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Cooking recipe

Apple pie
1 Preheat the oven.
2 Prepare a dough.
3 Flatten it and place it in a plate.
4 Peal 4 apples.
5 Cut them into thin slices.
6 Put the slices over the pie crust.
7 Put the apple pie in the oven.

Problem
Compute the time necessary for the apple pie to be made depending on
the number of cooks.
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A cooking recipe
with a single cook

Apple pie
1 Preheat the oven.
2 Prepare a dough.
3 Flatten it and place it in a plate.
4 Peal 4 apples.
5 Cut them into thin slices.
6 Put the slices over the pie crust.
7 Put the apple pie in the oven.

Step Alice
1 1
2 2
3 3
4 4
5 5
6 6
7 7

The recipe takes an amount of time equal to its number of steps.
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A cooking recipe
with two cooks

Apple pie
1 Preheat the oven.
2 Prepare a dough.
3 Flatten it and place it in a plate.
4 Peal 4 apples.
5 Cut them into thin slices.
6 Put the slices over the pie crust.
7 Put the apple pie in the oven.

Step Alice Bob
1 1 2
2 4 3
3 5
4 6
5 7

Some task can be parallelized, allowing for a reduction of the number of
steps needed to realize the recipe.
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A cooking recipe
with three cooks

Apple pie
1 Preheat the oven.
2 Prepare a dough.
3 Flatten it and place it in a plate.
4 Peal 4 apples.
5 Cut them into thin slices.
6 Put the slices over the pie crust.
7 Put the apple pie in the oven.

Step Alice Bob Craig
1 1 2 4
2 3 5
3 6
4 7

Increasing the number of cooks allows to decrease the number of step
neeeded.
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A cooking recipe
with three cooks or many more...

Apple pie
1 Preheat the oven.
2 Prepare a dough.
3 Flatten it and place it in a plate.
4 Peal 4 apples.
5 Cut them into thin slices.
6 Put the slices over the pie crust.
7 Put the apple pie in the oven.

Step Alice Bob Craig
1 1 2 4
2 3 5
3 6
4 7

Increasing the number of cooks allows to decrease the number of step
neeeded... up to a point.
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Formalizing the problem

1
•
7

The dependecies of the tasks of the
recipe are represented as an oriented
graph (without cycles).

The vertices of the graph
represent the different tasks.
Edges denote dependencies.

Lemma
The minimal number of steps needed to realize the project is equal to the
length of the longest path in the oriented graph.
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Outline

1 Barak-Erdős graph

2 Infinite-bin models

3 Coupling of the IBM and the Barak-Erdős graph
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The Barak-Erdős graph

Definition
The Barak-Erdős graph is a directed version of the Erdős-Rényi graph in
which every edge {i , j} is directed from i to j if i < j .
In other words, given p ∈ [0, 1] and n ∈ N, for any 1 ≤ i < j ≤ n, put a
edge from i to j with probability p, independently from any other edge.

•
1

•
2

•
3

•
4

•
5

•
6

•
7

Figure: A Barak-Erdős graph

We take interest in the length Ln(p) of the longest increasing path in this
graph.
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The Barak-Erdős graph
Some references

Model introduced by Barak and Erdős in 1984.
The length of the longest increasing path is one of the most studied
features of this model.
Applications span over a wide array of fields:

I Performance evaluation of computer systems
(Gelenbe-Nelson-Philips-Tantawi ’86, Isopi-Newman ’94);

I Mathematical ecology (food chains) (Cohen-Newman ’86,’91);
I Queuing theory (Foss-Konstantopoulos ’03).
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Existing results
Existence of a limiting function

Theorem (Newman ’92)
There exists a function C such that for any p ∈ [0, 1],

lim
n→+∞

Ln(p)
n = C(p) in probability.

Moreover, C is continuous, increasing and C ′(0) = e.
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Figure: Graph of the function p 7→ C(p)/p
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Existing results
Bounds on the function C

Theorem (Foss-Konstantopoulos ’03)
There exist two explicit functions L and U such that L(p) < C(p) < U(p)
for any p ∈ (0, 1). This in particular yields, as p → 1,

C(1− p) = 1− (1− p) + (1− p)2 − 3(1− p)3 + 7(1− p)4 + O(1− p)5.

p

C(p)

0

1

1
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Contribution from infinite-bin models theory I
Improved bounds in a neighbourhood of 1

Theorem (M.-Ramassamy)
There exist sequences of upper bounds (Uk) and lower bounds (Lk) that
converge to C exponentially fast for any p > 0.
In particular, the Taylor expansion of C can be computed explicitely to any
order around p = 1.

p

C(p) U12(p)

0

1

1
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Contribution from infinite-bin models theory II
Analyticity of C in a neighbourhood of 1

Theorem (M.-Ramassamy)
The function C is analytic on (0, 1], and there exists an explicit sequence
of integers (ak) such that

C(p) =
+∞∑
k=0

ak(1− p)k for all p ≥ 3/4.

