1− ε/4. We will prove that, with failure probability exp(−δn),
there are at least (1−ε)n good variables. Now note that the pure literal rule can never set a variable
belonging to a full subformula. Thus if H is a full subformula of F then V (H) ⊆

⋂∞
i=0 V (Fi). In

particular, V (H) ⊂ V (Fs) and so no good variable can belong to a full subformula. The claimed
result is then immediate.

To prove our concentration bound, we first claim that changing a single clause in an instance
cannot change the number of good variables by more than 2rs+1Ks. (This is the purpose of the
second goodness condition.) Suppose we add a clause C to an instance I to obtain an instance
I ′. If adding C spoils a variable v (v is good in I but not in I ′), C must contain some variable
u ∈ Bs(v). Choose a shortest path P from u to v. P has length at most s, and P ⊂ I (it is
shortest, so it doesn’t contain C), thus P ⊂ Bs(v), and since v was good in I, P contains no
variables with degree (in I) more than K. Generating all paths of this sort, there are r choices for
the variable u ∈ C, and from each variable at most K choices for the following clause and r choices
for the succeeding variable, so there are at most rs+1Ks such paths, and at most that many spoiled
variables. Therefore, adding a clause can decrease the number of good variables by at most rs+1Ks,
and similarly deleting a clause can create at most rs+1Ks good variables. The claim follows.

Finally, to use the Azuma-Hoeffding inequality (Lemma 8) we need to argue in terms of a fixed
number of clauses. For this purpose we note that goodness is a monotonic property (if v is not
good, adding clauses cannot make it good), and couple the original model Frn,p to one with a fixed
and typically larger number of clauses. Specifically, first observe that the probability of being good
is a continuous function of α (increasing α slightly adds a small linear number of new clauses, each
of which spoils at most rs+1Ks good variables, a small fraction of the nearly n such variables).

We can therefore choose α′ > α such that in an instance with clause probability p′ = α′n−(r−1),
each variable is good with probability at least 1 − ε/3. Let p′′ = (p + p′)/2 and M = bp′′2r

(
n
r

)
c.

Define an M -clause model Frn,M where we sample M clauses uniformly with replacement from

the set of all possible clauses, then discard duplicates (because of which this is not exactly the
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analogue of the usual Gn,M model). It is easy to check that, for some δ0 > 0, with probability
1−O(exp(−δ0n)), an instance of Frn,p has fewer clauses than one of Frn,M which in turn has fewer
clauses than one of Frn,p′ . There is therefore a coupling between the three models in which, with

probability 1−O(exp(−δ0n)), the corresponding random formulae satisfy Fp ⊂ FM ⊂ Fp′ .
We now complete the argument. By Lemma 8 (with Xi = Ci), in Frn,M , with probability at least

1−O(exp(−δ1n)) the number of good variables is within εn/8 of its expectation. By the coupling
with Frn,p′ , this expectation is at least (1− ε/2)n (we inflate the ε/3 slightly to compensate for the

exponentially small failure probability). So in Frn,M , with exponentially small failure probability,

we get at least (1 − 2ε/3)n good variables. Finally, the coupling with Frn,p shows that, with
exponentially small failure probability, we get at least (1− ε)n good variables. �

2.5. Main results. Consider the set of all MUFs. Order the set of values for excess as ex1 <
ex2 < · · · ; by Lemma 1 these values are some subset of the positive integers). For s > 0, we write
Fs for the set of MUFs F ′ with ex(F ′) = exs; note that by Lemma 1 each Fs is finite.

Theorem 10. Fix i > 0. Let r ≥ 3, let p = αn−(r−1) where α = α(n) = Θ(1) satisfies supn α(n) <
α∗r, and let F ∈ Frn,p be a random formula. If we condition on the event that F is unsatisfiable and
contains no MUF F ′ with ex(F ′) < exi then, with probability 1−O(1/n), the following statements
hold:

(i) F contains a unique MUF F0.
(ii) F0 ∈ Fi.

(iii) For each F ′ ∈ Fi, we have P(F0
∼= F ′) ∼ αe(F ′)2|F

′|

| autF ′| /Z, where Z =
∑

F ′∈Fi

αe(F ′)2|F
′|

| autF ′| .

