Factors in randomly perturbed graphs

Amedeo Sgueglia Joint work with Julia Böttcher, Olaf Parczyk, and Jozef Skokan

Oxford Discrete Mathematics and Probability Seminar

 $18~{\rm May}~2021$

A *H*-factor in a graph G is a collection of pairwise vertex-disjoint copies of H in G that covers all vertices of G.

Example: The graph below has a K_3 -factor.

Problem

Determine conditions on G which guarantee a H-factor in G.

Minimum degree thresholds in graphs

Problem

Determine the minimum degree threshold that ensures a graph G contains a H-factor.

 K_3 -factor (Corrádi, Hajnal 1963)

 $\delta(G) \geq 2n/3$

 K_r -factor (Hajnal and Szemerédi, 1970)

 $\delta(G) \ge (1 - 1/r)n$

 C_{ℓ} -factor (conjectured by El-Zahar and solved by Abbasi, 1998)

$$\delta(G) \geq \begin{cases} \frac{n}{2} & \text{if } \ell \text{ is even,} \\ \frac{\ell+1}{2\ell}n & \text{if } \ell \text{ is odd.} \end{cases}$$

Kühn and Osthus (2009) determined up to an additive constant the minimum degree threshold for H-factor, for any graph H.

Thresholds in random graph

We consider the binomial random graph G(n, p).

Problem

Determine the threshold t = t(n, H) at which G(n, p) a.a.s. contains a *H*-factor.

- If $p = \omega(t)$, a.a.s. G(n, p) has a *H*-factor, and
- if p = o(t), a.a.s. G(n, p) does not have a *H*-factor.

 K_r -factor (Johansson, Kahn and Vu, 2008)

$$t(n) = n^{-2/r} (\log n)^{2/(r^2 - r)}$$

 $C_{\ell}\text{-factor}$ (Johansson, Kahn and Vu, 2008)

$$t(n) = n^{-(\ell-1)/\ell} (\log n)^{1/\ell}$$

Their result is more general, but the problem for general H-factor is still open for some graphs H.

Thresholds in randomly perturbed graphs

Let $\alpha, p \in [0, 1], n \in \mathbb{N}$ and G_{α} be a *n*-vertex graph with minimum degree at least αn . We call $G_{\alpha} \cup G(n, p)$ a randomly perturbed graph. (Bohman, Frieze and Martin, 2003)

Problem

Given α , determine the threshold $t = t(n, \alpha, H)$ at which $G_{\alpha} \cup G(n, p)$ a.a.s. contains a *H*-factor.

- If $p = \omega(t)$, for any G_{α} a.a.s. $G_{\alpha} \cup G(n, p)$ has a *H*-factor, and
- if p = o(t), for one G_{α} , a.a.s. $G_{\alpha} \cup G(n, p)$ does not have a *H*-factor.

Small α :

the dense graph 'helps' G(n, p) to have the spanning structure.

Small p:

the random edges 'help' the dense graph to have the spanning structure.

Clique factors

Threshold for K_r -factor in $G_\alpha \cup G(n, p)$:

• Balogh, Treglown and Wagner (2019)

 $t(n) = n^{-2/r}$ for $\alpha \in \left(0, \frac{1}{r}\right)$

They gave the threshold for *H*-factors for small α , for any *H*.

• Han, Morris and Treglown (2021) $t(n) = n^{-2/(r-k)} \text{ for } \alpha \in \left(\frac{k}{r}, \frac{k+1}{r}\right)$

The threshold is constant within each interval and jumps at the endpoints. For K_3 -factor:

$\alpha = 0$	$0<\alpha<1/3$	$1/3 < \alpha < 2/3$	$2/3 \le \alpha$
$n^{-2/3}(\log n)^{1/3}$	$n^{-2/3}$	n^{-1}	0
Johansson, Kahn	Balogh, Treglown,	Han, Morris,	Corrádi, Hajnal,
and Vu, 2008	and Wagner, 2019	and Treglown, 2021	1963

Question

What about the **boundary case(s**)?

