Critical Core Percolation on Random Graphs

Alice Contat

Université Sorbonne Paris-Nord

Oxford Discrete Maths and Probability Seminar $17^{th} \ \ October \ 2023$ joint with Thomas Budzinski and Nicolas Curien

Definition

The k-core of a graph G is the (unique) maximal subgraph of G in which all vertices have induced degree at least k.

Definition

The k-core of a graph G is the (unique) maximal subgraph of G in which all vertices have induced degree at least k.

Definition

The k-core of a graph G is the (unique) maximal subgraph of G in which all vertices have induced degree at least k.

Lemma

We can obtain the k-core of G by recursively removing the vertices of degree less than k.

Phase transition

Let G(n, p) be an Erdős–Rényi random graph.

Theorem (Pittel, 90; Chvátal, 91)

Let $p = \frac{c}{n}$. There exists $\alpha_k > 0$ such that

- (subcritical case) If $c < \alpha_k$, then there is no k-core with positive probability (and with high probability for $k \ge 3$).
- (supercritical case) If $c > \alpha_k$, then the k-core has asymptotic size $\beta(c) \cdot n$.

Critical 2-core

Theorem (Janson, Knuth, Luczak & Pittel, 93)

Let $p = \frac{1}{n}$. Then the 2-core of G(n, p) has size of order $n^{1/3}$ as n goes to infinity.

Discontinuity for the 3-core

For the 3-core, the phase transition is discontinuous.

Discontinuity for the 3-core

For the 3-core, the phase transition is discontinuous.

Karp-Sipser Core

Definition

The Karp-Sipser Core of a graph G is the subgraph of G obtained by recursively removing the leaves of G and their neighbors.

Karp-Sipser Core

Definition

The Karp-Sipser Core of a graph G is the subgraph of G obtained by recursively removing the leaves of G and their neighbors.

Phase transition

Theorem (Karp & Sipser, 81)

• (subcritical case) If c < e, then as $n \to \infty$ we have

$$\left| \text{KSCore} \left(G \left(n, \frac{c}{n} \right) \right) \right| = O_{\mathbb{P}}(1).$$

ightharpoonup (supercritical case) If c > e, then

$$n^{-1} \cdot \left| \text{KSCore} \left(G \left(n, \frac{c}{n} \right) \right) \right| \xrightarrow[n \to \infty]{(\mathbb{P})} \beta(c) > 0.$$

Critical KS

Conjecture (Bauer & Golinelli, 2001, Table 1 line c)

In the critical case, we have

$$\left| \text{KSCore} \left(G \left(n, \frac{e}{n} \right) \right) \right| \approx n^{3/5}$$

Our model

Fix $\mathbf{d}^n = (d_1^n, d_2^n, d_3^n)_{n \geq 1}$ (number of vertices) such that

$$n = d_1^n + 2d_2^n + 3d_3^n$$
 is even.

Consider a random multi-graph $CM(\mathbf{d}^n)$ sampled by pairing the edges emanating for the $d_1^n + d_2^n + d_3^n$ vertices uniformly at random.

Our model

Fix $\mathbf{d}^n = (d_1^n, d_2^n, d_3^n)_{n \geq 1}$ (number of vertices) such that

$$n = d_1^n + 2d_2^n + 3d_3^n$$
 is even.

Consider a random multi-graph $CM(\mathbf{d}^n)$ sampled by pairing the edges emanating for the $d_1^n + d_2^n + d_3^n$ vertices uniformly at random.