Proof. This will follow by combining results from previous sections. Let C be the condition that F
contain no MUF F ′ with ex(F ′) < exi (but not that F is unsatisfiable).

Choose t0 large enough and ε0 > 0 small enough so that Corollary 7 applies with s = exi +1.
Together with Corollary 9 (with ε = ε0), we conclude that the probability that F ∈ Frn,p contains

any full subformula on more than t0 vertices is o(n−s). This is also true after conditioning, since
for any event E, P(E | C) = P(E ∧ C)/P(C) ≤ P(E)/P(C) = (1 +O(1/n))P(E).

There are finitely many possibilities for minimal unsatisfiable subformulae on t0 or fewer vertices.
From Lemma 5 and Lemma 3, for any F0 with ex(F0) ≥ exi, P(F ⊃ F0 | C) = (1 +O(1/n))P(F ⊃
F0) = (1 +O(1/n)) 2|F0|

| autF0|α
e(F0)n− ex(F0). When F ∈ Fi, i.e., ex(F0) = exi, this is a relatively likely

event, with probability Θ(n− exi); otherwise it is O(1/n) less likely.
For any two MUFs F1 and F2 with ex(F1), ex(F2) ≥ exi, P(F contains non-nested copies of F1 and F2 |

C) = (1 +O(1/n))P(F contains non-nested copies of F1 and F2) = O(n− exi +1) by Lemma 4.
Now condition on the event that F is unsatisfiable, i.e., that at least one of the above cases

occurs. Then the middle case, with ex(F0) = exi, dominates the other cases. �

The same proof gives the analogous statement for minimal full subformulae. Consider the set of
all MFFs, and order the set of values for excess as ex′1 < ex′2 < · · · ; again, these values are some
subset of the positive integers. For s > 0, we write F ′s for the set of MFFs F ′ with ex(F ′) = ex′s;
note that by Lemma 1 each F ′s is finite.

Theorem 11. Fix i > 0. Let r ≥ 3, let p = αn−(r−1) where α = α(n) = Θ(1) satisfies supn α(n) <
α∗r, and let F ∈ Frn,p be a random formula. If we condition on the event that F contains a full
subformula, but no full subformula F ′ with ex(F ′) < ex′i then, with probability 1 − O(1/n), the
following statements hold:

(i) F contains a unique minimal full subformula F0.
(ii) F0 ∈ F ′i.

(iii) For each F ′ ∈ F ′i, we have P(F0
∼= F ′) ∼ αe(F ′)2|F

′|

| autF ′| /Z, where Z =
∑

F ′∈F ′i
αe(F ′)2|F

′|

| autF ′| .
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We can also write an asymptotic expansion for the probability that F is unsatisfiable or that the
pure literal rule fails (i.e., that F has a full subformula).

Theorem 12. Let r ≥ 3, let p = αn−(r−1) where α = α(n) = Θ(1) satisfies supn α(n) < α∗r, and
let F ∈ Frn,p be a random formula. For every full formula H there is a sequence of polynomials

p
(H)
1 , p

(H)
2 , . . . with rational coefficients such that, for any smax,

P(F contains a copy of H) =

smax∑
s=1

p(H)
s (α)n−s +O(n−smax−1).(9)

Furthermore, there is a sequence of polynomials p1, p2, . . . with rational coefficients such that, for
any smax and any α < α∗,

P(F is unsatisfiable) =

smax∑
s=1

ps(α)n−s +O(n−smax−1),(10)

and similarly a sequence p′1, p
′
2, . . . such that

P(the pure literal rule fails on F ) =

smax∑
s=1

p′s(α)n−s +O(n−smax−1).(10′)

Proof. Fix smax and α. Note that (3) can be written as

(11) EXH = αe(H)pH(1/n),

where pH is a polynomial of degree ex(H). The kth factorial moment of XH is a sum of expectations
EH′ over configurations H ′ consisting of the union of k distinct copies of H, and so is a sum of
expressions like (11).

Now for k ≥ 1, P(XH = k) and P(XH ≥ k) can be written as alternating sums in the factorial
moments (see [2, Section I.4]), and these sums satisfy the alternating inequalities. If K is fixed
and sufficiently large then the Kth factorial moment has value O(n−smax−1), as all its constituent
configurations have excess larger than smax. Thus we can truncate our sum after a constant number
of terms, with error O(n−smax−1). Each term is of form (4), so we obtain an expression of form (9).

