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Goal: obtain some information on the distribution of some positive random variables,
which, depending on the point of view, can be seen as:

e the extinction times of some fragmentation processes
e the heights of continuous compact rooted random trees

e the scaling limits of the heights of sequences of discrete trees (e.g. the scaling limit
of the height of a uniform rooted random tree with n nodes)



Outline of the talk

Three parts:

1. Self-similar fragmentations, extinction times and connections with random trees
2. Large time asymptotics of the distribution tails of the extinction times; examples

3. Two main steps of the proof



Fragmentation models

Fragmentation models: describe the evolution of objects that split repeatedly as time goes
on
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Extensive study in Mathematics since the mid-1900s (both from deterministic and random
points of view) explained by:

e many motivations coming from biology and population genetics, computer science,
polymerization, but also random trees and graphs

e the setting of fairly general models that are relatively easy to study



Self-similar fragmentations

We focus on random models where objects are only characterized by their mass and the
dynamic is governed by:

e a branching property: different objects evolve independently

e a self-similarity property: an object splits at a rate proportional to a power of its mass
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Self-similar fragmentations

We focus on random models where objects are only characterized by their mass and the

dynamic is governed by:

e a branching property: different objects evolve independently
e a self-similarity property: an object splits at a rate proportional to a power of its mass

» Starting at time 0 with a unique object of mass 1, we let F(t) denotes the sequence of

masses present at time t > 0:
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» The splitting rule depends on two parameters: o € R (the index of self-similarity) and a
measure v on S such that

a mass m splits in masses (ms1, ms, .. .) at rate m~dv(sy, Sz, .. .)

First ref.: Kolmogorov 41, Filippov 61, Brennan and Durrett 86-87, Bertoin 01-02

Many studies on those models since 2000+. 4



Self-similar fragmentations

» The («, v)-model when v is finite:

Time
amass m:
- splits after a time ~ Exp(m~v(S))
- inmasses (mSi, mS,, . ..) where
(81, 82,...) ~v(:)/v(S)
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Remark. Mean time of splitting of a fragment with mass m: m== /v(S):

- when a > 0 small fragments splits slower than the large ones

- when a < 0, small fragments splits faster than the large ones.
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Remark. Mean time of splitting of a fragment with mass m: m== /v(S):

- when a > 0 small fragments splits slower than the large ones

- when a < 0, small fragments splits faster than the large ones.

» When v is infinite: infinitely many fragmentations in any strictly positive interval of times.
Necessity that [ (1 — s1)v(ds) < oo to prevent the system to explose entirely at time 0+. 5



Hypotheses: av < 0 and v(S) > 0 = very small objects split very quickly!

Ex.: v =90¢,2,1/2,0..)

for any x € (0, 1) non-dyadic, the fragment
containing x reaches mass 2~" at time
>0, T, with Tj ~ Exp(2-=0-1)

hence reaches 0 attime >~ T; < oo a.s.
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In general: For any (o, v), « < 0 and any («, v) fragmentation F:

¢:=inf{t>0:F(t) =(0,0,...)},

the first time at which the entire initial mass is reduced to dust.



For any (o, v), o < 0:

Proposition (Filippov 61, McGrady & Ziff 87, Bertoin 02)

The extinction time ( is finite almost surely.

Proposition (H. 03)

The tail of ¢ is exponential or even lighter:

30 >1:P(¢ > t) < exp(—cst - t?) for all ¢ large enough.



Connection with random trees

The r.v. ( may also be seen as the height of a random tree which is the scaling limit of
models of discrete trees.

e Ex.1: Hp: height of a Galton-Watson tree with offspring distribution with mean 1 and
variance 0 < 02 < oo conditioned on having total progeny n.

Aldous 93: This GW tree, appropriately normalized, converges to the Brownian

continuum tree. In particular,
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where (g, is the height of the Brownian tree.
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Bertoin 02: Aldous’ Brownian tree is the genealogical tree of a self-similar
fragmentation with parameters

1
a=-1/2, v(s1+ s <1)=0 and v(s de):ﬁdx

The r.v. g, is its extinction time.



Connection with random trees

e Ex.2: When the offspring distribution of the GW tree has a tail P(offspring > k) ~ ck—#
for some 8 € (1, 2), then (Duquesne 03)

H” (lﬂg C(C7 ﬁ) . C:S

n1f§ n— oo

where (3 is the height of the 3-stable Lévy tree of Duquesne, Le Gall, Le Jan

Miermont 03: the 3-stable Lévy tree is the genealogical tree of a self-similar
fragmentation with parameters =1 — 1.

e More generally: models of random discrete trees satisfying a Markov-Branching
property, were proved to converge in the scaling limit to continuous trees describing the
genealogy of («, v)-fragmentations

(H.-Miermont-Pitman-Winkel 08, H.-Miermont 12)

= their rescaled heights converge to the r.v. ¢.



Connection with random trees

Kennedy 76 and Duquesne & Wang 17: asymptotic expansions at all orders of (5, and

Cs
Theorem (Kennedy 76, Duquesne & Wang 17)

B(Gor > 1) ~ 2P exp(—£) and P(Gs > 1) ~ C(B)I" £ exp(—(8 — 1)*"t%)

for some explicit C(3)

Goal: obtain similar results for general («, ~) random variables ¢

10



Main result: Precise estimate for P(¢ > )

The parameters a < 0 and v are fixed; ¢ denotes the corresponding extinction time.

