

Fairness: how to share resources between individuals?

**Uneven setting:** individuals have different locations/desires/abilities.

Maximize "overall happiness"...?

Should we make X happier but Y less happy?

much slightly

...even if X already happier than Y?

Maximize  $\sum_{\text{individuals}} f(\text{happiness})$ .

Given such a metric, what are the consequences? Can individuals agree on a solution?

# Simple but rich mathematical setting: Matching

Solution: minimize locally.

*M* is 
$$\gamma$$
-minimal if  $\forall$  finite  $\{(r_1, b_1), ..., (r_m, b_m)\} \subseteq M$ ,

$$\sum_{i} |r_i - b_i|^{\gamma} = \min_{\sigma \in S_m} \sum_{i} |r_i - b_{\sigma(i)}|^{\gamma}$$
 permutation

Also: 
$$-\infty < \gamma < 0$$
: replace  $| |^{\gamma}$  with  $-| |^{\gamma}$  same as  $\gamma = 0$ : (only scale-invariant choices)

$$\gamma = -\infty$$
 (selfish): lexicographically minimize   
  $\uparrow$  ordering of  $|r_1 - b_1|, ..., |r_m - b_m|$   $\gamma = +\infty$  (altruistic): lexicographically minimize

$$\downarrow$$
 ordering of  $|r_1-b_1|,...,|r_m-b_m|$ 





 $\gamma = -\infty$  (stable)



#### **Questions:**

Does a  $\gamma$ -minimal matching exist? Is it unique?

Is every point matched? ——

What ???

## Allow unmatched points! Then $\gamma$ -minimal means:

$$\forall (r_1, b_1), ..., (r_m, b_m) \in M$$
  
and unmatched  $x_1, ..., x_k \in R \cup B$ ,

$$\left( \text{\#unmatched , } \sum_i |r_i - b_i|^{\gamma} \right) \begin{array}{l} \text{is lexicographically} \\ \text{minimized among} \\ \text{matchings of } \{r_i, b_i, x_i\} \end{array} \right)$$

(in particular, cannot have both red and blue unmatched points)

#### **Questions:**

Does a  $\gamma$ -minimal matching exist? Is it unique?

Is every point matched?

Can we decide on a matching by a local algorithm? Edge lengths?

Also: 1-colour matching (all definitions analogous).



$$\gamma = -\infty$$
: fairly complete picture (especially 1-colour)

$$d=1$$
: fairly complete picture (especially 2-colour)

fairness makes things harder

$$d \ge 2$$
,  $\gamma > -\infty$ : existence in some cases

Open (e.g.): existence for 2 colours, d=2,  $\gamma=1,\infty$ ?

Case  $\gamma = -\infty$ : stable matching (Holroyd, Pemantle, Peres, Schramm, 2008)

**Theorem:** For any  $d \ge 1$ , and for R (and B) independent intensity-1 Poisson processes on  $\mathbb{R}^d$ , a.s. there is a unique  $(-\infty)$ -minimal 1- (2-)colour matching, and it is perfect (i.e. no unmatched points).

In fact, it is the unique **stable matching (marriage)** in the sense of (Gale, Shapley, 1962): each point *prefers* a partner as close as possible; matching is **unstable** if there exist a pair (of opposite colours) that both prefer each other over their current situation.

# Original formulation (Gale, Shapley, 1962):

*n* girls, *n* boys have arbitrary preference orders over those of opposite sex.

Theorem: there exists a stable set of *n* heterosexual marriages (and an algorithm...)

Not necessarily unique; may not exist in 1-colour / same-sex marriage / "roommates" version.

2012 Nobel memorial prize in Economics: Roth and Shapley.

Simple algorithm to construct the stable matching in our setting:

match all mutually closest pairs



Simple algorithm to construct the stable matching in our setting:

match all mutually closest pairs remove them repeat for countably many steps



**Theorem:** (HPPS 2008) For the stable matching, the matching distance X from a typical point to its partner satisfies  $\mathbb{E} X^{\alpha-\epsilon} < \infty$  but  $\mathbb{E} X^{\beta} = \infty$ , where:

|                     | α                  | β   |
|---------------------|--------------------|-----|
| 1-colour            | d                  | d   |
| 2-colour, $d=1$     | 1/2                | 1/2 |
| 2-colour, $d=2$     | 0.496              | 1   |
| 2-colour, $d \ge 3$ | $\Theta(1/\log d)$ | d   |

**Theorem:** (Eccles, Holroyd, Liggett, 2020+) For the 1-colour stable matching in d=1,

$$\mathbb{P}(X > r) \sim c/X$$

where  $c = e^{2\gamma}$ 

Euler-Mascheroni constant



Thomas M. Liggett, 1944 - 2020

# Many variants...





Case d = 1

## Theorem (Janson, Holroyd, Wästlund, 2020+)

For d=1, any  $\gamma$ , a.s. every  $\gamma$ -minimal 1- or 2-colour matching is perfect. Similarly on the strip  $\mathbb{R} \times [0,1]$ .

Note: Much stronger conclusion than:

Theorem: for any d, any stationary  $\gamma$ -minimal matching is perfect.