First coefficients

C(p) = 1 − (1 − p) + (1 − p)2 − 3(1 − p)3 + 7(1 − p)4 − 15(1 − p)5

+ 29(1 − p)6 − 54(1 − p)7 + 102(1 − p)8 − 197(1 − p)9

+ 375(1 − p)10 − 687(1 − p)11 + 1226(1 − p)12 − 2182(1 − p)13

+ 3885(1 − p)14 − 6828(1 − p)15 + 11767(1 − p)16 + · · ·

(sequence A321309 of OEIS)
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Contribution from infinite-bin models theory III
Asymptotic behaviour of C as p → 0

Theorem (M.-Ramassamy)

C(p) = ep
(
1− π2

2
1

(log p)2

)
+ o

( p
(log p)2

)
as p → 0.
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The infinite-bin model
Description

Infinite number of bins on Z.
At each time n, a new ball is put to the right of the ξnth ball, with
(ξj) i.i.d. sequence of random variables on N.
We take interest in the speed of the front.

ξ6 = 7
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On the infinite-bin model

Existing results
Aldous and Pitman (1993) studied a version of this model when ξ is
the uniform distribution on {1, . . . ,N}.
This general version introduced by Foss and Konstantopoulos in 2003.
Studied using the existence of renewal event when E(ξ) < +∞ (Foss,
Konstantopoulos, Chernysh, Ramassamy, Zachary).
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Construction of the infinite-bin model

Definition
Given X a configuration and k ∈ N, we denote by Ψk(X ) the configuration
with a ball added to the right of the kth rightmost ball in X .

Ψ1

Infinite-bin model
Given (ξn) i.i.d. random variables of law µ and X0 a starting configuration,
we call an IBM(µ) the process

∀n ∈ N,Xn = Ψξn (Xn−1),
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A coupling for infinite-bin models

Partial order
Given X and Y two configurations, we say that X 4 Y if for every k,
there are more balls to the right of kth urn in Y than in X .

Lemma
The function (X , k) 7→ Ψk(X ) is decreasing with k and increasing with X.

Proposition
If (Xn), (Yn) are two infinite-bin models defined with (ξn), (ζn), such that
X0 4 Y0 and ξk ≥ ζk for all k ∈ N, then

Xn 4 Yn for all n ≥ 0.
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Speed of the infinite-bin model

Theorem (Foss-Konstantopoulos, M.-Ramassamy)
For any probability measure µ on N, there exists vµ ∈ [0, 1] such that
writing Fn for the front at time n of an IBM(µ), we have

lim
n→+∞

Fn
n = vµ a.s.
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Proof of the existence of the speed

Proof.
If the measure has finite support K , then the relative positions of the
rightmost K balls form a Markov process.
Hence the speed exists by ergodicity.
If µ has no finite support, setting µK = µ1{.≤K}, we have

vµK ≤ vµ ≤ vµK + µ([K + 1,+∞)).

We conclude that vµ = limK→+∞ vµK .
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1 Barak-Erdős graph

2 Infinite-bin models

3 Coupling of the IBM and the Barak-Erdős graph
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Coupling the IBM and the Barak-Erdős graph

Coupling
One can couple a Barak-Erdős graph with parameter p with an IBM with
geometric distribution µp(k) = p(1− p)k−1.

Start with the empty graph, and the configuration with an infinite
number of balls in bin −1.
At each step n, add the vertex n and the links with the previous
vertices. Add a ball in the bin with index given by the longest path
ending at n.

Consequence
For any p ∈ [0, 1], we have C(p) = vµp .
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Asymptotic behaviour of C as p → 1

Strategy of proof
We use the L1 convergence of the position of the front at time n Fn:

lim
n→+∞

1
nE(Fn) = C(p).

We observe that E(Fn) can be computed for large p as the sum of the
contributions of small complex patterns arising in the middle of long
sequences of 1.
We prove the convergence for p > 1/2 of the series of the
contributions made by these small patterns.
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A perturbative estimate
We assume that p is close to 1. Recall that µp(k) = p(1− p)k−1.

Approximate behaviour
Up to o(1) corrections, (ξn) looks like

(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, . . .)