Two functions: we let for x large enough

o(x) = [9(1 — s My(ds) and ¢ ¢Ef/}((x)3)) =x

Ex.: if v(s1 < u)U~1c(1 —u)~7,v€0,1) then:
B(x) ~ oF(1—7)x" and $(x) ~ (oF(1—7)x)7

X— o0

Brownian frag.: ¢(x)X~ 2V/X, w(x)XN 4x2

11



Main result: Precise estimate for P(¢ > )

The parameters a < 0 and v are fixed; ¢ denotes the corresponding extinction time.

Two functions: we let for x large enough

— X1 . Yx)
o(x) = /5(1 —s{v(ds) and ¢ : () =X

Notation: For positive functions f, g,

f(t) < g(t)
means there exists a, b > 0 such that a- g(t) < f(t) < b- g(t) for t large enough.

Proposition (H. 03)

If ¢ is regularly varying at oo,

In(P(C > 1)) < —(t).

We want to sharpen this estimate by removing the logarithm 0



Main result: Precise estimate for P(¢ > )

Main hypothesis:

lim sup ¢ ()x

X— o0 (X)

<1 (H)
Not restrictive at all!

Theorem (H. 21)
Assume (H). Then

P> 1) = <M>ﬁ (9 iyt esp (~ [ 2200,

t |ee|r

Corollary

If ¢ is regularly varying at oo,

> (R o (L e,
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Examples with finite splitting rate

Here ¢)(x) ~ |v(S)|x, hence [f2UelDqr — |1(S)|t + o(t).
X— 00 1

le|r

Ex.1: Fragmentations into k identical pieces: a fragment of size m splits into k fragments
of same sizes m/k. For all indices of self-similarity o < 0:

P(¢ > t) e cexp(—t)

for some ¢ € (0, c0).

Ex.2: Uniform fragmentation: a fragment of size m splits into two fragments of sizes
mU, m(1 — U), where U is uniform on [0, 1]. For all indices of self-similarity oc < 0:

P(¢>1t) =< ¢TaT exp(—t).

13



Examples with finite splitting rate

Ex.3: Beta fragmentations: a fragment of size m splits into two fragments of sizes
mB, m(1 — B), where B ~Beta(a, b), b > a > 0 (density on (0, 1) proportional to
x2=1(1 — x)b="). For all indices of self-similarity o < 0:

exp(—t) ifb>a>1
1
tlel exp(—t) ifb>a=1
£13T exp(—1) fb=a=1

H(E > 1) = exp( t+1aHat1 a) ifb>1>a>1/2
1T exp (—t + 2 11-2) if1=b>a>1/2
exp (- t+<1aa‘at‘a+mt*b> if1>b>a>1/2

If a (and possibly b) is smaller than 1/2, there will be additional terms.
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Examples with infinie splitting rates

Ex.4: Aldous’ beta-splitting models: scaling limits of discrete models introduced by Aldous
96 to interpolate between some phylogenetic trees.
Parametrized by 8 € (-2, —1); binary splitting (v(s1 + s < 1) = 0) and
—B-
r2+25)
Then for g € (—2,-3/2]:

v(s1 € du) = (u(17u)) ,u€e(1/2,1) and a=1+4.

e B
P(C > 1) < t AP exp (—aﬁtw + b,@t)
—B—1
where ag = (—f — 1) 7% (+2) and by = Z262

For 8 € (—3/2,1): additional power terms in the exponential.
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e B
P(C > 1) < t AP exp (—aﬁtw + b,@t)
—B—1
where ag = (—f — 1) 7% (+2) and by = Z262

For 8 € (—3/2,1): additional power terms in the exponential.

Ex.5: Height of stable Lévy trees. Then ¢(x) = Bx'~ B (1 - x4 O(x*2)>

So we retrieve, for all 3 € (1,2]:

P(¢(>1t) < f+5 exp (— (B —1)"1t7).
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Outline of the proof of the theorem

An intermediate tool: the extinction time of a typical point

time
U ~ Unif(0, 1) -
I: time at which U is reduced to dust
—_—
0] ¢
0 U~U(0,1) 1

Proposition (Bertoin 02)
= / exp(ag;t)dt
0

where ¢ is a subordinator (increasing Lévy process) with Laplace exponent ¢ (i.e.
Elexp(—x&;)] = exp(—td(x)), ¥x, t > 0) where ¢(x) = [o(1 — 32; s )v(ds).

Rk.: ¢(x) = é(x) + O(2~*) as x — oo. 16



Two main steps

Step 1. Link between the tails of { and /

Proposition 1 (H. 21)
Assume (H). Then,

B> 1) = (@)ﬁ (> f)

Step 2. Asymptotics of the tail of |
Proposition 2 (H. 21)

Assume (H). Then there exists ¢ € (0, co) such that

H@ ()2 “P(lelr)
.y oo (- [ 25,

P(lelt) |afr

17



Some hints for Step 1

Remark: | < ¢ and it is a priori not obvious how to compare their tails

Step 1. a) Connections with moments of typical fragments.
Uy, Uz uniformly distributed on (0, 1), independent

A (t): mass of the fragment containing U; attime t, i = 1,2

Proposition (H. 21)

There exists ¢ € (0, o) such that for all t large enough

E [Ay () B(|alt)\ &1
B g S F€>0 < o(U00) T e

Idea: Introduce S(t) := >_,-;(Fi(t))? and use the first and second moments methods.

18



Some hints for Step 1

Step 1. b) Asymptotics of moments of 1 and 2 typical fragments

Proposition (H.- Rivero 12)

Assume (H). Then for all a > 0 there exists a constant ¢ € (0, co) such that

E[My(0)]  ~ e (T;M)ﬁ B(I> 1)

Proposition (H. 21)
Forall a,b > 0,

atbii

) )

t

E [/\51)(1‘)/\52)(0} = (W
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