$\alpha = 0$	$0<\alpha<1/3$	$\alpha = 1/3$	$1/3 < \alpha < 2/3$	$2/3 \le \alpha$
$n^{-2/3}(\log n)^{1/3}$	$n^{-2/3}$	$n^{-1}(\log n)$	n^{-1}	0

For $\alpha = 1/3$, $\omega(n^{-1})$ is not enough and $\omega(n^{-1}\log n)$ is needed:

Theorem (Böttcher, Parczyk, S. and Skokan, 2020+) There exists C > 0 such that with $p \ge C \log n/n$ the following holds. $G_{1/3} \cup G(n, p)$ a.a.s. contains a triangle factor.

Triangle factors - a bit more

Theorem (Böttcher, Parczyk, S. and Skokan, 2020+) For $0 < \beta < 1/12$ there exist $\gamma > 0$ and C > 0 such that for any α with $4\beta \le \alpha \le 1/3$ and $p \ge C/n$ the following holds. If G

- has minimum degree at least $(\alpha \gamma) n$, and
- is not ' β -close' to the extremal graph,

then a.a.s. $G \cup G(n, p)$ contains at least min $\{\alpha n, \lfloor n/3 \rfloor\}$ pairwise vertex-disjoint triangles.

Theorem (Böttcher, Parczyk, S., and Skokan, 2020+) There exists C > 0 such that with $p \ge C \log n/n$ the following holds. $G \cup G(n, p)$ a.a.s. contains at least min{ $\delta(G), \lfloor n/3 \rfloor$ } pairwise vertex-disjoint triangles.

Our results extend to cycle factors.

$$\label{eq:alpha} \boxed{ \begin{array}{c|c} \alpha = 0 & 0 < \alpha < 1/\ell & \alpha = 1/\ell & 1/\ell < \alpha < \alpha^{\star} & \alpha^{\star} \le \alpha \\ \hline n^{-(\ell-1)/\ell} (\log n)^{1/\ell} & n^{-(\ell-1)/\ell} & n^{-1}\log n & n^{-1} & 0 \\ \end{array} }$$

Proof idea - Extremal case 1/2

Let G be a graph with $\delta(G) \ge n/3$ and assume G is β -close to the extremal graph.

Let G be a graph with $\delta(G) \ge (1/3 - \gamma)n$ and assume G is not β -close to the extremal graph.

We apply the regularity lemma.

Stability tool (Balogh, Mousset, and Skokan)

The reduced graph R has a matching with $(1/3 + 4\gamma)v(R)$ edges.

Proof idea - Non extremal case 2/2

Proof idea - Non extremal case 2/2

The leaf clusters have equal sizes but are slightly smaller then the centre. Moreover the total number of vertices is divisible by 3. With $p \ge C/n$, a.a.s. the cherry has a triangle factor.

Larger clique factors

 K_4 -factor in $G \cup G(n, p)$:

$\alpha = 0$	$0 < \alpha < 1/4$	$\alpha = 1/4$	$1/4 < \alpha < 2/4$	
$n^{-1/2}(\log n)^{1/6}$	$n^{-1/2}$	$n^{-2/3}(\log n)^{1/3}?$	$n^{-2/3}$	
		False!		

- Assume $G \cup G(n, p)$ has a K_4 -factor.
- Since |A| = n/4 m, there must be at least *m* disjoint K_4 's with all vertices in *B*.
- For small $\varepsilon > 0$ and $n^{7\varepsilon} \le m \le n^{1/7}$, $\mathbb{E}[\#K'_4s \text{ in } B] < m.$
- The same calculation shows that even $p = n^{-2/3+\varepsilon}$ does not suffice.

Other boundary cases

• Investigate the perturbed threshold for clique factors for other boundary cases.

General *H*-factors

• Balogh, Treglown and Wagner gave the perturbed thresholds for perfect *H*-factor for $\alpha < 1/|H|$. The problem is still wide open for larger values of α .

Thank you!