Therefore C(p) = 1 + o(1).
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Finding the asymptotic expansion

Aim
To each finite pattern u = (u(1), . . . u(n)) ∈ ∪Nn, we would like to
associate a term ε(u) ∈ {−1, 0, 1} such that for any N ∈ N,

C(p) =
∑
n≥0

∑
u∈∪Nn

ε(u)P(ξ1 = u(1), . . . ξn = u(n)) + o((1− p)N)

Definition
For each finite pattern u, we denote by d(u) the distance the front travels
when applying successively Ψu(1), . . . ,Ψu(n).
We define ε as the solution of the following equation:

d(u) =
∑

v subpattern of u
ε(v) =

|u|∑
k=1

|u|−k∑
j=1

ε(u(j), u(j + 1), . . . u(j + k − 1)).
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A direct definition for ε

Definition
For u a pattern, we write πu the pattern obtained by forgetting the last
number and

δ(u) = d(u)− d(πu) ∈ {0, 1},

Lemma
For u a pattern, we write $u the pattern obtained by forgetting the first
number, we have

ε(u) = δ(u)− δ($u).
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Analyticity of C

Theorem
For any p ∈ (1/2, 1], we have C(p) = ∑

u ε(u)p|u|(1− p)
∑

(u(j)−1).

Proof.

C(p) = lim
n→+∞

1
nE(d(ξ1, . . . ξn))

= lim
n→+∞

1
n

n∑
k=1

n−k∑
j=1

E(ε(ξj , ξj+1, . . . ξj+k−1))

= lim
n→+∞

1
n

n∑
k=1

(n − k)E(ε(ξ1, ξ2, . . . ξk))

=
+∞∑
k=1

E(ε(ξ1, ξ2, . . . ξk)).
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Conclusion

We were able to study the function C by coupling Barak-Erdős graphs
with Infinite-Bin models. This function:

Is analytic on (0, 1];
Behaves as ep(1− π2/2(logp)2) at p = 0;
Its series expansion can be computed as a perturbation expansion.

Some open questions:
Is p 7→ C(p)/p convex?
Can similar computations be made with Ck(p) the time taken to
undertake a series of tasks with k servers.
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Thank you for your attention!

© Ludovic Péron
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Asymptotic behaviour of C as p → 0

Strategy of proof
Using the increasing coupling, we have

C(p) ≈ speed of an IBM with uniform distribution on
{
1, . . . ,

⌊
1
p

⌋}
.

The speed of an IBM with uniform distribution is coupled with a
branching random walk with selection.
The speed of a branching random walk with selection is computed
using Bérard and Gouéré’s result.
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Bound with an infinite-bin model with uniform distribution
Notation
We write wN the speed of an infinite-bin model with uniform distribution
on {1, . . . ,N}.

Upper bound
For any p ∈ [ 1

N+1 ,
1
N ], we have C(p) ≤ wN .

Indeed, we have ∑k
j=1 p(1− p)j−1 ≤ (pk) ∧ 1, thus we can couple a

geometric random variable G and a uniform random variable U such that
G ≥ U a.s.

Lower bound
For any p ∈ [0, 1], we have C(p) ≥ Np(1− p)NwN .

Conclusion

C(1/N) ≈ wN as N → +∞.
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A N-branching random walk in continuous-time

Behaviour of the rightmost N balls
We consider the process (XPt , t ≥ 0), where P is an independent Poisson
process of intensity N.

At rate N an event occurs.
With probability 1/N, one of the N rightmost ball makes an offspring
to its right.
The leftmost ball is removed from consideration.

Alternative description
A clock on each of the N rightmost balls will ring at rate 1
independently.
The selected ball makes an offspring to its right.
The leftmost ball is erased.
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Brunet-Derrida behaviour of branching random walks with
selection
Theorem (Bérard-Gouéré 2010)
Under some assumptions, if we denote by vN the speed of a branching
random walk with selection, there exist explicit v∞ and χ > 0 such that

vN − v∞ ∼N→+∞ −
χ

(logN)2 .

Notation
More precisely, setting κ(θ) = log E(∑|u|=1 eθV (u)), we have

v∞ = inf
θ>0

κ(θ)
θ

θ∗ solution of θκ′(θ)− κ(θ) = 0

σ2 = κ′′(θ∗) χ = −π
2σ2

2 θ∗.
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Conclusion

Theorem
We have C(p) = p

(
e − π2e

2(log p)2
)
.

Proof.
Recall that C(1/N) ≈ 1

N vN .
We have κ(θ) = eθ, thus:

v∞ = e;
θ∗ = 1;
σ2 = e.

This concludes the proof.
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