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Colouring of G: Colour vertices so that neighbours get different colours

Chromatic number χ(G): Minimum number of colours we need

Pick an n-vertex graph uniformly at random. Pick another one.

Does it have the same chromatic number?

If not, how different are their chromatic numbers likely to be?
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Chromatic number of random graphs

Gn, 1
2

= choose a graph on n labelled vertices uniformly at random

What can we say about χ(Gn,p)?

Value? Concentration?

Upper and lower bounds? How much does χ(Gn,p) vary?
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What can we say about χ(Gn,p)?

Value? Concentration?

Upper and lower bounds? How much does χ(Gn,p) vary?

Bollobás 1987: χ(Gn, 1
2
) ∼ n

2 log2 n whp.

Improvements: McDiarmid ’90, Panagiotou & Steger ’09, Fountoulakis, Kang & McDiarmid ’10.

H. 2016:

χ
(

Gn, 1
2

)
= n

2 log2 n − 2 log2 log2 n − 2 + o
(

n
log2 n

)
whp.

Explicit interval of length o
(

n
log2 n

)
which contains χ(Gn, 1

2
) whp.
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Concentration?

Shamir, Spencer 1987: For any function p = p(n), χ(Gn,p) is whp contained
in a sequence of intervals of length about

√
n.

p = 1− 1
10n : not concentrated on fewer than Θ(

√
n) values

p 6
1
2 : slight improvement to

√
n

log n (Alon)

p < n− 1
2−ε: 2 values (‘two-point concentration’)

(Alon, Krivelevich 97,  Luczak 91)

→ χ(Gn,p) behaves almost deterministically
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The opposite question

Question (Bollobás)

Can we show that χ(Gn, 1
2
) is not concentrated on 100 consecutive values?

Upper bound:
√

n
log n (Alon)

Theorem (H. 2019; H., Riordan 2021)
Let ε > 0, and let [sn, tn] be a sequence of intervals such that χ(Gn,1/2) ∈ [sn, tn]
whp. Then there are infinitely many values n such that

tn − sn > n1/2−ε.
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Proof ingredients
Ingredient 1: A (weak) concentration type result

|χ(Gn,1/2)− f (n)| 6 ∆(n) whp

where f (n) is some function with slope
d
dn f (n) > 1

α
+ δ.

(Will specify α = α(n) later.)

Ingredient 2: A coupling result

Couple Gn,1/2 and Gn′,1/2 with n′ = n + αr (same α as above) so that

P
(
χ(Gn′,1/2) 6 χ(Gn,1/2) + r

)
>

1
4 .
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n

f (n)

f (n)±∆(n)

Slope > 1
α

+ δ

sn

tn sn′

tn′

αr
6 r

Slope 6
1
α

︸ ︷︷ ︸ }

If all intervals short: Contradiction!

So there is at least one long interval. (Length ≈ αδr)
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What’s α(n)?

Independence number α(G): Size of the largest independent vertex set (= set
without edges).

For most n: α(Gn, 1
2
) = α(n) ≈ 2 log2 n whp.
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What does this have to do with colourings?
Every colour class is an independent set, so if there are n vertices,

χ(G) > n
α(G)

In fact: χ(Gn, 1
2
) = n

α− O(1)

Intuition: An optimal colouring of Gn, 1
2

contains all or almost all independent
α-sets as colour classes.

χ(Gn, 1
2
) should vary at least as much as Xα.

Xα = # independent α-sets

Xα ∼
roughly

Poiµ → varies by ±√µ

where µ = nρ, 0 6 ρ(n) 6 1.
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Ingredient 1: The (weak) concentration type result
Want:

χ(Gn, 1
2
) = f (n)±∆(n)

df
dn >

1
α

+ δ

H. 2016:

χ
(

Gn, 1
2

)
= n

2 log2 n − 2 log2 log2 n − 2︸ ︷︷ ︸
f (n)

+ o
(

n
log2 n

)
︸ ︷︷ ︸

∆(n)

whp.

then (unless µα is very close to n)

df
dn >

1
α

+ Θ
(

1
log2 n

)
︸ ︷︷ ︸

δ(n)

11 / 23



12/23

Ingredient 2: The coupling result
Want: Coupling of Gn,1/2 and Gn′,1/2 with n′ = n + αr so that

P
(
χ(Gn′,1/2) 6 χ(Gn,1/2) + r

)
>

1
4 .

