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Bootstrap percolation

First example: 2-neighbour bootstrap on Z2

• At time t = 0 sites are i.i.d., empty with probability q,
occupied with probability 1− q

• At time t = 1
• each empty site remains empty
• each occupied site is emptied iff it has at least 2 empty

nearest neighbours

• Iterate

⇒ deterministic monotone dynamics

⇒ ∃ blocked clusters

.
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Critical density and Infection time

• Will the whole lattice become empty eventually?

→ Yes (Van Enter ’87)

• qc := inf{q ∈ [0, 1] : µq(origin is emptied eventually) = 1}

→ qc = 0

• How many steps do we ”typically” need to empty the
origin?

• τBP(q) := µq(first time at which origin is empty)

→ τBP(q) ∼ exp

(
π2

18q
(1 + o(1))

)
for q → 0

[ Aizenmann-Lebowitz ’88, Holroyd ’02, . . . ]
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The general framework: U-bootstrap percolation

• Choose the update family, a finite collection

U = {U1, . . . , Um} of local neighbourhoods of the origin,

i.e. Ui ⊂ Z2 \ 0, |Ui| <∞

• At time t = 1 site x is emptied iff at least one of the
translated neighborhoods Ui + x is completely empty

• Iterate

Ex.: 2-neighbour bootstrap percolation has

U = collection of the sets containing 2 nearest neighb. of origin
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Some other examples

• r-neighbour bootstrap percolation:
U = all the sets containing r nearest neighb. of origin

• East model U = {U1, U2} with U1 = (0,−1), U2 = (−1, 0)

• North-East model U = {U1} with U1 = {(0, 1), (1, 0)}

• Duarte model U = {U1, U2, U3}

3

xxx

U1 U U2
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Universality classes

• qc?
• Scaling of τBP(q) for q ↓ qc?

Three universality classes

• Supercritical models: qc = 0, τBP(q) = 1/qΘ(1)

• Critical models: qc = 0, τBP(q) = exp(1/qΘ(1))

• Subcritical models: qc > 0

There is a very easy-to-use recipe to determine the class of any
given U

[Bollobas, Smith, Uzzell ’15, Balister, Bollobas, Przykucki, Smith ’16]
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Kinetically Constrained Models, a.k.a. KCM

Configurations : η ∈ {0, 1}Z2

Dynamics: continuous time Markov process of Glauber type,
i.e. birth / death of particles

Fix an update family U and q ∈ [0, 1].

Each site for which the U bootstrap constraint is satisfied is
updated to empty at rate q and to occupied at rate 1− q.
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Kinetically Constrained Models, a.k.a. KCM

KCM are a stochastic version version of BP:

⇒ non monotone dynamics ;

⇒ reversible w.r.t. product measure at density 1− q;
⇒ blocked clusters for BP ↔ blocked clusters for KCM;

⇒ empty sites needed to update → slowing down when q ↓ 0
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2-neighbour KCM

q

1−q
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Origins of KCM

KCM introduced by physicists in the ’80’s to model the
liquid/glass transition

• understanding this transition is a major open problem in
condensed matter physics;

• sharp divergence of timescales;

• no significant structural changes.

KCM:

⇒ constraints mimic cage effect:
if temperature is lowered free volume shrinks, q ↔ e−1/T

⇒ trivial equilibrium, sharp divergence of timescales when
q ↓ 0, glassy dynamics (aging, heterogeneities, . . . )
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Why are KCM mathematically challenging?

• KCM dynamics is not attractive

→ more empty sites can have unpredictable consequences
→ coupling and censoring arguments fail

• Blocked clusters

→ relaxation is not uniform on the initial condition
→ worst case analysis is too rough
→ ∃ several invariant measures

• Coercive inequalities (e.g. Log-Sobolev) behave
anomalously

→ most standard IPS tools fail for KCM → we need new tools
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KCM: time scales

τKCM(q) := Eµq( first time at which origin is emptied )

• How does τKCM diverge when q ↓ qc?
• How does it compare with τBP, the infection time of the

corresponding bootstrap process?

An (easy) lower bound:

τKCM(q) ≥ c τBP(q) (for the same choice of U)

General, but it does not always capture the correct behavior
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Supercritical KCM : a refined classification

We identify 2 subclasses: supercritical rooted and unrooted

Theorem 1. [Martinelli, Morris, C.T. ’17 + Marêché,
Martinelli, C.T. ’18]

(i) for all supercritical unrooted models τKCM = 1/qΘ(1)

(ii) for all supercritical rooted models τKCM = 1/qΘ(log(1/q))

Recall: τBP(q) = 1/qΘ(1) for all supercritical models

→ for supercritical rooted τKCM(q)� τBP(q)

• 1-neighbour model is supercritical unrooted

• East model is supercritical rooted
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Heuristic for 1-neighbour model

• a single empty site creates an empty site nearby at rate q

• at rate 1− q two nearby empty sites coalesce

• nearest empty site is at distance L = 1/q1/2 from the origin

→ τBP = L = 1/q1/2

→ τKCM ∼ L2/q = 1/q2 (log corrections)
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Heuristic for East model

• a single empty site can empty only its right or top
neighbour → it can infect only its upper right quadrant

→ τBP = L = 1/q1/2

• which trajectory is best for the KCM to empty the origin?
the one that avoids creating too many simultaneous zeros!