#### **Proof:**

1-colour:  $\leq 1$  unmatched point.

2-colour: all unmatched points same colour

+ ergodic decomposition.

# The picture for d=1



# The picture for d = 1: classification

**Theorem (JHW 2020+)** For d=1, a.s. the set of 2-colour  $\gamma$ -minimal matchings is:

$$\gamma \geq 1^+$$
: countable family  $\left(M^k\right)_{k\in\mathbb{Z}}$ ; no stationary matching locally finite

```
\gamma = 1: uncountable; uncountably many stationary matchings locally finite and locally infinite
```

locally finite locally infinite  $\gamma = 1^- \colon (M_k)_{k \in \mathbb{Z}}, \, M_\infty, M_{-\infty};$  only stationary matchings are mixtures of  $M_\infty, M_{-\infty}$ 

locally infinite 
$$\gamma < 1^-$$
: unique  $M$ ; : stationary.

Theorem (JHW 2020+): d=1, 2-colour.

For all  $\gamma \geq 1^+$ , the matchings are the same.

For any  $\gamma < 1^-, \gamma' \le 1^-$ , M, M' have finite differences.



# **Theorem (JHW 2020+):**

d=1, 2-colour,  $\gamma < 1^-$  (or  $M_{\infty}$  or  $M_{-\infty}$ )

Matching distance X satisfies  $\mathbb{E} X^{\alpha} < \infty$  iff  $\alpha < \frac{1}{2}$ .

M is a finitary factor of (R,B) with coding radius L satisfying

$$\mathbb{E} L^{\beta} < \infty$$

Can determine partner of a point by looking at points within (random) radius *L* 

d=1, 1-color:

similar, but some proofs missing

- in particular, uniqueness for  $\gamma < 1$ 

#### **Higher dimensions:**

## **Theorem (JHW 2020+):**

 $\exists$  a stationary (hence perfect)  $\gamma$ -minimal matching for:

```
2-colour, d \le 2, \gamma < 1;
2-colour, d \ge 3, \gamma < \infty;
1-colour, d \ge 2, \gamma < \infty.
```

Uniqueness open. Perfectness in general open. Existence open for other cases (note  $d \le 2$ ,  $\gamma \in \{1, \infty\}$ !)

Is there a case with no existence?

**Theorem (Holroyd 2010):** ∃ no 1-minimal 2-colour matching on the strip.

**Note:** 1-minimal matchings in d=2 have no crossings

**Open:** is there a stationary perfect 2-colour matching of independent Poisson processes with no crossings?



Theorem (Holroyd 2010): Yes if we drop stationarity.

#### **Proofs**

### d=1 classification



$$\gamma \geq 1^+$$



ordering of red points = ordering of blue partners







must match on same level of walk



$$\gamma = 1^-$$

$$M_k \text{ (locally finite)}$$

$$M_{\infty}, M_{-\infty} \text{ (locally infinite)}$$

**Perfectness:** 2-colour, d=1 (or strip), any  $\gamma$ .

potentially unmatched = unmatched in some  $\gamma$ -minimal M a.s. exist red and blue potentially unmatched points r, b



**Existence:**  $\gamma < 1$ , all d.

Quasi-stability:  $\exists c(\gamma) \geq 1$ :



stationary subsequential limit



All unmatched points same colour...

**Existence:** provided  $0 < \gamma < \infty$  and there exists a stationary (not necessarily minimal) M with finite "average cost":

$$\mathbb{E} X^{\gamma} < \infty$$

subsequential limit of matchings  $M_n$  with

$$\mathbb{E} X_n^{\gamma} \searrow \inf_M \mathbb{E} X^{\gamma}$$

is  $\gamma$ -minimal.

E.g. true for 2 colours:

$$d \le 2$$
,  $\gamma < \frac{d}{2}$   $d \ge 3$ ,  $\gamma < \infty$ 

## Uniqueness, finite differences, finitariness:

$$d = 1, \ \gamma < 1.$$

Random walk / Brownian motion estimates  $\Rightarrow$   $\exists L$  (random, with  $\mathbb{E} L^{\beta} < \infty$ )



Quasi-stability + same-level matching  $\Rightarrow$  matching "trapped" in [-L, L]

#### Tail bound:

$$d = 1, \ \gamma < 1.$$

**Bad** point: distance to partner > (2c + 1)L



Bad points of  $\leq 1$  colour, say red.

equal # good red & blue

 $\mathbb{E}$  # bad red in  $[0,L] \leq \mathbb{E}$  range of random walk in [0,L]

$$L \; \mathbb{P}[X > (2c+1)L] \leq C/\sqrt{L}$$

$$\mathbb{E}X^{\frac{1}{2}-\epsilon} < \infty$$

# Open Questions

Any setting (colours, d,  $\gamma$ ) with non-existence ? (e.g. 2 colours,  $d=2, \ \gamma=1, \infty$ )

Uniqueness for  $d=1, \gamma<1, 2$  colours ?

Perfectness for  $d \geq 2$ ?

Better tail bounds for d = 1?

Tail bounds, uniqueness, phase transitions ... for  $d \ge 2$ ?