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Fairness: how to share resources between individuals?

Uneven setting: individuals have different
locations/desires/abilities.

Maximize “overall happiness”...?

Should we make X happier but Y,less happy?

much | slighg\y]

...even if X already happier than Y?

Maximize  Xindividuals f(happiness) .

Given such a metric, what are the consequences?
Can individuals agree on a solution?



Simple but rich mathematical setting: Matching

R = {red points} )1 Independent intensity-1
B = {blue points} Poisson point processes in R¢
J

M = red—blue matching ~o1ssonivoll
Independent #s of points in disjoint sets

# of points in A ~ Poisson(vol(A))
Countably infinite # of points

Minimize z |Ir — b|”. “fairness” 0 <y < oo
(r.b)eM Euclidean
A norm

But then ' = oo! \




Solution: minimize locally.

M is y-minimal if V finite {(r{, b{), ..., (;;, b))} € M,

. y
zh”i — b;|¥ = min z|7”i — by
i i

7 7€5m

permutation

Also: —0 <y < 0: replace| [|Y with —| [

y =0: replace | |Y with log| | same
as

(only scale-invariant choices) | y -0

y = —oo (selfish): lexicographically minimize

M ordering of |r; — b4|, ..., |7, — by
y = +oo (altruistic): lexicographically minimize

J ordering of |r; — by, ..., |7, — by
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Questions:

Does a y-minimal matching exist?
Is it unique?

i ?
s every point matched <{ What 222 ]

Allow unmatched points! Then y-minimal means:
VY (ry,by),...,(15, b)) EM
and unmatched x4, ..., x;, € RU B,

is lexicographically

#unmatched,z:h"i — b|” minimized among
l. matchings of {r;, b;, x;}

(in particular, cannot have both
red and blue unmatched points)



Questions:

Does a y-minimal matching exist?
Is it unique?

Is every point matched?

Can we decide on a matching by a local algorithm?
Edge lengths?

Also: 1-colour matching

(all definitions analogous). \

¢



y = —oo:  fairly complete picture
(especially 1-colour)

d=1: fairly complete picture fairness |
(especially 2-colour) makes things
harder
d=2, y>—oo: existence in some cases

Open (e.g.): existence for 2 colours, d =2, y =1,00 ?



Case y = —oo : stable matching
(Holroyd, Pemantle, Peres, Schramm, 2008)

Theorem: Forany d = 1, and for R (and B)
independent intensity-1 Poisson processes on R%, a.s.
there is a uniqgue (—oo)-minimal 1- (2-)colour

matching, and it is perfect (i.e. no unmatched points).

In fact, it is the unique stable matching (marriage)
in the sense of (Gale, Shapley, 1962):

each point prefers a partner as close as possible;
matching is unstable if there exist a pair (of
opposite colours) that both prefer each other over
their current situation.



Original formulation (Gale, Shapley, 1962):
n girls, n boys have arbitrary preference orders over
those of opposite sex.

Theorem: there exists a stable set of n heterosexual
marriages (and an algorithm...)

Not necessarily unique; may not exist in
1-colour / same-sex marriage / “roommates” version.

2012 Nobel memorial prize in Economics:
Roth and Shapley.



Simple algorithm to construct the stable
matching in our setting:

match all mutually closest pairs



Simple algorithm to construct the stable
matching in our setting:

match all mutually closest pairs

remove them

repeat for countably many steps

S



Theorem: (HPPS 2008) For the stable matching, the
matching distance X from a typical point to its partner

satisfies E X% ™€ < oo but E X¥ = oo, where:

a p

1-colour d d
2-colour,d = 1 1/2 1/2

2-colour, d = 2 0.496 1

2-colour, d = 3 O(1 /logd) d

Theorem: (Eccles, Holroyd, Liggett, 2020+) For the

1-colour stable matching ind = 1,
PX>r)~c/X

— L2V
wherec = e )
:i Euler-Mascheroni constant ]




Thomas M. Liggett, 1944 - 2020



Many variants
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Theorem (Janson, Holroyd, Wastlund, 2020+)
Ford =1, anyy,

a.s. every y-minimal 1- or 2-colour matching is perfect.

Similarly on the strip R x [0,1].

/Note: Much stronger conclusion than:

Theorem: for any d, any stationary y-minimal
matching is perfect.
Proof:

1-colour: < 1 unmatched point.

2-colour: all unmatched points same colour
+ ergodic decomposition.

