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This talk is about properties of one specific “new” model. Why might
one care?

@ Some (weak) real-world motivation.

@ Being a “random tree” model, there are many aspects to study; we
have some results and many open problems. Will suggest 4 specific
challenges.

@ Can compare and contrast with the known continuum random tree
limits of other models.

Friendly competition between probabilistic and analysis-of-recursions
techniques (ongoing work with co-author Boris Pittel).

2 long preprints on arXiv
The Critical Beta-splitting Random Tree, | and 11
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Digression: A something completely different problem

Take a probability measure 11 on a complete separable metric space
(S, d). Take 2 independent samples &1, & from p. The rv. d(&1, &) has
some distribution € on [0, o).

What distributions @ arise in this way?
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This “uneven split” property holds for most phylogenies — just type “xxx
phylogeny” into Google Images.

To demonstrate, having already said “dead parrot” and “something
completely different” let's continue the Monty Python theme by showing
phylogenetic trees for

@ Brontosaurus
@ Swallows

o Pythons
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Plateosaurus
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@ Is there a simple probability model that replicates this “uneven
splits” aspect of real cladograms?

At each split within a cladogram, a clade (sub-tree) of size m species is
split into clades of sizes i and m — i. Data often shows (Aldous, Stat.
Sci, 2001) that the median size of the smaller subtree scales as roughly
m'/2. Simple probability models used before 2000 would predict median
size O(1) or O(log m) or Q(m).

One could invent models with several real parameters, and then see if any
parameter values gave order m'/2.

o Is there a simple model that predicts m'/2?
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A class of probability models for n-leaf rooted binary trees.

For each m > 2, specify a probability distribution (g(m,),1 <i<m-—1)
with the symmetry condition g(m, i) = g(m, m — /).

Given n, construct the random tree by specifying that there is a left edge
and a right edge at the root, leading to a left subtree which will have L,
leaves and a right subtree which will have R, = n — L, leaves, where L,

(and also R,, by symmetry) has distribution g(n,-).

Continue recursively; a subtree which will have m > 2 leaves is split into
two subtrees of random size from the distribution g(m, -); continue until
reaching subtrees of size 1, which are leaves.
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Figure: Representation as discrete interval-splitting
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Specialize to a 1-parameter family, which we call beta-splitting:
roughly it is
q(n, i) ociP(n—1)P

defined for —2 < 8 < o0.

In this model the height of a typical leaf (number of edges to the root)
grows as

(8B > —1): order logn

(8 < —1): order n=F-1,
We will study the critical case g = —1.

Two motivations:

(i) Will fit the order m'/? data.

(ii) A stochastic model, with a “phase transition” separating qualitatively
different behaviors, often has mathematically interesting special
properties at the critical value of the parameter.

This project was mentioned in (Aldous, Probability Distributions on
Cladograms, 1995) but not followed up.
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OK, forget the biology, now onto the mathematics.

Our model: splitting probability g(n, i) « ﬁ

Note -t

o = 1(1 + L), so we get the normalization constant

(n,i) = n 1
N = by (=)’

1<i<n-1

where h, =37 | + ~ log n . So the median size of the smaller split is

essentially n!/2 because when we sum over 1 < j < nl/2
1 221
1
2 x x Zx x logn'/? ~ =.
2h,_1 Z i log n & 2

So now, what does the random tree look like drawn from the root? First
we have to think how we will draw a tree.
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Figure: Equivalent representations of a realization of DTCS(20).

The tree on the right has some specific structure: leaves occur as pairs at
the end of a stem, or as a singleton on one side of a branch. This
“pruned” form turns out to be mathematically convenient when we
switch to continuous time.
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Overview of results

@ There is a canonical way to embed the discrete-time model into a
continuous-time model (which we call CTCS(n)) by specifying that
a clade of size m > 2 is split at rate hp,_1.

@ For the height (time reached) D, of a uniform random leaf in the
CTCS(n) model, E[D,] ~ % log n and also there is a Gaussian limit
distribution. Many related results of surprising sharpness can be
obtained via analysis of recursions.

@ We can describe the limit fringe distribution of CTCS(n), that is the
local weak limit relative to a random leaf.

@ There is a non-obvious consistency property of (CTCS(n), n > 2) in
its “pruned” form: given CTCS(n+1), delete a random leaf and
prune; this gives CTCS(n). In reverse this gives an explicit algorithm
for growing CTCS(n+1) from CTCS(n).

