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1. THE MODEL



UNIFORM SPANNING FOREST ON Z¢
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Let Ay := [—n, n]¢ N Z2.

A subgraph of the lattice is a spanning
tree of A, if it connects all vertices and
has no cycles.

Let (™) pe a spanning tree of A, se-
lected uniformly at random from all pos-

| sibilities.

The USF on Z4, U, is then the local limit of 1(™).
NB. Wired/free boundary conditions unimportant.

For d = 2,3,4, U is a spanning tree of Z%, a.s. (Forest for d > 4.)

[Aldous, Benjamini, Broder, Haggstrom, Hutchcroft, Kirchoff,
Lyons, Nachmias, Pemantle, Peres, Schramm, Wilson,. . .]



GENEALOGICAL STRUCTURE
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2d animation: Bostock, adapted to 3d by C.



2. SCALING LIMITS



PATHS IN THE 2d-UST




PATHS IN THE 2d-UST




PATHS IN THE 2d-UST
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T he distances in the tree to the path between opposite corners
in @ uniform spanning tree in a 200 x 200 grid.
Picture: Lyons/Peres: Probability on trees and networks



WILSON’S ALGORITHM ON Z?

Let 29 = 0,z1,22,... be an enumeration of Z2.
Let 4(0) be the graph tree consisting of the single vertex zg.
Given U(k — 1) for some k > 1, define U(k) to be the union of
U(k — 1) and the loop-erased random walk (LERW) path run
from x to U(k — 1).
The UST U is then the local limit of U (k).
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LERW SCALING IN 74

Consider LERW as a process (Ln),>0 (assume original random
walk is transient).

In Z¢, d > 5, L rescales diffusively to Brownian motion [Lawler].

In Z4, with logarithmic corrections rescales to Brownian motion
[Lawler].

v v In Z3, {L, : n € [0,7]} has a scaling limit
B e [Kozma, Li/Shiraishi]. Growth exponent
e B~ 1.62.
?{ In Z2, {L, : n € [0,7]} has SLE(2) scaling

limit [Lawler/Schramm/Werner]. Growth
Picture: Ariel Yadin  exponent is 5/4 [Kenyon, Masson, Lawler,
Lawler/Viklund].



UST SCALING [SCHRAMM]
Consider U as an ensemble of paths:

= {(a,b,wab) :a,b e ZQ},

where 7, IS the unique arc connecting a and b in U, as an ele-
ment of the compact space H(R? x R? x H(R?)),

cf. [Aizenman/Burchard/Newman/Wilson]. Also SLE(8) scal-
ing limit of [Lawler/Schramm/Werner].

Mg : _ ae | SCaling limit T almost-surely satisfies:
i‘% 1 e each pair a,b € R2 connected by a path:
T, ' « o if a # b, then this path is simple;

G i e if a = b, then this path is a point or a

W
g simple loop;
& vy " e the trunk, Usm,\{a, b}, is a dense topo-
s S logical tree with degree at most 3.

Picture: Oded Schramm
ISSUE: This topology does not carry information about intrinsic

distance or volume.



VOLUME ESTIMATES [BARLOW/MASSON]

piis _
— 1 I_
Iy ___
- -
I:; CT [
fﬁj'ij H T
e U

With high probability,

Bp(z, \"'R) C By(z, R®/*) C Bp(z, AR),

as R — oo then A — oo. In particular,

P (R™®/5|By(z, R)| ¢ NH ) < eqeme2”.
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ABSTRACT FRAMEWORK FOR CONVERGENCE

Define T to be the collection of measured, rooted, spatial trees,
i.e.

(T, dr, pur, o7, 07),

where:

o (T, dT) IS a complete and locally compact real tree;

e u7 is a locally finite Borel measure on (7,dy);

e ¢ is a continuous map from (7,dy) into R?;

e p7 is a distinguished vertex in T.

Equip this space with a generalised Gromov-Hausdorff topology.