~




The pictureford = 1

y = 1is special:
Introduce:




The picture for d = 1 : classification

Theorem (JHW 2020+) For d=1, a.s. the set of 2-colour
y-minimal matchings is:

¥y = 17: countable family (Mk)keZ; no stationary matching
locally finite

Y = 1: uncountable; uncountably many stationary matchings
locally finite and locally infinite

locally finite locally infinite
Yy = 1_: (Mk)kEZ) MOO) M—oo;
only stationary matchings are mixtures of M, M_,

locally infinite
Yy < 17: unique M; .. stationary.



Theorem (JHW 2020+): d=1, 2-colour.
Forally = 17, the matchings are the same.

Foranyy <17,y <17,
M, M' have finite differences.

)
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Theorem (JHW 2020+):
d=1, 2-colour,y < 17 (or M, or M_,)

Matching distance X satisfies [E X% < w0 iff a < %

M is a finitary factor of (R,B) with coding radius L satisfying
ELP < oo

~
Can determine partner of a

point by looking at points

within (random) radius L
N\ )




d=1, 1-color:

similar, but some proofs missing
- in particular, uniqueness fory <1



Higher dimensions:

Theorem (JHW 2020+):
1 a stationary (hence perfect) y-minimal matching for:

2-colour,d < 2, y < 1;
2-colour,d = 3, y < oo;
1-colour,d = 2, y < oo.

Uniqueness open. Perfectness in general open.
Existence open for other cases (noted < 2, y € {1,0} 1)

Is there a case with no existence?

Theorem (Holroyd 2010): 3 no 1-minimal 2-colour
matching on the strip.



PR R AN RN

Note: 1-minimal matchings :? . :ﬁi . J“r’“"- T
in d=2 have no crossings ] 4 1'-:’;- 1; if ’ R o E‘T"‘_
B T TR

Y * N Fae, o 3*}3‘?;'; -*

Open: is there a stationary 4 .-"iﬁ‘.ﬁ:ff;}"_; :-“. Ve, 'i_;
perfect 2-colour matching of «.?';l:/b,rﬁﬂﬂ] ;E;‘é: &
independent Poisson ? 3 %} P *I"*T A
) . e S 0 5 3 :

processes with no crossings? ;a / Li’:%':”*f{&'?' %ﬁ-q’

Theorem (Holroyd 2010): Yes if we drop stationarity.



Proofs

d=1 classification



ordering of red points = ordering of blue partners

random walk —



must match on same level of walk

e o5 e X

k [ .

M, (locally finite) — I |—
Mo, M_, (locally infinite) —




Perfectness: 2-colour, d = 1 (or strip), any y.

potentially unmatched = unmatched in some y-minimal M

a.s. exist red and blue potentially unmatched pointsr, b

“cost”
[ —- | comp(b) finite = X

comp(b) infinite: Co = Cq
C1 = Cy = Cy = C; Vi
Co+C, =€ +C3
C1+cC3=¢C, +¢y

X% (percolation)



Existence: Yy < 1, all d.

Quasi-stability: impossible

3 c(y) = 1: . ~ T
o— > Cr / -
stationary
subsequential
limit
afin
@ o © All unmatched
<:| o : $ points same
colour...
O

4L



Existence: provided 0 < y < oo and there exists a
stationary (not necessarily minimal) M with finite

“average cost”:

subsequential limit of matchings M,

with

is y-minimal.

E XY < o

EX"\ inf E XY

E.g. true for 2
colours:

d <2, Yy <=

d = 3,
-

d
2

y < o

~

J




Uniqueness, finite differences, finitariness:
d=1, y <1.

Random walk / Brownian motion estimates =
3 L (random, with E L# < o0)

|
—2c+1DL -L 0~ L (2¢ + 1)L

Quasi-stability + same-level matching =
matching “trapped” in [—L, L]



Tail bound:
d=1, y <1.

Bad point: distance to partner > (2c + 1)L

Jv B

Bad pointsof < 1
© o0 o } colour, say red.
@00 o 00 QQL

\ J
h 4

0

equal # good red & blue

E # bad red in [0,L] < [E range of random walk in [0,L]
LP[X>2c+1)L] < C/\/Z [Ex%‘e < 00



Open Questions

Any setting (colours, d, y) with non-existence ?
(e.g. 2 colours,d =2, y =1, 0)

Uniqueness ford =1, y < 1, 2 colours ?
Perfectness ford = 2 7?
Better tail bounds ford =1 ?

Tail bounds, uniqueness, phase transitions ... ford = 2 ?