We obtain (10) similarly. Let F be the set of minimal unsatisfiable subformulae whose excess is at
most smax, and let X be the number of subformulae of F that belong to F . As in the previous case,
asymptotic expansions for the factorial moments of X all have form (9), and once again applying
inclusion-exclusion (and noting that we again have the alternating inequalities), truncating at the
n−smax terms gives an asymptotic expansion of form (10). Minimal unsatisfiable subformulae of
excess greater than smax can be incorporated into the O(n−smax−1) term by Lemmas 7 and 9. The
argument for 10′ is identical, just phrased in terms of minimal full subformulae rather than minimal
unsatisfiable subformulae. �

Let us note that it is only a finite (if tedious) computation to determine the polynomials ps, and

p
(H)
s for any given H and s.

3. Structural results for sparse random graphs and hypergraphs

We now prove results on the k-core and k-colorability of a sparse random graph or hypergraph.
The definitions, results, and proofs here precisely parallel those of Section 2.

We write Gr(n, p) for the random r-uniform hypergraph model analogous to G(n, p): a hypergraph
G ∈ Gr(n, p) has vertex set [n], and each possible edge (of size r) is independently present with
probability p. We work with the scaling

p =
cn(
n
r

) = αn−(r−1),(12)
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where p is the clause probability, cn is the expected number of clauses, and α is a convenient
parametrization.

For an r-uniform hypergraph H we define

ex(H) = (r − 1)e(H)− |H|.

We say that H is k-dense if it has minimal degree δ(H) ≥ k. The hypergraph k-core is defined in
the usual way, for example via the process detailed in the proof of Lemma 20, and it is k-dense. H
is a minimal k-dense hypergraph if it is nonempty and has no proper k-dense subhypergraph.

Pittel, Spencer and Wormald [19] determined the threshold ck for the appearance of a k-core in
a random graph G ∈ G(n, ck/n). They further showed that, for any fixed c < ck and ε > 0, the
probability that G ∈ G(n, c/n) has a k-core of size bigger than εn is at most exp(−nδ) (in fact, they
did rather more). Molloy [17] determined the k-core threshold α∗∗ = α∗∗k,r for a random r-uniform

hypergraph G ∈ Gr(n, αn−(r−1)) and proved that for any fixed α < α∗∗ and ε > 0, the probability

that Gr(n, αn−(r−1)) has a k-core of size bigger than εn approaches 0.
Let us write XH(G) for the number of copies of H in G. Then

EXH =
1

| autH|

(
n

|H|

)
|H|!pe(H)

= (1 +O(1/n)) 1
| autH|α

e(H)n− ex(H).(13)

Lemma 13. Suppose that r, k ≥ 2 and r + k > 4. If H is a k-dense, r-uniform hypergraph then

ex(H) ≥ (k − 1)(r − 1)− 1

r
|H|.

Furthermore, for every s > 0, there are (up to isomorphism) only finitely many k-dense graphs H
with ex(H) = s.

Proof. If δ(H) ≥ k then e(H) ≥ k|H|/r and so

ex(H) ≥ k|H|(r − 1)/r − |H| = (k − 1)(r − 1)− 1

r
|H|.

So if ex(H) = s then |H| ≤ rs/[(k− 1)(r− 1)− 1], which implies that there are only finitely many
possibilities for H. �

Note that the k-core is necessarily k-dense. It follows that there are only finitely many possible
k-cores of each excess.

Proposition 14. Suppose that r, k ≥ 2 and r+k > 4. For k-dense, r-uniform hypergraphs H1 and
H2, with H1 6⊆ H2, ex(H1 ∪H2) ≥ ex(H2) + 1.

Proof. If V (H1) ⊆ V (H2) then |H1∪H2| = |H2| while e(H1∪H2) > e(H2) implying ex(H1∪H2) >
ex(H2) which by integrality means ex(H1 ∪H2) ≥ ex(H2) + 1.