G ′: n′ vertices
G : n vertices

plant r random α-sets

normal Gn, 1
2
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G ′: n′ vertices
G : n vertices

plant r random α-sets

normal Gn, 1
2

Inner random graph: G ∼ Gn, 1
2

Also clear:
χ(G ′) 6 χ(G) + r

Need to prove: G ′ similar to Gn′, 1
2

if r is not too big
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Key Lemma

Planted model Gpl
n, 1

2
: Plant an independent α-set uniformly at random, and

include all other edges independently with probability 1
2 .

dTV: Total variation distance

Key Lemma

dTV

(
Gn, 1

2
,Gpl

n, 1
2

)
= O

(
1
√
µ

)
,

where µ = E[Xα].

This means: Gn, 1
2

and Gpl
n, 1

2
can be coupled so that they agree with probability

1− O
(

1
√
µ

)
.
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Key Lemma

dTV

(
Gn, 1

2
,Gpl

n, 1
2

)
= O

(
1
√
µ

)
,

where µ = E[Xα].

Proof:

dTV

(
Gn, 1

2
,Gpl

n, 1
2

)
= 1

2
∑

G

∣∣∣P(Gpl
n, 1

2
= G

)
−P

(
Gn, 1

2
= G

)∣∣∣
= 1

2
∑

G

∣∣∣∣∣Xα(G)(n
α

) (
1
2

)(n
2)−(α

2 )
−
(

1
2

)(n
2)
∣∣∣∣∣

= 1
2
∑

G

(
1
2

)(n
2)
∣∣∣∣Xα(G)−

(n
α

) ( 1
2
)(α

2 )
∣∣∣∣(n

α

) ( 1
2
)(α

2 )

= 1
2E
[
|Xα − µ|

µ

]
= O

(
1
√
µ

)
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G ′: n′ vertices
G : n vertices

plant r random α-sets

normal Gn, 1
2

If r = o (√µ), then
dTV

(
G ′,Gn′, 1

2

)
= o(1)

So can couple Gn, 1
2

and Gn′, 1
2

such that, whp,

χ(Gn′, 1
2
) 6 χ(Gn, 1

2
) + r
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So what’s the truth?

Recall: Xα ∼
roughly

Poiµ where µ = nρ, 0 6 ρ(n) 6 1.

Conjecture: χ(Gn, 1
2
) is not concentrated on fewer than nρ/2/ log n values.
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Conjecture: χ(Gn, 1
2
) is not concentrated on fewer than nρ/2/ log n values.

Theorem(H., Riordan 21)
Let [sn, tn] be a sequence of intervals and suppose that χ(Gn, 1

2
) ∈ [sn, tn] whp.

Then for every n with ρ(n) < 0.99, there is some n∗ ∼ n such that

tn∗ − sn∗ >
(n∗)ρ(n∗)/2

2000 log n∗ .

What other sources of non-concentration are there?
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Sources of non-concentration?

Number of α-sets: conjectured lower bound n
ρ
2 +o(1)

Number of edges?

Don’t seem to matter much. Can couple Gn,p and Gn,m so that the chromatic
numbers only differ by about log n.
Number of (α− 1)-sets

Xα−1 roughly Poisson with mean about n1+ρ+o(1).

If Xα−1 decreases by n
1+ρ

2 +o(1), we need about n
1−ρ

2 +o(1) more colours to
make the expected number of colourings 1.

Is that all?

H., Panagiotou 21+: The (α− 2)-bounded chromatic number of Gn,m,
m = 1

2 N, takes one of at most 2 consecutive values whp.
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Zig-zag conjecture

(Bollobás, H., Morris, Panagiotou, Riordan, Smith)
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Finer conjectures

Gaussian limiting distribution

Best case: n1/4

log7/4 n

Worst case:
√

n log log n
log3 n

, at µα = Θ
(

n
log2 n

)
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Best lower concentration bound?

At the moment: n1/2−o(1) for infinitely many n.

Bottleneck: Error term o
(

n
log2 n

)
in the explicit estimate for χ(Gn,1/2).

H., Panagiotou 21+: Sharper explicit estimate for χ(Gn,1/2).

H., Riordan 21: Assuming this estimate, the lower bound on the interval length
can be improved to

c
√

n log log n
log3 n

for infinitely many n.
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Open questions

Does the correct concentration interval length zigzag between n1/4+o(1) and
n1/2+o(1)?

The proof only finds some n∗ near n where the chromatic number is not too
concentrated. Can we prove something for every n?

Alon’s upper bound:
√

n
log n . Our lower bound: n 1

2−o(1).

Conditional lower bound:
√

n log log n
log3 n

. Show that this is optimal?

Other ranges of p?

p < n− 1
2−ε: two-point concentration. How “far down” does

non-concentration go?

Thank you!
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