@ There is a scaling limit of (CTCS(n), n > 2), as a process of splitting
the continuous interval (0,1), with a corresponding continuum tree.
The pruned spanning tree on n random points is CTCS(n).
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Our discrete time construction was:

At each unit time, split a size m clade into (i, m — i) clades with
probability

m 1

- s 1<i<m-1
)= oh im—ipy ~='=m

q(m,i

Instead we will work with a continuous time model CTCS(n) where
we split size m clades at rate h,,_; instead. That is:

Split rate is = 2 I.(mlﬂ.y 1<i<m-1

This turns out to be mathematically more tractable.

We will mostly be doing n — co asymptotics, so what does a tree on 400
leaves look like?
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The consistency property

Important that in our discrete-time model, there's no direct relation
between the trees for n and n+ 1, we have to start over with the
construction. Somewhat magically, there is a simple connection for the
continuous-time model:

Given CTCS(n+1), delete a random leaf and prune; this gives
CTCS(n).

Here's a discussion.
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To formulate a consistency property, first consider spanning sub-trees on
a given set of leaves within a large tree.

[eTe]

e'e]
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Figure: A spanning tree on k = 10 leaves within CTCS(n) for some n > k
(left) and the corresponding pruned tree PRU(n k) (right).
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The key consequence of the continuous-time embedding is (via a simple
calculation)

(*) Within CTCS(n), the time S, at which the paths to 2 different
random leaves diverge satisfies

(x) Sp has exactly Exponential(1) distribution.

This makes it intuitively clear that, for the pruned tree PRU(n k) on k
random leaves, there must be some limit
PRU(n,k) — T(k) as n — oo

because (*) says we already did the right order of scaling. By
construction, the family (T(k), k > 2) must be consistent under “delete
random leaf and prune”.

Is this T(k) the same as CTCS(k)?
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Is this T(k) the same as CTCS(k)?

Yes: there is an abstract-but-strangely-unconvincing proof. This implies
the family is consistent under “delete random leaf and re-prune”. But
more informative to check by explicit formulas for the distribution of
shape/density-of-edge-lengths, which leads to the following inductive
construction of (CTCS(n), n > 2)

Algorithm: given CTCS(k)

@ Pick uniform random leaf; move up path from root toward that leaf.
A “stop” event occurs at rate = 1/(size of subclade from current
position).

o If "stop” before reaching target leaf, make a side-leaf.

o Otherwise, extend target leaf into a twig of Exponential(1) length to
make a leaf-pair.
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Figure: The possible transitions from CTCS(10) to CTCS(11): the added leaf

is e.

Challenge #1. Is this construction useful for doing calculations? Is
there some relevant martingale?

David Aldous The Critical Beta-Splitting Random Tree Model: Results and Open Problems



Height of leaves

Most of our (ongoing collaboration with Boris Pittel) actual results start
from detailed study of

D, := height of random leaf ¢ in CTCS(n).
Along the path from the root to ¢, at each time t we are in a clade of
some size X;. By size-biasing of the split probabilities g(m, i) we find
that the process X; is the decreasing continuous-time Markov chain on
{n,n—1,n—2,... 1} started at n, absorbing at 1, with transition rates

1
)\(j,i):j_i, 1<i<j<n

Let's call X; the explorer chain.

[Needs a better name. Has it been studied before in some other context
77
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A very simple calculation

From the transition rates for our explorer chain (X;, 0 < t < c0) started
at Xo=mn,forj>i>1

j-1
EldX:|X; = jl =Y (i —Jj) dt = —(j — 1)dt on {X, > 2}.
i=1
So setting Y; := X; — 1 we have Yo = n—1 and
So, taking expectations, dE[Y:] = —E[Y;]dt and so

E[Y =(n—-1)e % E[X]=1+(n—1)e "
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Because P(D, > t) = P(X; — 1 > 1) we easily deduce an inequality

(*) E[D,] <1+ log(n—1).

In fact this is not the right way to study E[D,], but allows me to
introduce an alternative proof of (*) via recursions.

Because of the recursive structure of the model, E[D,] is determined by a
certain recurrence:
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E[D] =0

n—1
E[D,] = 72 <1+ E[_Dk]) n>2. (1)
k=1

E[D,] < f(n) :=1+log(n—1). (2)
It is enough to show that f(n) satisfies

We will prove

which is exactly f(n), since f'(x) = L= for x > 1.
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To most of this audience, that “recurrence” argument is less
informative/natural than the “probability” argument, which established
an exact result on the way. But the simplicity of the probability argument
in this case is purely lucky.