Assume that

$$\frac{d_1^n}{n} \xrightarrow[n \to \infty]{} p_1, \quad \frac{2d_2^n}{n} \xrightarrow[n \to \infty]{} p_2, \quad \text{and} \quad \frac{3d_3^n}{n} \xrightarrow[n \to \infty]{} p_3.$$

Phase transition revisited

Theorem (Budzinski, C. & Curien, 2022)

Let

$$\Theta = (p_3 - p_1)^2 - 4p_1.$$

Phase transition revisited

Theorem (Budzinski, C. & Curien, 2022)

Let

$$\Theta = (p_3 - p_1)^2 - 4p_1.$$

• (subcritical case) If $\Theta < 0$, then as $n \to \infty$ we have

$$|KSCore(CM(\mathbf{d}^n))| = O_{\mathbb{P}}(\log(n)^2).$$

• (supercritical case) If $\Theta > 0$, then

$$n^{-1} \cdot |\operatorname{KSCore}\left(\operatorname{CM}(\operatorname{\mathbf{d}}^n)\right)| \xrightarrow[n \to \infty]{(\mathbb{P})} \frac{4\Theta}{3+\Theta} > 0.$$

Critical KS

Theorem

Assume $\Theta = (p_3 - p_1)^2 - 4p_1 = 0$ (strictly critical case),

Critical KS

Theorem

Assume $\Theta = (p_3 - p_1)^2 - 4p_1 = 0$ (strictly critical case), and let $D_2(n)$ (resp. $D_3(n)$) be the total number of half-edges attached to a vertex of degree 2 (resp. 3) in the KS-core. Then we have

$$\begin{pmatrix} n^{-3/5} \cdot D_2(n) \\ n^{-2/5} \cdot D_3(n) \end{pmatrix} \xrightarrow[n \to \infty]{} \begin{pmatrix} C_2 \cdot \vartheta^{-2} \\ C_3 \cdot \vartheta^{-3} \end{pmatrix},$$

where $\vartheta = \inf\{t \ge 0 : B_t = t^{-2}\}$, for a standard linear Brownian motion $(B_t : t \ge 0)$ issued from 0.

Main idea: Construct the core and attach the half-edges simultaneously.

We denote by

$$(X_k^n, Y_k^n, Z_k^n : k \ge 0)$$

the number of unmatched half-edges linked to vertices of unmatched degree 1, 2, 3 at step k.

Proposition

 $(X_k^n, Y_k^n, Z_k^n : k \ge 0)$ is a Markov chain.

Example: Transitions for the 2-core

Fluid limit approximation

Proposition

$$\left(\frac{X_{\lfloor tn\rfloor}^n}{n}, \frac{Y_{\lfloor tn\rfloor}^n}{n}, \frac{Z_{\lfloor tn\rfloor}^n}{n}\right)_{0 \le t \le \theta^n/n} \xrightarrow{(\mathbb{P})} (\mathscr{X}, \mathscr{Y}, \mathscr{Z})_{0 \le t \le t_{\text{ext}}}.$$

Example: Fluid limit for the 2-core

$$y' = \frac{-2y + 2z}{x + y + z}$$

$$z' = \frac{-3z}{x + y + z}$$

Example: Fluid limit for the 2-core

$$x' = \frac{-2x - z}{x + y + z}, \quad y' = \frac{-2y + 2z}{x + y + z}, \quad z' = \frac{-3z}{x + y + z}.$$

- We have (x + y + z)' = -2.
- We assume y(0) = 0 and obtain

$$\begin{cases} x(t) = (1 - 2z_0)(1 - 2t) + z_0(1 - 2t)^{3/2}, \\ y(t) = 2z_0((1 - 2t) - (1 - 2t)^{3/2}), \\ z(t) = z_0(1 - 2t)^{3/2}, \end{cases}$$

Fluid limit approximation of the 2-core

KS-core: transitions

The 13 possible transitions of this Markov chain...

KS-core: transitions

The 13 possible transitions of this Markov chain...

...and its fluid limit approximation:

$$\left(\frac{X_{\lfloor tn\rfloor}^n, Y_{\lfloor tn\rfloor}^n, Z_{\lfloor tn\rfloor}^n}{n}, \frac{Z_{\lfloor tn\rfloor}^n}{n}\right)_{0 \leq t \leq \theta^n/n} \xrightarrow[n \to \infty]{(\mathbb{P})} (\mathscr{X}, \mathscr{Y}, \mathscr{Z})_{0 \leq t \leq t_{\mathrm{ext}}},$$

