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k-core

We can obtain the k-core of G by recursively removing the vertices of
degree less than k.




Phase transition

Let G(n, p) be an Erdés—Rényi random graph.

Theorem (Pittel, 90; Chvatal, 91)

Let p = =. There exists o, > 0 such that

» (subcritical case) If ¢ < ay, then there is no k-core with positive
probability (and with high probability for k > 3).

» (supercritical case) If ¢ > ay, then the k-core has asymptotic size

B(c) - n.




Critical 2-core

Theorem (Janson, Knuth, Luczak & Pittel, 93)

Let p = % Then the 2-core of G(n, p) has size of order nt/3

infinity.

as n goes to




Discontinuity for the 3-core

For the 3-core, the phase transition is discontinuous.
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Karp-Sipser Core

The Karp—Sipser Core of a graph G is the subgraph of G obtained by

recursively removing the leaves of G and their neighbors.
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Phase transition

Theorem (Karp & Sipser, 81)

» (subcritical case) If c < e, then as n — oo we have

C

lKSCore (G (n, ;))| = Op(1).

» (supercritical case) If c > e, then

n—t. ‘KSCore (G (n, E))

n

(P)

n— oo

> B(c) > 0.




Critical KS

Conjecture (Bauer & Golinelli, 2001, Table 1 line c)

In the critical case, we have

|KSCore (G (n, %))‘ ~n'/°




Our model

Fix d” = (d{, dj, df)n>1 (number of vertices) such that
n=d; + 2dy 4 3d3 is even.

Consider a random multi-graph CM(d") sampled by pairing the edges em-
anating for the di' 4 dJ 4 d3' vertices uniformly at random.
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Our model

Fix d” = (d{, dj, df)n>1 (number of vertices) such that
n=d +2d) + 3d5 is even.

Consider a random multi-graph CM(d") sampled by pairing the edges em-
anating for the di' 4 dJ 4 d3' vertices uniformly at random.

Assume that

dr 2y 37
: > P1; : > p2, and :

n n—o0 n n— oo n n— 00




Phase transition revisited

Theorem (Budzinski, C. & Curien, 2022)

Let
© = (p3s — p1)° — 4p1.




Phase transition revisited

Theorem (Budzinski, C. & Curien, 2022)

Let
© = (p3s — p1)° — 4p1.

» (subcritical case) If © < 0, then as n — oo we have
'KSCore (CM(d™))| = Op(log(n)?).
» (supercritical case) If © > 0, then

(P) 40

5 > 0.
n—oo 34+ O

n~! . |KSCore (CM(d"))|




Critical KS

Assume © = (p3 — p1)? — 4p1 = 0 (strictly critical case),




Critical KS

Assume © = (p3 — p1)? — 4p1 = O (strictly critical case), and let Dy(n)
(resp. D3(n)) be the total number of half-edges attached to a vertex of
degree 2 (resp. 3) in the KS-core. Then we have

n - D(n) (d) Cy - 972

n—2/5. Ds(n) n—00 C3-0973 )’
where ¥ = inf{t > 0: B; = t—°}, for a standard linear Brownian motion
(Bt : t > 0) issued from 0.




Markovian Exploration

Main idea: Construct the core and attach the half-edges simultaneously.
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Markovian Exploration

Main idea: Construct the core and attach the half-edges simultaneously.

We denote by
(X!, Y., Z! : k> 0)

the number of unmatched half-edges linked to vertices of unmatched degree
1,2,3 at step k.

Proposition

(X7, Y., Z : k> 0) is a Markov chain.




Example: Transitions for the 2-core
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Fluid limit approximation

Xt Yh o 2 P
( LtJ, LfJ, UJ) ()>(%,@,Qp)0§t§text'
0<t<O"/n
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Example: Fluid limit for the 2-core

0
"~

(5-1) | | S—1
CI o @ o @
—2 11 1 O1 —1
0|2 | —2 12 | +2
O[3 1| 013 | —3
, —2Xx—7Z
X =
X+y+2z
Y = —2y + 2z L —3z




Example: Fluid limit for the 2-core

S =2x—z o =2y+ 2z / —3z
X = , y = , 7 = .
X+y+2 X+y+z X+y+z
- Wehave (x+y+2) = —2.

. We assume y(0) = 0 and obtain
x(£) = (1 = 2z9)(1 = 20) + zo(1 — 26)°"%,
(1) = 2zo((1 = 21) — (1 = 20)"),

2(1) = zo(1 = 20)*,



Fluid limit approximation of the 2-core
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KS-core : transitions

The 13 possible transitions of this Markov chain...