In the context of probability-on-trees, (and many analysis-of-algorithms
settings), one can often set up such recurrences. And anything defined by
a recurrence can in principle be bounded by inductively verifying a bound.

This talk focusses on probabilistic proofs (in preprint #2), whereas

preprint #1 proves a variety of refinements based on the recurrence
method above.

David Aldous The Critical Beta-Splitting Random Tree Model: Results and Open Problems



A key insight is that the explorer chain X; is decreasing in some
“multiplicative” way. Recall the elementary textbook example:

What is the behavior of M, .= [[:_; U; for i.i.d.U[0,1] RVs U; ?
First answer: E[M,] =27".
Better answer: M, =~ e~ " because log M, = >_7_, log U; and so

n~tlog M, — E[log U] = e~ L.

So let's go back to our explorer chain and take logs.
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X(t) is the continuous-time Markov chain on {1,2,3,..., n} started at
n, absorbing at 1, with rates

1
)\(j,i):j_i, 1<i<j<n.

Study Z(t) := log X(t). A transition z — z — a is a transition

a

x=e" e T=xeT?=x—x(1—-e77).

So rate of transitions z — [0,z — a] is

X

> 1/i~—log(l—e7?).

i=x(1l—e—2)

which does not depend on z.
This says that the process log X(t) is essentially just a (continuous time)
random walk. More specifically:
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There is a o-finite measure ¢ on (0, 00) with ¢[a,00) = — log(1 — e™?).
Write Y(t) for the subordinator with Levy measure 9. Then, for X(")(¢)
the chain started at n,

log X(")(t) ~ log n — Y/(t) until this is O(1). (4)

We are studying
D, := inf{t : X("(t) =1}.

But we have a SLLN and CLT for the subordinator. Assuming the
approximation (4) is good enough:

Y () o pm /OOO l[a,00) da

and so D, ~ p~llogn. By a classical identity p = ((2) = 72/6 so our
simple bound ED, < 1 + log(n — 1) is upgraded to ED,, ~ 672 log n.
And finally the CLT:
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Theorem

D, — plogn
Vlogn

—+¢ Normal(0, 120?)

where

pwi=1/¢(2) = 6/7%* = 0.6079...; o2 :=2((3) = 2.4040.....

So in outline this is just the textbook CLT for renewal processes, but the
technical work is in justifying the approximation (4). Our proof (preprint
# 2) seems a Horrible Hack: there must be some better way .......
Challenge #2.

In parallel, preprint #1 gives an analytic proof based on the recurrence
for the Laplace transform. But also technically intricate.
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Sharp results by analysis of recurrences

E[D,] is determined by the recurrence: E[D;] = 0 and

<1 + Z E[Dkl) > 2. (5)

E[D,] = 5 logn+ O(1) as n — oo.

]E[Dn] =

Proposition

Assuming the h-ansatz, there exists a constant cy such that

E[Ds] = Zlogn+co— 2n~ L1 0o(n). (6)

v

One can calculate E[D,] numerically via the basic recurrence, and doing
so up to n = 400,000 gives a good fit to (6) with ¢g = 0.7951556604.....
Yes, really 10 significant digits ... ...
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Proofs are long and technical; they depend on sharp estimates like

n—1
log(k > log (27 n
D R = % + B B+ O(7),

which are proved, in the spirit of Knuth's Concrete Mathematics, via
ingredients such as Euler's summation formula: if f(x) is a smooth
differentiable function for x € [a, b] such that the even derivatives

f@ £ . are all of the same sign, then for every m > 1
b b
3 f(k) = / F(x) dx — %f(x)‘
a<k<b a 2

a

m
_ b m b
+ 2 eI, + Inam O ()
=1

Here 0,, is some real in 07 1) and the {Bzg} are the even Bernoulli
numbers, defined by =5 =3 -, B"Z'
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In the tree model, D, arises from two levels of randomness, as the
distance d(U,, T,) within a random tree T, from the root to a uniform
random leaf U, of that tree. Write a(T,) for the average height of the n
leaves of T,,. The law of total variance says

var[Dy,] = E[var(d(U,, T,)|T,)] + var[a(T,)]. (8)

As statisticians say, the first term of the right indicates the “within tree”
variability of leaf height, and the second term indicates the “between
trees” variability. As a standard technique, one can calculate the
proportion of “between trees” variance

b var[a(T,)]
" var[Dy)

because it is essentially the correlation between the D’s of two random
leaves from the same realization of T,,.