Otherwise, let t = |V (H1)\V (H2)| > 0. Then H1∪H2 contains at least kt/r more edges than H2

(since each vertex in V (H1) \ V (H2) is incident with at least k edges). So ex(H1 ∪H2) ≥ ex(H2) +
kt(r − 1)/r − t > ex(H2). Since ex is integer-valued, this implies ex(H1 ∪H2) ≥ ex(H2) + 1. �

Claim 15. Let r, k ≥ 2, r + k > 4, let p = αn−(r−1) where α = α(n) = O(1), and let G ∈ Gr(n, p)
be a random hypergraph. For any fixed k-dense, r-uniform hypergraph H,

P(∃ a copy of H in G) = (1 +O(1/n)) 1
| autH|α

e(H)n− ex(H).

Proof. With XH the number of copies of H in G, we have from (13) that

EXH = (1 +O(1/n)) 1
| autH|α

e(H)n− ex(H),
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while

E[XH(XH − 1)] = O(1) αe(H)+1n−(ex(H)+1) = O(α/n) E[XH ]

and the rest of the proof follows as for Claim 3. �

Lemma 16. Let r, k ≥ 2, r+k > 4, let p = αn−(r−1) where α = α(n) = O(1), and let G ∈ Gr(n, p)
be a random hypergraph. Let H1 and H2 be fixed k-dense, r-uniform hypergraphs. Then

P(G contains non-nested copies of H1 and H2)

= O(n−max{ex(H1),ex(H2)}−1) .

Proof. Another proof without changes. �

Lemma 17. Let r, k ≥ 2, r+k > 4, let p = αn−(r−1) where α = α(n) = O(1), and let G ∈ Gr(n, p)
be a random hypergraph. If H1, . . . ,Hs are distinct minimal k-dense, r-uniform hypergraphs (or
minimal non-k-colorable r-uniform hypergraphs) then

P(G ⊃ H1 | G 6⊃ H2, . . . , G 6⊃ Hs) = (1 +O(1/n))P(G ⊃ H1).

Proof. Another proof without changes. �

Lemma 18. Let r, k ≥ 2, r + k > 4, let p = αn−(r−1) where α = α(n), and let G ∈ Gr(n, p)
be a random hypergraph. For 1 ≤ t ≤ n/α1/(r−1), the probability that G contains any k-dense
subhypergraph with t variables is at most((

eαk/r
)

(t/n)k−1−1/r
)t
.(14)

Proof. We modify the proof of Lemma 6. Order the vertices as v1 < v2 < · · · . A k-dense subhy-
pergraph H of G with order t must contain at least kt/r edges. We let s = dkt/re and define a
subhypergraph H∗ of H with s edges as follows. Let L be the set of t vertices occurring in edges
of H. Let x1 be the smallest vertex in L, and let C1 be the lexicographically smallest edge of H
(sorting the vertices within each edge as above) that contains x1. For i = 2, . . . , s, let xi be the
smallest vertex in L that is not covered k times by Cj , j < i, and let Ci be the lexicographically
smallest edge of H that contains xi. (This is well defined since we are always excluding at most
s− 1 edges, which together contain at most (s− 1)r < kt vertex occurrences.) We then take H∗ to
be the edge set C1, . . . , Cs.

The number of hypergraphs of type H∗ that could possibly be subhypergraphs of G is at most(
n
t

)(
t

r−1
)s

. Let X be the number of k-dense subhypergraphs of G with order t, and let Y be the
number of subhypergraphs of type H∗ of G. Then X > 0 implies Y > 0, so

P(X > 0) ≤ P(Y > 0) ≤ E(Y ) ≤
(
n

t

)(
t

r − 1

)s
ps

≤ (en/t)t(t)s(r−1)(α/nr−1)s

= (en/t)t
(
α(t/n)(r−1)

)s
≤ (en/t)t

(
α(t/n)(r−1)

)kt/r
,

which equals (14). �

Corollary 19. Let r, k ≥ 2, r + k > 4, let p = αn−(r−1) where α = α(n) = O(1), and let
G ∈ Gr(n, p) be a random hypergraph. For any positive integer s, there exist an integer t0 > 0 and
a real value ε0 > 0 such that the probability that G contains a k-dense subhypergraph with between
t0 and ε0n vertices is o(n−s).

