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Bootstrap percolation

First example: 2-neighbour bootstrap on Z2

e At time ¢ = 0 sites are i.i.d., empty with probability g,
occupied with probability 1 — ¢

e At timet =1
e each empty site remains empty
e each occupied site is emptied iff it has at least 2 empty
nearest neighbours

e [terate

= deterministic monotone dynamics

= 3 blocked clusters goees?

[eNeN N NeNeoNel
[eNeN N NeNeNe]
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[eNeN N NeNeoNel
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Critical density and Infection time

Will the whole lattice become empty eventually?

¢c = inf{q € [0,1] : p4(origin is emptied eventually) = 1}

e How many steps do we "typically” need to empty the
origin?

TP%(q) := pq(first time at which origin is empty)
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Critical density and Infection time

Will the whole lattice become empty eventually?
— Yes (Van Enter '87)

¢c = inf{q € [0,1] : p4(origin is emptied eventually) = 1}

_>QC:0

e How many steps do we "typically” need to empty the
origin?

TP%(q) := pq(first time at which origin is empty)

2
— 7°7(q) ~ exp (17;(](1 + 0(1))) for ¢—0

[ Aizenmann-Lebowitz '88, Holroyd 02, ...]
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The general framework: U-bootstrap percolation

e Choose the update family, a finite collection
U=A{U,...,Upy,} of local neighbourhoods of the origin,
iLe. U; C 7?2 \ 0, |UZ| < o0

e At time t = 1 site z is emptied iff at least one of the
translated neighborhoods U; 4+ « is completely empty

e [terate

Ex.: 2-neighbour bootstrap percolation has

U = collection of the sets containing 2 nearest neighb. of origin
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Some other examples

e r-neighbour bootstrap percolation:
U = all the sets containing r nearest neighb. of origin

e East model U = {Uy,Us} with U; = (0,—1), Uy = (—1,0)
e North-East model ¢ = {U;} with U; = {(0,1),(1,0)}

e Duarte model U = {Uy, U, Us}

Ul U2 U3
O (@)

X O X O X
O O
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Universality classes

* q?
e Scaling of 77" (q) for ¢ | q.?

Three universality classes
e Supercritical models: ¢. =0, 7°%(q) = 1/q9(1)
e Critical models: g. = 0, 7%"(q) = exp(1/¢®M)
e Subcritical models: ¢g. > 0

There is a very easy-to-use recipe to determine the class of any
given U

[Bollobas, Smith, Uzzell '15, Balister, Bollobas, Przykucki, Smith "16]
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Kinetically Constrained Models, a.k.a. KCM

Configurations : n € {0,1}%’

Dynamics: continuous time Markov process of Glauber type,
i.e. birth / death of particles

Fix an update family I and ¢ € [0, 1].

Each site for which the i/ bootstrap constraint is satisfied is
updated to empty at rate ¢ and to occupied at rate 1 — q.
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Kinetically Constrained Models, a.k.a. KCM

KCM are a stochastic version version of BP:

= non monotone dynamics ;

= reversible w.r.t. product measure at density 1 — g;

= blocked clusters for BP < blocked clusters for KCM;

= empty sites needed to update — slowing down when ¢ | 0
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2-neighbour KCM

It
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Origins of KCM

KCM introduced by physicists in the ’80’s to model the
liquid /glass transition
e understanding this transition is a major open problem in
condensed matter physics;
e sharp divergence of timescales;

e no significant structural changes.

KCM:

= constraints mimic cage effect:

if temperature is lowered free volume shrinks, ¢ <> e~ /7

= trivial equilibrium, sharp divergence of timescales when
q } 0, glassy dynamics (aging, heterogeneities, ... )

C.TONINELLI



Why are KCM mathematically challenging?

e KCM dynamics is not attractive

— more empty sites can have unpredictable consequences
— coupling and censoring arguments fail

e Blocked clusters

— relaxation is not uniform on the initial condition
— worst case analysis is too rough
— d several invariant measures

e Coercive inequalities (e.g. Log-Sobolev) behave
anomalously

— most standard IPS tools fail for KCM — we need new tools
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KCM: time scales

M (q) := E,, ( first time at which origin is emptied )

e How does 7™ diverge when ¢ | ¢.?

e How does it compare with 757, the infection time of the
corresponding bootstrap process?

An (easy) lower bound:

TRM(g) > ¢ TB%(q) (for the same choice of U)

General, but it does not always capture the correct behavior
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Supercritical KCM : a refined classification

We identify 2 subclasses: supercritical rooted and unrooted

Theorem 1. [Martinelli, Morris, C.T. '17 + Maréché,

Martinelli, C.T. ’18]

(i) for all supercritical unrooted models 75 = 1/¢®(1)

(i) for all supercritical rooted models 75M = 1/¢®os(1/4))

Recall: 757 (q) = 1/¢°W for all supercritical models
— for supercritical rooted 75 (q) > 757 (q)

e 1l-neighbour model is supercritical unrooted

e BEast model is supercritical rooted
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Heuristic for 1-neighbour model

e a single empty site creates an empty site nearby at rate ¢
e at rate 1 — q two nearby empty sites coalesce

e nearest empty site is at distance L = 1/ ¢'/? from the origin

FBP T — 1/q1/2
TKM 2 /g = 1/¢? (log corrections)

U
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Heuristic for East model

e a single empty site can empty only its right or top
neighbour — it can infect only its upper right quadrant

— TP =L = 1/q1/2

e which trajectory is best for the KCM to empty the origin?
the one that avoids creating too many simultaneous zeros!

e a deterministic combinatorial result: maximum number of
simultaneous zeros on best trajectory is A = clog L

