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Fairness: how to share resources between individuals?

Uneven setting: individuals have different 
locations/desires/abilities.

Maximize “overall happiness”…?

Should we make X happier but Y less happy?

much slightly

…even if X already happier than Y?

Maximize   σindividuals 𝒇(happiness) .

Given such a metric, what are the consequences?
Can individuals agree on a solution?  



Simple but rich mathematical setting: Matching

𝑅 = red points
𝐵 = {blue points}

𝑀 = red−blue matching

Minimize ෍

𝑟,𝑏 ∈𝑀

𝑟 − 𝑏 𝛾 . “fairness” 0 < 𝛾 < ∞

Independent intensity-1 
Poisson point processes in ℝ𝑑

# of points in A ~ Poisson(vol(A))
Independent #s of points in disjoint sets

Countably infinite # of points

But then   = ∞!

Euclidean 
norm



Solution: minimize locally.

M is 𝜸-minimal if ∀ finite 𝑟1, 𝑏1 , … , 𝑟𝑚, 𝑏𝑚 ⊆ 𝑀,

෍

𝑖

𝑟𝑖 − 𝑏𝑖
𝛾 = min

𝜎∈S𝑚
෍

𝑖

𝑟𝑖 − 𝑏𝜎(𝑖)
𝛾

permutation

Also: −∞ < 𝛾 < 0: replace | |𝛾 with  −| |𝛾

𝛾 = 0: replace | |𝛾 with  log | | same
as 

𝛾 → 0

𝛾 = −∞ (selfish): lexicographically minimize
↑ ordering of 𝑟1 − 𝑏1 , … , |𝑟𝑚 − 𝑏𝑚|

(only scale-invariant choices)

𝛾 = +∞ (altruistic): lexicographically minimize
↓ ordering of 𝑟1 − 𝑏1 , … , |𝑟𝑚 − 𝑏𝑚|



𝛾 = 1



𝛾 = −∞
(stable)



𝛾 = ∞
(altruistic)



Questions:
Does a 𝛾-minimal matching exist?
Is it unique?
Is every point matched?

What ???

Allow unmatched points!   Then 𝜸-minimal means:
∀ 𝑟1, 𝑏1 , … , 𝑟𝑚, 𝑏𝑚 ∈ 𝑀

and unmatched 𝑥1, … , 𝑥𝑘 ∈ 𝑅 ∪ 𝐵,

#unmatched ,෍

𝑖

𝑟𝑖 − 𝑏𝑖
𝛾

is lexicographically 
minimized among 
matchings of {𝑟𝑖 , 𝑏𝑖 , 𝑥𝑖}

(in particular, cannot have both 
red and blue unmatched points)



Questions:
Does a 𝛾-minimal matching exist?
Is it unique?
Is every point matched?
Can we decide on a matching by a local algorithm?
Edge lengths?

Also:  1-colour matching
(all definitions analogous).



𝛾 = −∞: fairly complete picture 
(especially 1-colour)

𝑑 = 1: fairly complete picture 
(especially 2-colour)

𝑑 ≥ 2, 𝛾 > −∞: existence in some cases 

Open (e.g.): existence for 2 colours,  𝑑 = 2, 𝛾 = 1,∞ ? 

fairness
makes things 
harder



Case 𝛾 = −∞ :  stable matching

Theorem: For any 𝑑 ≥ 1, and for R (and B) 
independent intensity-1 Poisson processes on ℝ𝑑, a.s.
there is a unique (−∞)-minimal 1- (2-)colour
matching, and it is perfect (i.e. no unmatched points).

(Holroyd, Pemantle, Peres, Schramm, 2008)

In fact, it is the unique stable matching (marriage) 
in the sense of (Gale, Shapley, 1962): 
each point prefers a partner as close as possible;
matching is unstable if there exist a pair (of 
opposite colours) that both prefer each other over 
their current situation. 