Proof. As before. �
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Recall that we defined α∗∗k,r to be the k-core threshold for Gr(n, αn−(r−1)).

Lemma 20. Let r, k ≥ 2, r + k > 4, let p = αn−(r−1) where α = α(n) satisfies supn α(n) < α∗∗k,r,

and let G ∈ Gr(n, p) be a random hypergraph. For every ε > 0 there is δ > 0 such that, for all
sufficiently large n,

P(G contains a k-dense subhypergraph with order > εn) < exp(−δn).

Proof. We follow the argument of Lemma 9. We use the following process for generating the k-core:
Set G0 = G, so |G0| = n. For i ≥ 0, obtain Gi+1 from Gi by deleting (in a single round) all vertices
of degree at most k − 1, and all edges incident on any such vertex. The k-core is G∞ = Gn. As
with satisfiability, Molloy showed that (for α < α∗∗) there is a sequence λs → 0 such that, for any
s,

E|Gs| = (1 + o(1))λsn.

A ball Bs(v) has the usual hypergraph definition analogous to the ball definition in the proof of
Lemma 9, and each edge in a ball is fully supported by vertices in it. We shall say that a vertex v
is good if it has the following two properties:

• v does not belong to V (Gs), and
• no vertex in Bs(v) has degree more than K(s, α).

The rest of the proof is as before. �

Consider the set of all minimal non-k-colorable hypergraphs, order the set of values for excess as
ex1 < ex2 < · · · , and let Gi be the set of non-k-colorable hypergraphs with excess i. Similarly, let
the minimal k-dense hypergraphs have excesses ex′1 < ex′2 < · · · and let G′i be the set of minimal
k-dense hypergraphs with excess i. Then we have the analogues of Theorems 10, 11, and 12, by
the same reasoning.

Theorem 21. Fix i > 0. Let r, k ≥ 2, r + k > 4, let p = αn−(r−1) = Θ(1) where α = α(n)
satisfies supn α(n) < α∗∗k,r, and let G ∈ Gr(n, p) be a random hypergraph. If we condition on the

event that G is non-k-colorable and contains no minimal non-k-colorable G′ with ex(G′) < exi then,
with probability 1−O(1/n), the following statements hold:

(i) G contains a unique minimal non-k-colorable G0.
(ii) G0 ∈ Gi.

(iii) For each G′ ∈ Gi, we have P(G0
∼= G′) ∼ αe(G′)

| autG′|/Z, where Z =
∑

G′∈Gi
αe(G′)

| autG′| .

Theorem 22. Fix i > 0. Let r, k ≥ 2, r+k > 4, let p = αn−(r−1) = Θ(1) where α = α(n) satisfies
supn α(n) < α∗∗k,r, and let G ∈ Gr(n, p) be a random hypergraph. If we condition on the event that

G contains a nonempty k-core, but no nonempty k-core G′ with ex(G′) < ex′i then, with probability
1−O(1/n), the following statements hold:

(i) G contains a unique minimal nonempty k-core G0.
(ii) G0 ∈ G′i.

(iii) For each G′ ∈ G′i, we have P(G0
∼= G′) ∼ αe(G′)

| autG′|/Z, where Z =
∑

G′∈G′i
αe(G′)

| autG′| .

Theorem 23. Let r ≥ 3, let p = αn−(r−1) where α = α(n) = Θ(1) satisfies supn α(n) < α∗r, and let
F ∈ Frn,p be a random formula. For every k-dense hypergraph H there is a sequence of polynomials

p
(H)
1 , p

(H)
2 , . . . with rational coefficients such that, for any smax,

P(G contains a copy of H) =

smax∑
s=1

p(H)
s (α)n−s +O(n−smax−1).(15)
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Furthermore, there is a sequence of polynomials p1, p2, . . . with rational coefficients such that, for
any smax and any α < α∗,

P(G is non-k-colorable) =

smax∑
s=1

ps(α)n−s +O(n−smax−1),(16)

and similarly a sequence p′1, p
′
2, . . . such that

P(G has a nonempty k-core) =

smax∑
s=1

p′s(α)n−s +O(n−smax−1).(16′)