• a deterministic combinatorial result: maximum number of
simultaneous zeros on best trajectory is ∆ = c logL

→ τKCM ∼ 1/q∆ ∼ 1/qΘ(log(1/q))

• N.B. super rough heuristics: we neglect entropy, that
matters for the value of c in τKCM = ec log q2
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The East game

N tokens can be placed or removed from the integer sites
{1, 2, . . . } according to the following rules:

• each site has at most one token;

• a token can always be placed or removed on site 1;

• on each site x ≥ 2 a token can be placed or removed only if
there is a token on site x− 1

Q. Which is the maximum site that can be occupied by a token?

site 2N − 1 [Sollich Evans ’99, Chung Diaconis, Graham ’01]

→ Logarithmic energy barrier for the East model in d = 1
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Heuristic for supercritical unrooted and rooted KCM

• General supercritical unrooted models:

same behavior as 1-neighbour with
• single empty site ↔ finite empty droplet

→ τBP and τKCM diverge as 1/qΘ(1)

• General supercritical rooted models:

same behavior as East with:
• single empty site ↔ finite empty droplet
• upper right quadrant ↔ cone

a deterministic combinatorial result (much tougher game!):
logarithmic energy barriers [L.Marêche ’19]

→ τBP = 1/qΘ(1) � τKCM = 1/qΘ(log(1/q))
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2-neighbour model

• all finite clusters of zeros cannot move

• a vertical (horizontal) segment of zeros can empty the next
segment if this contains at least one empty site

→ an empty segment of length ` = 1/q| log q| can (typically)
empty the next one

→ same role as droplet for supercritical unrooted, but 2 key
differences: ` depends on q + droplets need external help
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2-neighbour KCM: Results and heuristics

• Renormalize on `(q)× `(q) boxes

• at t = 0 w.h.p. the origin belongs to a cluster of good
boxes containing a droplet at distance ∼ 1/q`

• droplets move on the good cluster as 1-neighbour KCM

• in time poly(1/q`) the droplet moves near origin and we
can empty the origin

↓

Theorem 2. [Martinelli, C.T. ’17 ]

e
c
q ≤ τKCM ≤ e

(log q)Θ(1)

q

C.Toninelli Bootstrap Percolation and Kinetically Constrained Models: critical time scales



Upcoming work sharp threshold for 2-neighbour KCM

Theorem 3. [Martinelli, I.Hartarsky, C.T. ′20+ ]

e
π2

9q
(1+o(1)) ≤ τKCM ≤ e

π2

9q
(1+o(1))

As some you might have noticed for 2-neighbour KCM . . .

τKCM = (τBP)2

C.Toninelli Bootstrap Percolation and Kinetically Constrained Models: critical time scales



Duarte model

Constraint: ≥ 2 empty among N, W and S neighbours

: OK MOVE to the LEFT : NOMOVE to the RIGHT

An empty segment of length ` = 1/q | log q| can (typically)
create an empty segment to its right, but never to its left!

→ it is a droplet that performs an East dynamics

C.Toninelli Bootstrap Percolation and Kinetically Constrained Models: critical time scales



Duarte model: heuristics

• the nearest empty droplet to the origin is typically at
distance L = 1/q`

→ τBP ∼ L = exp
(
c| log q|2

q

)
[T.Mountford ’95, B. Bollobas,

H. Duminil-Copin, R. Morris, and P. Smith ’17]

• Duarte droplets move East like → to empty the origin
Duarte KCM has to to create log(L) simultaneous droplets

• to create a single droplet we pay 1/q`

→ τKCM ∼ 1
q

` logL ∼ exp
(
c| log q|4
q2

)
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Duarte model: results

Theorem 4. [Marêché, Martinelli, C.T. ’18 + Martinelli,
Morris, C.T. ’18 ]

exp

(
c1| log q|4

q2

)
≤ τKCM ≤ exp

(
c2| log q|4

q2

)

τBP ∼ exp

(
c| log q|2

q

)
� τKCM
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Critical KCM: a refined classification

α = critical exponent for BP ∼ minimal number of empty sites
to move the droplet , e.g. α = 1 for 2-neighbour and Duarte

Theorem 5. [Hartarsky, Martinelli, C.T. ′19 + Martinelli,
Morris, C.T. ′18 + Hartarsky, Marêché, C.T. ′19]

For critical KCM it holds

exp

(
c

qν

)
≤ τKCM ≤ exp

(
c(log q)Θ(1)

qν

)

• ν = α for models with finite number of stable directions;

• ν = 2α for models with infinite number of stable directions
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Upper bound: Main obstacles

• droplets move only on a ”good environment”

• the environment evolves and can ”loose its goodness”

• the motion of droplets is not random walk like
→ it is very difficult to apply canonical path arguments!

• the droplet is not a ”rigid object”, it can be destroyed

• no monotonicity, no coupling arguments
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Upper bound: Main tools and ideas

• we upper bound τKCM with Trel (= inverse spectral gap)

• we define an auxiliary KCM dynamics with long range and
very likely constraints ' existence of long good paths with
at least one droplet;

• we prove that, under very flexible conditions, T aux
rel = O(1)

• use variational formula of Trel to compare the auxiliary
dynamics with a 1-neighbour or East dynamics of droplets

• we recover the original KCM dynamics via canonical paths
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Lower bound

How do we construct an efficient bottleneck?

• we provide an algorithm identifying ”droplets” that

• occur independently

• have each probability q1/q
α

• evolve East-like

• we identify a likely event on which to empty the origin we
should ”move” one such droplet at distance L = q−1/qα

→ we need to create logL simultaneous droplets

→ this requires a time ≥ q1/qα logL = ec/q
2α
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Summary

• KCM are the stochastic counterpart of BP

• time scales for KCM may diverge very differently from
those of BP due to the occurrence of energy barriers

• τBP = length of the optimal path to empty origin

• τKCM ' length of optimal path × time to go through it

• we establish the universality picture for KCM in d = 2

Thanks for your e-attention !
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