BRIEF INTRODUCTION TO GH TOPOLOGY

The (pointed) Gromov-Hausdorff dis-
= _‘ tance
\ / dGH ((7-7 dT7 pT)v (7-/7 dT’7 pT’))
IS given by
l inf,dp (w(T),¢'(T)).

This is equal to
1
—inf dis(C),
>N ()

where the infimum is taken over correspondences C C 7 x 7T’ con-
taining (p7, p77), and the distortion dis(C) of a correspondence
IS given by

sup {|d7(z,y) — dr(a',¢)| : (2,2), (u,9) € C} .



MEASURED, SPATIAL GH TOPOLOGY

.
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We refine dGH to A((Ta d’T? YK ¢7—7 :07-)7 (T/a dT’a K, ¢T’7 p’T’))v via
the expression

infy, w e (dH (W (T),'(T")) +dp (MT oyt o w;,l) + suP(, oec |7 (T) — qu/(a:’)!).



2d-UST SCALING LIMIT

Theorem [Barlow/C/Kumagai, Holden/Sun]. If Py is the
law of the measured, rooted spatial tree

(U, 55/ *dyy, 62y () , Sdu, 0)
under P, then Ps converges in M1(T) as § — O.

Proof involves:

e establishing tightness/convergence of trees spanning a finite
number of points, cf. [Lawler/Viklund] for a single LERW path;
e strengthening estimates of [Barlow/Masson] to show every-

thing else is close.
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2d-UST LIMIT PROPERTIES
[BARLOW/C/KUMAGAI, cf. SCHRAMM]

If P := lims_gPs, then for P-a.e. (T, dt, ur, 7, p7) it holds that:

|00

(a) the Hausdorff dimension of (7,dy) is given by d; := ¢;
(b) p7 is non-atomic and supported on the leaves of 7, and
satisfies

pr (By(z,r)) ~ r8/5

(loglog errors pointwise, log errors uniform on compacts);

(c) the restriction of the continuous map ¢ : 7 — R? to 7° is
a homeomorphism between this set and its image ¢7(7°),
which is dense in R2:

(d) (T,dy) has precisely one end at infinity;

(€) Maxyer degr(z) = 3 = max, g2 |67 (2)].



SCALING LIMIT OF 3d UST
[ANGEL/C/HERNANDEZ-TORRES /SHIRAISHI]

AS measured, rooted spatial trees

(U, 6P dyy, 6314, 5604, 0)

where B8 =~ 1.62..., converge in distribution along the subse-
quence 6, = 27",

Key issues (as compared to 2d approach):
e scaling limit of LERW in irregular domains not understood;
e SRW does not hit arbitrary paths quickly!



SCALING LIMIT OF 3d UST
[ANGEL/C/HERNANDEZ-TORRES /SHIRAISHI]

AS measured, rooted spatial trees

(U, 6P dyy, 6314, 564, 0)

where g =~ 1.62..., converge in distribution along the subse-
quence §, = 27 ™.

Proof involves:

e extending LERW convergence of
[Li/Shiraishi],

e showing SRW hits LERW quickly, cf.
[Sapozhnikov/Shiraishi].
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3d-UST LIMIT PROPERTIES

If P := lims_oPs, where P is law of rescaled UST, then for
P-a.e. (T,dt, pr, o7, p7) it holds that:

(a) the Hausdorff dimension of (7,dy) is given by df := %;
(b) w7 is non-atomic and supported on the leaves of 7, and

satisfies
pr (Br(z, 1)) ~ rl
(loglog errors pointwise, log errors uniform on compacts);
(¢c) (T,d7) has precisely one end at infinity;
(d) max, g3 o7 ()] < M.

Conjecture maximum degree is 3, and trunk is not a tree.