4. Conclusion

4.1. Examples. For graphs, i.e., hypergraphs with r = 2, any k-dense graph on n vertices has
n ≥ k + 1 (each degree is at least k) and at least kn/2 edges, thus has excess at least (k/2− 1)n;
this is uniquely minimized by n = k+1 and the graph Kk+1, with excess (k−2)(k+1)/2, k(k+1)/2
edges, and | autKk+1| = (k+ 1)!. Since Kk+1 is non-k-colorable, it is also the unique smallest non-
k-colorable graph. Thus for k ≥ 3, α < α∗∗k,2, and G ∈ G(n, α/n),

P(G is not k-colorable) = (1 +O(1/n)) 1
(k+1)! α

k(k+1)/2n−(k−2)(k+1)/2, and

P(G has a nonempty k-core) = (1 +O(1/n)) 1
(k+1)! α

k(k+1)/2n−(k−2)(k+1)/2.

Furthermore, if G has nonempty k-core then with probability 1 +O(1/n) its k-core is a single copy
of Kk+1; the same conclusion follows if G is not k-colorable.

For random r-SAT formulae, any full formula on t variables has excess at least (r − 2)t/r, and
this is minimized uniquely by t = r and the formula FL consisting of the 2 clauses (X1, . . . , Xr)
and (X̄1, . . . , X̄r), with excess r − 2 and 2 · r! automorphisms. Thus, for r ≥ 3 and F ∈ Frn,p,

P(the pure literal rule fails to satisfy F ) = (1 +O(1/n)) 1
2·r!α

2n−(r−2).(17)

Furthermore, if the pure literal rule fails to satisfy F then with probability 1 + O(1/n) its pure
literal core is a single copy of FL, which is satisfiable, in contrast to the graph case, where we have
seen that the k-core is almost surely the non-k-colorable graph Kk+1.

4.2. 2-SAT and 2-CSP. For random formulas, we have assumed throughout that r ≥ 3, because
this is needed for Lemma 1. Also, we leave unresolved what happens between the pure literal and
satisfiability thresholds. However, much is already known about random 2-SAT, and in this case
the thresholds are equal, both having α = 1/2. Chvátal and Reed [4] show that a 2-SAT formula
is unsatisfiable iff it contains a “bicycle”, and it is straightforward to compute the likelihoods of
bicycles of various sizes. Our earlier paper [20] exploited the typically small size of the 2-core of a
random graph G ∈ G(n, α/n) with α < 1 (a threshold above which the core jumps to linear size) to
give an algorithm running in expected time O(n) for “random” instances of any Max 2-CSP below
this threshold; the class of optimization problems Max 2-CSP includes Max 2-Sat and Max Cut.

4.3. Very sparse instances. For very sparse instances (α → 0 very quickly), our results need a
little modification, as the preference order for small subinstances must be changed. For instance if
p = n− logn then FFs will appear primarily in order of the number of clauses and only secondarily
in terms of number of variables (rather than in terms of excess).
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4.4. Structural results. Our results on small subformulae hold for any constant density. How-
ever, above some threshold large subformulae appear. Our structure theory for random unsatisfiable
formulas applies below the pure literal threshold, because we know there are no large full subfor-
mulas in this range. From the other side, we know by Chvátal-Szemerédi [5] (or from our analysis)
that large unsatisfiable subformulae (therefore large full formulae) appear above the satisfiability
threshold. (At a density α = Θ(1) any constant above the satisfiability threshold, an instance is
whp unsatisfiable [10], but our results for subformulae of small and medium size apply for any
α = Θ(1), so full [and potentially unsatisfiable] subformulae of up to small linear size occur with
small probability, thus the obstruction to satisfiability must whp be a large minimal unsatisfiable
subformula.) It would be most interesting to know what happens for formulas between the pure
literal and satisfiability thresholds.

Specifically, are large minimal unsatisfiable subformulae unlikely between the two thresholds,
as are large full subformulae below the pure literal threshold? Concretely, let cr(n)n−(r−1) be a
threshold function for r-SAT; recall that cr(n) is believed but not known to converge to a constant.