Original formulation (Gale, Shapley, 1962): 
n girls, n boys have arbitrary preference orders over 
those of opposite sex.  

Theorem: there exists a stable set of n heterosexual 
marriages (and an algorithm…)

Not necessarily unique; may not exist in 
1-colour / same-sex marriage / “roommates” version.

2012 Nobel memorial prize in Economics:
Roth and Shapley.



Simple algorithm to construct the stable 
matching in our setting:

match all mutually closest pairs



Simple algorithm to construct the stable 
matching in our setting:

match all mutually closest pairs

remove them

repeat for countably many steps



Theorem: (HPPS 2008) For the stable matching, the
matching distance X from a typical point to its partner 

satisfies 𝔼 𝑋𝛼−𝜖 < ∞ but 𝔼 𝑋𝛽 = ∞, where:

𝛼 𝛽

1-colour 𝑑 𝑑

2-colour, 𝑑 = 1 1/2 1/2

2-colour, 𝑑 = 2 0.496 1

2-colour, 𝑑 ≥ 3 Θ(1 / log 𝑑) 𝑑

Theorem: (Eccles, Holroyd, Liggett, 2020+) For the 
1-colour stable matching in 𝑑 = 1, 

ℙ 𝑋 > 𝑟 ∼ 𝑐/𝑋
where 𝑐 = 𝑒2𝛾

Euler-Mascheroni constant



Thomas M. Liggett, 1944 - 2020



Many variants…



Case 𝒅 = 𝟏 𝛾

3

2

1

0

-1

-2

-3



Theorem (Janson, Holroyd, Wästlund, 2020+)
For 𝑑 = 1, any 𝛾, 
a.s. every 𝛾-minimal 1- or 2-colour matching is perfect.
Similarly on the strip ℝ × 0,1 .

Note: Much stronger conclusion than:

Theorem: for any 𝑑, any stationary 𝛾-minimal 
matching is perfect.
Proof: 
1-colour: ≤ 1 unmatched point.
2-colour: all unmatched points same colour

+ ergodic decomposition.



𝛾 = 1 is special:

=

The picture for 𝒅 = 𝟏

Introduce:

𝛾 = 1+

𝛾 = 1−

break
ties



The picture for 𝒅 = 𝟏 : classification 

Theorem (JHW 2020+) For d=1, a.s. the set of 2-colour
𝛾-minimal matchings is:

𝛾 ≥ 1+: countable family 𝑀𝑘
𝑘∈ℤ

; no stationary matching

𝛾 = 1: uncountable; uncountably many stationary matchings

𝛾 = 1−: 𝑀𝑘 𝑘∈ℤ, 𝑀∞ , 𝑀−∞; 
only stationary matchings are mixtures of 𝑀∞, 𝑀−∞

𝛾 < 1−: unique M; ∴ stationary.

locally finite

locally finite and locally infinite

locally finite locally infinite

locally infinite



Theorem (JHW 2020+): d=1,  2-colour.

For all 𝛾 ≥ 1+, the matchings are the same.

For any 𝛾 < 1−, 𝛾′ ≤ 1−,
𝑀,𝑀′ have finite differences.



Theorem (JHW 2020+): 
d=1,  2-colour, 𝛾 < 1− (or 𝑀∞ or 𝑀−∞) 

Matching distance X satisfies 𝔼 𝑋𝛼 < ∞ iff 𝛼 <
1

2
.

M is a finitary factor of (R,B) with coding radius L satisfying

𝔼 𝐿𝛽 < ∞

Can determine partner of a 
point by looking at points 
within (random) radius L



d=1, 1-color:

similar, but some proofs missing 
- in particular, uniqueness for 𝛾 < 1



Theorem (JHW 2020+): 
∃ a stationary (hence perfect) 𝛾-minimal matching for:

2-colour, 𝑑 ≤ 2, 𝛾 < 1;
2-colour, 𝑑 ≥ 3, 𝛾 < ∞;
1-colour, 𝑑 ≥ 2, 𝛾 < ∞.