...and its fluid limit approximation:

$$\left(\frac{X_{\lfloor tn\rfloor}^n}{n}, \frac{Y_{\lfloor tn\rfloor}^n}{n}, \frac{Z_{\lfloor tn\rfloor}^n}{n}\right)_{0 \leq t \leq \theta^n/n} \xrightarrow[n \to \infty]{(\mathbb{P})} (\mathscr{X}, \mathscr{Y}, \mathscr{Z})_{0 \leq t \leq t_{\mathrm{ext}}},$$

where $(\mathscr{X}, \mathscr{Y}, \mathscr{Z})$ is the unique solution to the differential equation

$$\begin{pmatrix} \mathscr{X}' \\ \mathscr{Y}' \\ \mathscr{Z}' \end{pmatrix} = \begin{pmatrix} -2x - yz - 3x^2z - 2yx + zy^2 - 2zxy - z^3 - 4z^2x \\ 4z^3 - 2xy - 4zy^2 - 4xyz - 4y^2 + 4z^2x \\ -3yz - 3zy^2 - 12z^2y - 3zx^2 - 6xyz - 12z^2x - 9z^3 \end{pmatrix},$$

where
$$(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \frac{1}{\mathscr{X} + \mathscr{Y} + \mathscr{Z}} (\mathscr{X}, \mathscr{Y}, \mathscr{Z})$$
 is the proportion vector,

with initial conditions (p_1, p_2, p_3) and where t_{ext} is the first hitting time of 0 by the continuous process \mathscr{X} .

The fluid limit is not sufficient: Three examples

At each step:

 $((X_k, Y_k): k \ge 0)$ number of individuals in the tribes at step k

Pick an individual uniformly at random and it dies

Pick a tribe uniformly at random and an individual of this tribe dies

Pick an individual uniformly at random and it kills someone in the other tribe

$$\Delta(X_k, Y_k) \quad (X_k, Y_k) =$$

$$\left\{ \begin{array}{l} \text{(-1,0) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{Y_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(-1,0) with proba} \, \frac{1}{2} \\ \text{(0,-1) with proba} \, \frac{1}{2} \end{array} \right\} \left\{ \begin{array}{l} \text{(-1,0) with proba} \, \frac{Y_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with prob$$

$$(-1,0)$$
 with proba $\frac{1}{2}$

(0,-1) with proba
$$\frac{1}{2}$$

(-1,0) with proba
$$\frac{Y_k}{X_k + Y_k}$$
 (0,-1) with proba $\frac{X_k}{X_k + X_k}$

At each step:

$$((X_k, Y_k): k \ge 0)$$
 number of individuals in the tribes at step k

$$\begin{cases} x' = \frac{x}{x+y} \\ y' = \frac{y}{x+y} \end{cases}$$

Pick an individual uniformly at random and it kill someone in the other tribe

$$\Delta(X_k, Y_k) \ (X_k, Y_k) =$$

$$\left\{ \begin{array}{l} \text{(-1,0) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{Y_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(-1,0) with proba} \, \frac{1}{2} \\ \text{(0,-1) with proba} \, \frac{1}{2} \end{array} \right\} \left\{ \begin{array}{l} \text{(-1,0) with proba} \, \frac{Y_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with prob$$

(-1,0) with proba
$$\frac{1}{2}$$

(0,-1) with proba $\frac{1}{2}$

(-1,0) with proba
$$\dfrac{T_k}{X_k+Y_k}$$
 (0,-1) with proba $\dfrac{X_k}{X_k+Y_k}$

At each step:

$$((X_k, Y_k): k \ge 0)$$
 number of individuals in the tribes at step k

$$\begin{cases} x' = \frac{x}{x+y} \\ y' = \frac{y}{x+y} \end{cases}$$

$$\begin{cases} x' = \frac{1}{2} \\ y' = \frac{1}{2} \end{cases}$$

$$x' = \frac{1}{2}$$

$$y' = \frac{1}{2}$$

Pick an individual uniformly at random and it kill someone in the other tribe

$$\Delta(X_k, Y_k) \ (X_k, Y_k) =$$

$$\left\{ \begin{array}{l} \text{(-1,0) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{Y_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(-1,0) with proba} \, \frac{1}{2} \\ \text{(0,-1) with proba} \, \frac{1}{2} \end{array} \right\} \left\{ \begin{array}{l} \text{(-1,0) with proba} \, \frac{Y_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with prob$$