3. SIMPLE RANDOM WALK



SIMPLE RANDOM WALK ON 2d-UST

Let XY = (XY),>0 be simple random walk on U. After 5,000
and 50,000 steps (picture: Sunil Chhita):

-
-

We will write (p%(m,y))a;’yeu, n>0 for the (smoothed) quenched
heat kernel on U, as defined by

P (XH = y) + P (X4 =)
2degy(y) '
The annealed/averaged heat kernel is Ept(z, ).

P (2, y) =



(SUB-)GAUSSIAN HEAT KERNELS ON TREES

Suppose T is a graph tree with fractal dimension df, i.e. such
that
| Br(z,r)| =< r,

then (cf. [Barlow, Bass, Coulhon, Grigor'yan, Jones, Kumagai,
Perkins, Telcs])

pL(z,y) < cqn~%/?

1
(dT(fL‘, y)dw> dw—t
—C2 )

n

where: o
walk dimension d,, = df + 1, spectral dimension d; = d—uf.

This talk, if time permits, will address:

- exponents for U/ (2d/3d);

- scaling limit for X“ (2d/3d):

fluctuations around polynomial terms (2d);
quenched vs. averaged heat kernel (2d).



EXPONENTS

General form d=2 d=3

LERW growth exponent Q 5/4 = 1.25 1.62
Hausdorff dimension of U dy = d/a 8/5 = 1.60 1.85
Intrinsic walk dimension | dy =1+dy | 13/5 = 2.60 | 2.85

Extrinsic walk dimension adyy 13/4 = 3.25 | 4.62
Spectral dimension of U Qdf/dw 16/13 = 1.23 | 1.30

Exponents for 2d case established in [Barlow/Masson].

Exponents for 3d case based on results of [A/C/H-T/S] and

numerical simulation for 8 of Wilson.

Both depend on general estimates of [Kumagai/Misumi].



RANDOM WALKS ON GRAPHS

Let G = (V,FE) be a finite, connected graph, equipped with
(strictly positive, symmetric) edge conductances (c¢(x, y)){x,y}eE.
Let u be a finite measure on V (of full-support).

Let X be the continuous time Markov chain with generator A,
as defined by:

1 > clz,y)(f(y) — f(@)).

D=L, 2

NB. Common choices for u are:

- p({z}) = Xy yozc(z,y), the constant speed random walk
(CSRW);

- p({z}) := 1, the variable speed random walk (VSRW).



DIRICHLET FORM AND RESISTANCE METRIC

Define a quadratic form on G by setting

=2 Y elay) (F@) - FW)) (9(x) — 9()) .

2 2oy
Note that (regardless of the particular choice of u,) £ is a Dirich-
let form on L2(u), and

E(f,9)=— ) (Af)(@)g(@)n({z}).

xeV

Suppose we view G as an electrical network with edges assigned
conductances according to (c(w,y)){%y}eE. Then the effective
resistance between x and y is given by

R(z,y)~t =inf{&(f,f): f(z) =1,f(y) =0}.
R is a metric on V, e.g. [Tetali 1991], and characterises the
weights (and therefore the Dirichlet form) uniquely [Kigami 1995].



SUMMARY

RANDOM WALK X WITH GENERATOR A

)

DIRICHLET FORM & on L2(w)

)

RESISTANCE METRIC R AND MEASURE u



RESISTANCE METRIC, e.g. [KIGAMI 2001]

Let F' be a set. A function R: Fx F — R is a resistance metric
if, for every finite V C F', one can find a weighted (i.e. equipped
with conductances) graph with vertex set V for which R|y «y is

the associated effective resistance.



EXAMPLES
- Effective resistance metric on a graph;
- One-dimensional Euclidean (not true for higher dimensions);
- Any shortest path metric on a tree;

- Resistance metric on a Sierpinski gasket, where for ‘vertices’
of limiting fractal, we set

then use continuity to extend to whole space.




RESISTANCE AND DIRICHLET FORMS

Theorem (e.g. [Kigami 2001]) There is a one-to-one corre-
spondence between resistance metrics and a class of quadratic
forms called resistance forms.