Higher dimensions:

Uniqueness open.  Perfectness in general open.
Existence open for other cases (note 𝑑 ≤ 2, 𝛾 ∈ {1,∞} !)

Theorem (Holroyd 2010): ∃ no 1-minimal 2-colour 
matching on the strip.

Is there a case with no existence?



Note: 1-minimal matchings 
in d=2 have no crossings 

Open: is there a stationary
perfect 2-colour matching of 
independent Poisson 
processes with no crossings?

Theorem (Holroyd 2010): Yes if we drop stationarity.



d=1 classificationProofs

<
𝛾 < 1

𝛾 > 1



𝜸 ≥ 𝟏+

ordering of red points = ordering of blue partners

random walk



𝜸 ≤ 𝟏−

must match on same level of walk

𝜸 = 𝟏−

k

𝑀𝑘 (locally finite)

𝑀∞, 𝑀−∞ (locally infinite)



Perfectness: 2-colour, 𝑑 = 1 (or strip), any 𝛾.

potentially unmatched = unmatched in some 𝛾-minimal M

a.s. exist red and blue potentially unmatched points r, b

r b

𝑐0

𝑐1 𝑐2 𝑐3
𝑐4

“cost” 
| ∙−∙ |𝛾 comp 𝑏 finite 

comp 𝑏 infinite: 𝑐0 ≥ 𝑐1
𝑐1 ≥ 𝑐2

𝑐0 + 𝑐2 ≥ 𝑐1 + 𝑐3
𝑐1 + 𝑐3 ≥ 𝑐2 + 𝑐4

⋯

 𝑐0 ≥ 𝑐𝑖 ∀𝑖

(percolation)



Existence: 𝛾 < 1 , all d.

Quasi-stability:
∃ 𝑐 𝛾 ≥ 1:

𝑟
> 𝑐𝑟

> 𝑐𝑟

impossible

stationary 
subsequential
limit

All unmatched 
points same 
colour…



E.g. true for 2 
colours:

𝑑 ≤ 2, 𝛾 <
𝑑

2
𝑑 ≥ 3, 𝛾 < ∞

Existence: provided 0 < 𝛾 < ∞ and there exists a 
stationary (not necessarily minimal) M with finite 
“average cost”:

𝔼 𝑋𝛾 < ∞

subsequential limit of matchings 𝑀𝑛

with 

𝔼 𝑋𝑛
𝛾
↘ inf

𝑀
𝔼 𝑋𝛾

is 𝛾-minimal.



Uniqueness, finite differences, finitariness:
𝑑 = 1,  𝛾 < 1.

Random walk / Brownian motion estimates 

∃ 𝐿 (random, with 𝔼 𝐿𝛽 < ∞)

0 𝐿 (2𝑐 + 1)𝐿−(2𝑐 + 1)𝐿 −𝐿

Quasi-stability + same-level matching 
matching “trapped” in [−𝐿, 𝐿]



Tail bound:
𝑑 = 1,  𝛾 < 1.

0 𝐿

Bad point: distance to partner > 2𝑐 + 1 𝐿

Bad points of ≤ 1
colour, say red.

equal # good red & blue

𝔼 # bad red in [0,L] ≤ 𝔼 range of random walk in [0,L]

𝐿 ℙ[𝑋 > 2𝑐 + 1 𝐿] ≤ 𝐶/ 𝐿 𝔼𝑋
1
2−𝜖 < ∞



Open Questions

Any setting (colours, 𝑑, 𝛾) with non-existence ? 
(e.g. 2 colours, 𝑑 = 2, 𝛾 = 1,∞)

Uniqueness for 𝑑 = 1, 𝛾 < 1, 2 colours ?

Perfectness for 𝑑 ≥ 2 ?

Tail bounds, uniqueness, phase transitions … for 𝑑 ≥ 2 ?  

Better tail bounds for 𝑑 = 1 ?  