., sKCM 1/qA ~ 1/q@(10g(1/Q))

e N.B. super rough heuristics: we neglect entropy, that
matters for the value of ¢ in 7KM = ecloga”
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The East game

N tokens can be placed or removed from the integer sites
{1,2,...} according to the following rules:

e each site has at most one token;
e a token can always be placed or removed on site 1;

e on each site £ > 2 a token can be placed or removed only if
there is a token on site z — 1

Q. Which is the maximum site that can be occupied by a token?

site 2V — 1 [Sollich Evans 99, Chung Diaconis, Graham ’01]

— Logarithmic energy barrier for the East model in d =1

C.TONINELLI



Heuristic for supercritical and

e General supercritical unrooted models:
same behavior as 1-neighbour with
e single empty site <> finite empty droplet
— 787 and 7XM diverge as 1/¢®()
e General supercritical rooted models:

same behavior as East with:
e single empty site <+ finite empty droplet
e upper right quadrant <+ cone

a deterministic combinatorial result (much tougher game!):
logarithmic energy barriers [L.Maréche 19|

_y 7BP — 1/q®(1) < TECM _ 1/q9(log(1/q))
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2-neighbour model

e all finite clusters of zeros cannot move

e a vertical (horizontal) segment of zeros can empty the next
segment if this contains at least one empty site

[eXele] O0O0|Ce
[exeNell X } [eNeNel{oN ]
[eNeNell ) [eNeNel{oN ]
O 0 0|0 I [eNeRelleX ]
[exeNel[ ) [eNeneloN ]
[exeNell X } [eNeNeleN J
[exeNe] O 000 @

— an empty segment of length ¢ = 1/q|log g| can (typically)
empty the next one

— same role as droplet for supercritical unrooted, but 2 key
differences: ¢ depends on ¢ + droplets need external help
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2-neighbour KCM: Results and heuristics

e Renormalize on ¢(q) x ¢(q) boxes

e at t = 0 w.h.p. the origin belongs to a cluster of good
boxes containing a droplet at distance ~ 1/¢°

e droplets move on the good cluster as 1-neighbour KCM

e in time poly(1/¢%) the droplet moves near origin and we
can empty the origin

Theorem 2. [Martinelli, C.T. ’17 ]

c (log )® V)
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Upcoming work sharp threshold for 2-neighbour KCM

Theorem 3. [Martinelli, I. Hartarsky, C.T. 20" ]

2 2
B (to() o kom o Be(1+o(1)

As some you might have noticed for 2-neighbour KCM ...

KCM __ BP\2
T = ()
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Duarte model

Constraint: > 2 empty among N, W and S neighbours

00000 Co
[ N NoN N N ]
0000000

MOVE totheRIGHT : OK MOVE tothe LEFT : NO

An empty segment of length ¢ = 1/q |logg| can (typically)
create an empty segment to its right, but never to its left!

— it is a droplet that performs an Fast dynamics
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Duarte model: heuristics

e the nearest empty droplet to the origin is typically at
distance L = 1/¢*

— PP ~ L =exp (M) [T.Mountford 95, B. Bollobas,
H. Duminil-Copin, R. Morris, and P. Smith ’17]

e Duarte droplets move East like — to empty the origin
Duarte KCM has to to create log(L) simultaneous droplets

e to create a single droplet we pay 1/ ¢

llog L 1 4
_ sKCM N% &l L exp (C| 0qg2CI\ )
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Duarte model: results

Theorem 4. [Maréché, Martinelli, C.T. ’18 + Martinelli,

Morris, C.T. ’18 ]

1 4 1 4
exp (01\ ;gQI ) < KON < oy (62| Z;%q\ )

C.TONINELLI



Critical KCM: a refined classification

« = critical exponent for BP ~ minimal number of empty sites
to move the droplet , e.g. a = 1 for 2-neighbour and Duarte

Theorem 5. [Hartarsky, Martinelli, C.T. '19 + Martinelli,

Morris, C.T.'18 + Hartarsky, Maréché, C.T.'19]
For critical KCM it holds

e(1)
exp <CV> < 7EM <exp (C(log?,))
q q

e v = « for models with finite number of stable directions;

e v = 2« for models with infinite number of stable directions )
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Upper bound: Main obstacles

droplets move only on a ”good environment”

the environment evolves and can ”loose its goodness”

the motion of droplets is not random walk like
— it is very difficult to apply canonical path arguments!

the droplet is not a "rigid object”, it can be destroyed

e no monotonicity, no coupling arguments
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Upper bound: Main tools and ideas

e we upper bound 7™ with T, (= inverse spectral gap)

e we define an auxiliary KCM dynamics with long range and
very likely constraints ~ existence of long good paths with
at least one droplet;

e we prove that, under very flexible conditions, 72> = O(1)

rel

e use variational formula of T, to compare the auxiliary
dynamics with a 1-neighbour or East dynamics of droplets

e we recover the original KCM dynamics via canonical paths
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How do we construct an efficient bottleneck?
e we provide an algorithm identifying ”droplets” that
e occur independently

e have each probability ¢'/¢"

e cvolve East-like

e we identify a likely event on which to empty the origin we
should "move” one such droplet at distance L = ¢~ /¢

— we need to create log L simultaneous droplets

. . . e 2a
— this requires a time > ¢!/4"log L = ¢¢/a
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Summary

e KCM are the stochastic counterpart of BP

e time scales for KCM may diverge very differently from
those of BP due to the occurrence of energy barriers

e 7BF — length of the optimal path to empty origin

o 7KCM ~ Jength of optimal path x time to go through it

e we establish the universality picture for KCM in d = 2

Thanks for your e-attention !
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