(-1,0) with proba
$$\frac{1}{2}$$

(0.-1) with proba $\frac{1}{2}$

(-1,0) with proba
$$\frac{T_k}{X_k + Y_k}$$
 (0,-1) with proba
$$\frac{X_k}{X_k + Y_k}$$

At each step:

 $((X_k, Y_k): k \geq 0)$ number of individuals in the tribes at step k

$$\begin{cases} x' = \frac{x}{x+y} \\ y' = \frac{y}{x+y} \end{cases}$$

$$x' = \frac{1}{2}$$

$$y' = \frac{1}{2}$$

$$\begin{cases} x' = \frac{x}{x+y} \\ y' = \frac{y}{x+y} \end{cases} \qquad \begin{cases} x' = \frac{1}{2} \\ y' = \frac{1}{2} \end{cases} \qquad \begin{cases} x' = \frac{y}{x+y} \\ y' = \frac{x}{x+y} \end{cases}$$

$$\Delta(X_k, Y_k) \ (X_k, Y_k) =$$

$$\int_{-1,0}^{-1,0} \text{ with proba } \frac{X_k}{X_k + Y_k}$$

$$(0,-1) \text{ with proba } \frac{Y_k}{X_k + Y_k}$$

(-1,0) with proba
$$\frac{1}{2}$$
 (0,-1) with proba $\frac{1}{2}$

$$\left\{ \begin{array}{l} \text{(-1,0) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{Y_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(-1,0) with proba} \, \frac{1}{2} \\ \text{(0,-1) with proba} \, \frac{1}{2} \end{array} \right\} \left\{ \begin{array}{l} \text{(-1,0) with proba} \, \frac{Y_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \\ \text{(0,-1) with proba} \, \frac{X_k}{X_k + Y_k} \end{array} \right\} \left\{ \begin{array}{l} \text{(0,-1) with prob$$

At each step:

 $((X_k, Y_k): k \ge 0)$ number of individuals in the tribes at step k

$$\begin{cases} x' = \frac{x}{x+y} \\ y' = \frac{y}{x+y} \end{cases}$$

$$\begin{cases} x' = \frac{1}{2} \\ y' = \frac{1}{2} \end{cases}$$

$$\begin{cases} x' = \frac{x}{x+y} \\ y' = \frac{y}{x+y} \end{cases}$$

$$\begin{cases} x' = \frac{1}{2} \\ y' = \frac{1}{2} \end{cases}$$

$$\begin{cases} x' = \frac{y}{x+y} \\ y' = \frac{x}{x+y} \end{cases}$$

At each step:

 $((X_k, Y_k): k \ge 0)$ number of individuals in the tribes at step k

$$\begin{cases} x' = \frac{x}{x+y} \\ y' = \frac{y}{x+y} \end{cases}$$

$$\begin{cases} x' = \frac{1}{2} \\ y' = \frac{1}{2} \end{cases}$$

$$\begin{cases} x' = \frac{1}{2} \\ y' = \frac{1}{2} \end{cases}$$

$$\begin{cases} x' = \frac{y}{x+y} \\ y' = \frac{x}{x+y} \end{cases}$$

Number of individuals remaining when one tribe dies out

$$O_{\mathbb{P}}(1)$$

$$O_{\mathbb{P}}(\sqrt{n})$$

$$O_{\mathbb{P}}(n^{3/4})$$

Back to Karp—Sipser

Back to Karp—Sipser

Let

$$A_k^n = X_k^n - n\mathcal{X}\left(\frac{k}{n}\right), \quad B_k^n = Y_k^n - n\mathcal{Y}\left(\frac{k}{n}\right), \quad C_k^n = Z_k^n - n\mathcal{Z}\left(\frac{k}{n}\right),$$

Trive guess : $A_k pprox \sqrt{n}$, so vertices of degree 1 extinct when

$$A_{k} \approx n\mathcal{X}\left(\frac{k}{n}\right) \Leftrightarrow \sqrt{n} \approx \varepsilon^{2} n \Leftrightarrow \varepsilon \sim n^{-1/4}$$

At that time, there are $n^{3/4}$ vertices of degree 2 and $n^{3/2} \approx n^{5/8}$ vertices of degree 3.