The relationship between a resistance metric R and resistance
form (&€, F) is characterised by

R(z,y) "t =inf{&(f,f): f€F, f(z) =1, f(y) =0}.

Moreover, if (F,R) is compact, then (&, F) is a regular Dirichlet
form on L2(u) for any finite Borel measure p of full support.
(Version of the statement also hold for locally compact spaces.)



A FIRST EXAMPLE

Let ' = [0,1], R = Euclidean, and p be a finite Borel measure
of full support on [0, 1].

Associated resistance form:

1
£t.9)= [ f@)9g@de,  VigeF,
where F = {f € C([0,1]) : f is abs. cont. and f' € L?(dz)}.

Moreover, integration by parts gives:
1
£(f.9) = = [ (AN @)g(@)n(do).
_ ddf
where Af = duds:

If u(dx) = dx, then the Markov process naturally associated with
A is reflected Brownian motion on [0, 1].



SUMMARY
RESISTANCE METRIC R AND MEASURE u

)

RESISTANCE FORM (&, F), DIRICHLET FORM on L2(u)

)

STRONG MARKOV PROCESS X WITH GENERATOR A,
where

E(f,g) = — /F(Af)gdu-



GENERAL SCALING RESULT [C. 2016]
See also [ATHREYA/LOHR/WINTER] for trees

Write F. for the space of marked compact resistance metric
spaces, equipped with finite Borel measures of full support. Sup-
pose that the sequence (Fy, Rn, tin, pn)p>1 in Fe satisfies

(Fna Rna M, ,On) — (Fa R7 My :0)

in the (marked) Gromov-Hausdorff-Prohorov topology for some
(F7 R7:u7p) S IEFC'

It is then possible to isometrically embed (Fn, Rn)p>1 and (F, R)
into a common metric space (M,d,;) in such a way that

Py, ((X;Sn)tzo S ) — Pp ((Xt)tzo € )
weakly as probability measures on D(R4, M).

Holds for locally compact spaces if liminfp—oo Rn(pn, Bg, (pn, 7))
diverges as r — oo. (Can also include ‘spatial embeddings’.)



COROLLARY: SRW SCALING LIMIT

Fix d =2 or d =3, let P be the annealed law of

U
(5X5—adwt>tzo '
NB. ady = 3.25,4.62 is the extrinsic walk dimension in the rel-

evant dimension.

It then holds that Ps — P (subsequentially in 3d), where P is the
annealed law of

(¢T(XtT))tZO ,

as probability measures on C(R4,R%).

Proof. Apply general results concerning convergence of random
walks on trees [Barlow/C/Kumagai, Athreya/Lohr/Winter], or
resistance spaces [C].



OTHER MOTIVATING EXAMPLES
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Sources: Ben Avraham/Havlin, Kortchemski, Chhita, Broutin.



PROOF IDEA 1: RESOLVENTS

For (F,R, u,p) € Fe, let

Gzf(y) = Loy /OU:I: f(Xs)ds

be the resolvent of X killed on hitting x. NB. Processes associ-
ated with resistance forms hit points.

We have [Kigami 2012] that

Gaf (1) = [ ga(y. ) f(D)n(d2),

where
> .

gﬂ?(yv Z) —

Metric measure convergence = resolvent convergence = semi-
group convergence = finite dimensional distribution convergence.



PROOF IDEA 2: TIGHTNESS

Using that X has local times (Li(x))zcF >0, and

R(y,A) + R(z,A) — Ra(y, 2)
2 Y
can establish via Markov's inequality a general estimate of the

form:

32N (F,e/4 t
sup Py <SUDR(:U,X3)Z€> < (Fe/ )<5—|—_ >,
zEF s<t € inf,cr u(Br(x,§))
where N(F,¢) is the minimal size of an ¢ cover of F.

EyLo,(z) = ga(y,z) =

Metric measure convergence = estimate holds uniformly in n =
tightness (application of Aldous’ tightness criterion).

Similar estimate also gives non-explosion in locally compact case.