KS-core : transitions

The 13 possible transitions of this Markov chain...
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...and its fluid limit approximation:
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...and its fluid limit approximation:

XnoYh o Zn P
( \_t J 7 |_t J : I—t J) ( ) > (c%‘, g; QP)OStStexta
0<t<0"/n

where (2, %, %) is the unique solution to the differential equation

2 —2x — yz — 3x°z — 2yx + zy? — 2zxy — z> — 4z°x
| = 473 — 2xy — 4zy’ — 4xyz — 4y? + 4z°x ,
' —3yz — 3zy? — 12z°y — 3zx? — 6xyz — 122°x — 923

1

where (x,y,z) = (2, %, %) is the proportion vector,

X +Y+

with initial conditions (p1, p2, p3) and where tey is the first hitting time of
0 by the continuous process 2 .
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The fluid limit is not sufficient : Three examples



Two tribes, initially 7 individuals in each tribe

At each step :

Pick an individual
uniformly at
random and it dies

AX,Y,) (X, Y=

X

~ (-1,0) with proba

< Y,
(0,-1) with proba X
- X, +7Y,

~

-

(X, Y}) : k > 0) number of individuals in

the tribes at step &

Pick a tribe
uniformly at
random and an
individual of this
tribe dies

|
(-1,0) with proba 5

1
(0,-1) with proba 5

Pick an individual
uniformly at
random and it Kills
someone In the
other tribe

Yk
Xk+ Yk

~ (-1,0) with proba

X
(0,-1) with proba
- X, +7,
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Two tribes, initially 7 individuals in each tribe

At each step :

X
O
X+Yy
3 oy
y:
— X+Yy
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Two tribes, initially 7 individuals in each tribe

At each step :

X
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Xk
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Two tribes, initially 7 individuals in each tribe

At each step : (X, Y}) : k > 0) number of individuals in
the tribes at step &

/ X 1 , y
 x' = (— X = — - x' =
X+Yy 9 X+Yy
< y/: y < ) 1 { y/: A
. X+ y .Y T _ x+y




Two tribes, initially 7 individuals in each tribe

At each step : (X, Y}) : k > 0) number of individuals in
the tribes at step &
( x’ — x (— x/ — l (~ X, — y
X+Yy 9 X+Yy
< y'= ’ | =] { y' = -
- X+y WA . xX+y

Number of individuals
remaining when one tribe
dies out

Op(1) Op(\/1) Op(n®*)




Back to Karp—Sipser
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Back to Karp—Sipser
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Control of the fluctuations : the drift

e The fluctuations are smaller!

 The drift brings the X "closer" to its fluid limit 2. More precisely:

A — Ax A B Gl & kAk
Mlexy —
lox (T
. Between > and k = (t,,, — €)n, we have,
. 1
-[A, A ]~ A - 1
k “*t.nl2 toy 12 | H fooll — i

= th/ 2

extn
~/n ~ ey/n

extn



Control of the fluctuations : the variance

e Dominant case: )
n §
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Control of the fluctuations : the variance

« So X increases or decreases by 1 with probability ~ el’? Thus,
for k = (¢, — €)n,

Var[A, , — A, A~ el

Xt

'S
. Adding all steps from k = (¢, — e)nto k' = (£, — E)n, we get,

Xt Xt

Var[A, — A, Al ~ e!?. en ~ e9n,

so the fluctuations coming "from the end" are of order g3 4\/2

. Extinction when e¥*\/n ~ €’ni.e. when ¢ ~ n=>">.
e There are en ~ vertices of degree 2 and e vertices
of degree 3.

* (We also need to control the fluctuations of Y and Z to ensure that the fluid limit
approximation is still good for vertices of degree 2 and 3 before extinction).



Bonus : final SDE

n3/5

» Focus on the time scale k = nf,,, — tn~">, and look at the rescaled fluctuations:

—_ | o (
k—m Xk—l’l ; .

 Drift and variance estimates:

—~—~— —~—~—

[E[Ak+l_Ak Ak]%—mAk,,

n—oo

1 1/4
where dFt = — TFtdf ~+ 2 3 4 dBt .

! . @ (F .
SO, mAntext+tn3/5.—KSl‘SO —)(FI—KSZLSO>,



Thank you for your attention |