Control of the fluctuations: the drift

- The fluctuations are smaller!
- The drift brings the X "closer" to its fluid limit \mathcal{X} . More precisely:

$$\mathbb{E}[A_{k+1} - A_k \ A_k, B_k, C_k] \approx -\frac{1}{nt_{\text{ext}} - k} A_k$$

. Between $\frac{t_{\rm ext}n}{2}$ and $k=(t_{\rm ext}-\varepsilon)n$, we have,

$$\begin{split} \mathbb{E}[A_k \ A_{t_{\text{ext}}n/2}] &\approx A_{t_{\text{ext}}n/2} \cdot \prod_{i=t_{\text{ext}}n/2}^k \left(1 - \frac{1}{t_{\text{ext}}n - i}\right) \\ &\approx \sqrt{n} \frac{t_{\text{ext}}n - k}{t_{\text{ext}}n} \approx \varepsilon \sqrt{n} \end{split}$$

Control of the fluctuations: the variance

Dominant case:

• Next order (probability $\approx \varepsilon^{1/2}$):

Control of the fluctuations: the variance

• So X increases or decreases by 1 with probability $\approx \varepsilon^{1/2}$. Thus, for $k=(t_{\rm ext}-\varepsilon)n$,

$$Var[A_{k+1} - A_k \ A_k] \approx \varepsilon^{1/2}$$
.

. Adding all steps from $k=(t_{\rm ext}-\varepsilon)n$ to $k'=(t_{\rm ext}-\frac{\varepsilon}{2})n$, we get, ${\rm Var}[A_{k'}-A_k\ A_k]\approx \varepsilon^{1/2}\cdot \varepsilon n\approx \varepsilon^{3/2}n,$

so the fluctuations coming "from the end" are of order $\varepsilon^{3/4}\sqrt{n}$

- Extinction when $\varepsilon^{3/4}\sqrt{n}\approx \varepsilon^2 n$ i.e. when $\varepsilon\approx n^{-2/5}$.
- There are $\varepsilon n \approx n^{3/5}$ vertices of degree 2 and $\varepsilon^{3/2} n \approx n^{2/5}$ vertices of degree 3.
- (We also need to control the fluctuations of Y and Z to ensure that the fluid limit approximation is still good for vertices of degree 2 and 3 before extinction).

Bonus: final SDE

• Focus on the time scale $k = nt_{\rm ext} - tn^{3/5}$, and look at the rescaled fluctuations:

$$\widetilde{A_k} = \frac{1}{n^{1/5}} \left(X_k - n \mathcal{X} \left(\frac{k}{n} \right) \right).$$

Drift and variance estimates:

$$\mathbb{E}[\widetilde{A}_{k+1} - \widetilde{A}_{k} \ \widetilde{A}_{k}] \approx -\frac{1}{tn^{3/5}} \widetilde{A}_{k},$$

$$\operatorname{Var}[\widetilde{A}_{k+1} - \widetilde{A}_{k} \ \widetilde{A}_{k}] \approx 2\sqrt{3}\sqrt{tn^{-3/5}}.$$

. So,
$$\left(\frac{1}{n^{1/5}}A_{nt_{\rm ext}+tn^{3/5}}:-K\leq t\leq 0\right)\frac{{}^{(d)}}{{}^{n\to\infty}}\left(F_t:-K\leq t\leq 0\right),$$
 where
$${\rm d}F_t=-\frac{1}{t}F_t{\rm d}t+\sqrt{2\sqrt{3}}\ t^{-1/4}{\rm d}B_t\,.$$

Thank you for your attention!