Assuming the h-ansatz: for Euler's constant vy

3 2) _
nlem In = 2{ 3 = 0.3949404179.
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Assuming the h-ansatz: for Euler’s constant

: _ 6@ _
nl|_>moo n = 53) = 0.3949404179. . .,

If we could find a nicer “probability” proof of the CLT for D,, that could
presumably be extended to a bivariate Gaussian limit in this setting.
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Consider the height D} of the random tree CTCS(n) itself, that is the
maximum leaf height. The naive argument is that D} behaves as the
maximum of n i.i.d. samples from the approximating distribution D, x4
Normal(u log n, 302 log n), which would give

D} ~ plogn+ \/2logn x \/pdo2logn~ (u+1.04)logn.  (9)

However the tail of the distribution of D, might be fatter than Normal,
or the dependence between leaf heights might be stronger, so the
constant might be larger or smaller than (u + 1.04).

Another approach: there are order n edges to leaves, which have
independent Exponential(1) lengths, so their max length is ~ 1 - log n.
Consider the corresponding leaf: it attaches to a branch whose height has
the Normal distribution, so that leaf’s height is at least (x + 1) log n.

Challenge #3. What is the right constant?
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[repeat earlier slide]
Overview of results/problems

@ V' There is a canonical way to embed the discrete-time model into
a continuous-time model (which we call CTCS(n)) by specifying
that a clade of size m > 2 is split at rate h,,_1.

@ v For the height (time reached) D, of a uniform random leaf in
the CTCS(n) model, E[D,] ~ % log n and also there is a Gaussian
limit distribution. Many related results of surprising sharpness can
be obtained via analysis of recursions.

@ We can describe the limit fringe distribution of CTCS(n), that is the
local weak limit relative to a random leaf.

e v/ There is a non-obvious consistency property of (CTCS(n), n > 2)
in its “pruned” form: given CTCS(n+1), delete a random leaf and
prune; this gives CTCS(n). In reverse this gives an explicit algorithm
for growing CTCS(n+1) from CTCS(n).

@ There is a scaling limit of (CTCS(n), n > 2), as a process of splitting
the continuous interval (0,1), with a corresponding continuum tree.
The pruned spanning tree on n random points is CTCS(n).
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The fringe process
Consider the quantity

a(n, i) := P(explorer chain started at state n is ever in state i)

[same for the discrete or continuous models.] By a coupling argument

Proposition

The limit a(i) := lim,_o0 a(n, i) exists, i = 1,2, .. ..

But the proof does not give any useful quantitative information about the
limit (a(i),i = 1,2,...). The limit must satisfy the system of equations,

ai =Y aaU, ) + G i — )if, i>1
J>i
with a; = 1, using the transition probabilities

)= n 1
© 2h,q i(n—i)’

q(n,i 1<i<n-1.

Presumably it is the unique solution of these equations, but we do not
have a proof.

David Aldous The Critical Beta-Splitting Random Tree Model: Results and Open Problems



Our results (that log X; deceases at speed 72/6) imply that
ij:2 a(j)/hj—1 ~ (6/72) log m and so it is very natural to make

a(j)rvﬁ%"’—gjasj%oo.

J

The motivation for Proposition 2 involves the fringe distribution for the
tree model, that is the description of the tree relative to a typical leaf,
which (by Bayes rule) can be described in terms of the a;. In particular, a
leaf in the DTCS(n) model arises from a split of some size W, > 2, and
so Proposition 2 implies that W,, —4 W where

P(W =1i)=ai(q(i,1)+q(i,i—=1))/i, i>2. (10)
The Conjecture would then lead to

P = ) ~ 23
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Results and Open Problems
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The scaling limit

@ Heuristically, there is a scaling limit of (CTCS(n),n > 2), as a
process of splitting the continuous interval (0,1), with a
corresponding continuum tree. The pruned spanning tree on n
random points is CTCS(n).

Challenge #4.. Think rigorously about this, and connections with
below.
@ There is a classical “applied probability” literature on
interval-splitting, focussed on the distribution of fragment lengths,
which in our model would be clade sizes at a given time.

@ A more recent approach is via exchangeable partitions, see e..g.
Haas - Miermont - Pitman - Winkel 2008.
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Consider a process of splitting the continuous unit interval [0, 1].

An interval of Iength x is split into sub-intervals of lengths (y,x — y) at
o-finite rate 27 dy. Hard to draw a good picture, but the induced

spanning tree on k points has the previous type of structure (right side).

There are many analogs/differences between this setting and the theory
around the Brownian CRT. Perhaps a “Cauchy” analog?
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