Question 1. Let r ≥ 3, ε > 0, and p = αn−(r−1), with α(n) ≤ (1− ε)cr(n) for all n. Let q(n) be
the probability that a random formula F ∈ Frn,p contains a minimal unsatisfiable subformula on at

least εn vertices. Is q(n) = n−ω(1)?

A positive answer would immediately translate into a proof of a structural theorem.

4.5. Algorithms. The behavior of algorithms up to the satisfiability threshold is unclear. However,
it is easy to give algorithms for sufficiently sparse instances. For instance:

Theorem 24. For all r, for all sufficiently small α there is an expected polynomial-time algorithm
to decide the satisfiability of a random formula F ∈ Frn,p, outputting an assignment satisfying as
many clauses as possible and (if F is unsatisfiable) a minimal unsatisfiable subformula.

Proof. This follows from (7), for some α smaller (likely much smaller) than the pure literal threshold
α∗.

We first apply the pure literal rule, taking time O∗(1) (a notation that hides factors polynomial
in the input parameters) and leaving a full subformula on t variables (if t = 0, F is satisfied and we
are done). If there are t remaining variables, we now try all 2t possible assignments, taking time
O∗(2t). If α is sufficiently small, then (7) is at most 4−t for all t ≥ 1, and the expected running
time is at most

∑
t≥1O

∗(1)2t4−t = O∗(1).
To produce a minimal unsatisfiable subformula, or list all such subformulas, again we apply pure

literal until we are left with a full subformula with t variables and s clauses. Note that there are at
most

(
n
t

)(
2r(t

r)
s

)
such formulae, each of which is present with probability at most ps, with s ≥ 2t/r.

We now look at all 2s subformulae, and for each we check all 2t assignments of our remaining
variables (we can easily order the subformulae so that we can search for a minimal unsatisfiable
subformula). This takes expected time at most∑

t≥1

∑
s≥2t/r

2t2s
(
n

t

)(
2r
(
t
r

)
s

)
ps ≤

∑
t≥1

∑
s≥2t/r

(
2en

t

)t(2r+1etr

s

)s ( α

nr−1

)s
≤
∑
t≥1

∑
s≥2t/r

(2e)(r+1)s+tαs
(n
t

)t( tr

2t/r

)s( 1

nr−1

)s

≤
∑
t≥1

∑
s≥2t/r

(2er)2rsαs
(
t

n

)(r−1)s−t

≤
∑
t≥1

∑
s≥2t/r

(2er)2rsαs
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≤
∑
t≥1

2−t

≤ 1,

provided α is small enough. Since the initial application of pure literal takes time O∗(1) we are
done. �

If the structural results extend up to the satisfiability threshold, then most unsatisfiable in-
stances in the satisfiable regime have a small witness, and so can be identified quickly. This would
affirmatively answer the following question.

Question 2. Suppose ε > 0 and α = α(n) ≤ (1− ε)cr(n) for all n. Is there a polynomial-time al-

gorithm that, whp, proves unsatisfiability for a random unsatisfiable formula F ∈ Fr(n, αn−(r−1))?

More ambitiously, we could hope for algorithms that succeed always, and run in polynomial
expected time (possibly only for smaller densities α).

Question 3. Suppose ε > 0 and α = α(n) ≤ (1− ε)cr(n) for all n. Is there an algorithm that, for

a random unsatisfiable formula F ∈ Fr(n, αn−(r−1)) proves unsatisfiability in polynomial expected
time?

4.6. Graphs and hypergraphs. In the graph and hypergraph context, we would like to know
what happens between the k-core threshold α∗∗k,r and a k-colorability threshold dk,r(n)n−(r−1),

recalling that dk,r(n) is believed but not known to converge to a constant. Here the essential
question is the analogue of Question 1: are large minimal non-k-colorable subhypergraphs unlikely
between the two thresholds (as large k-dense subhypergraphs are below k-core threshold)?

A result like Theorem 24 can easily be proved for hypergraph coloring (see also [6] for results

on coloring sparse random graphs). With r, k ≥ 2, r + k > 4, ε > 0, p = αn−(r−1), and α(n) ≤
(1− ε)dk,r(n), there are also the obvious analogues of Questions 2 and 3: are there are algorithms
that are efficient (almost always, or in expectation) for k-coloring random r-uniform hypergraphs
below the k-coloring threshold?
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