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Cliques in Random Graphs

e Erdés—-Rényi random graph &(n,1/2)
- n vertices, every pair connected with prob 1/2 independently

» Max clique of &(n,1/2) has size ~ 2logn w.h.p.

» Best known algorithm finds a clique of size ~ log n w.h.p.
Q: Can we find a (1 + €)log n clique in &(n,1/2) efficiently?

- Can do this in n°1°2" time by exhaustive search




Metropolis Process

e [Jerrum’92] considered the Metropolis Process (MP) for finding a (1 + ¢)logn
clique in &(n,1/2)

> Initialization: a clique X,

' » At time ¢, generate X, from X,_, as follows:

. Pick a vertex v uniformly at random:
- fveEg X _,letX =X,_,U{v}ifitisaclique,and X, = X,_, otherwise

X, \{Vv}, w.p.e”
’ X1, w.p.1—e” |



Metropolis Process: Example
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Metropolis Process for &(n,1/2)

» As 1 grows, the distribution of X, converges to stationary distribution 7z
n(C) elICl Yy clique C
- [} = 0: wis uniform distribution over all cliques
- p=0(1): C ~ rhassize ~ logn w.h.p. C ~ 7 arandom
- f=0ogn): C ~ rhassize ~ (1 + &)logn w.h.p. clique drawn from 7

Hope: X, converges to & quickly (poly-time), and we get a (1 + ¢)log n clique!

' [Jerrum’92]: For any f > 0, MP fails to find a (1 + ¢)log n clique in &(n,1/2),
| even if we “plant” a large clique of size k = n” a < 1/2 & '
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Planted Clique Model

» Planted clique model & (n,1/2.k) [dJerrum’92, Kucera’95]

Step 1: G is an Erd6s-Rényi &'(n,1/2)

Step 2: Pick a subset of k vertices u.a.r. and form a planted k-clique L€
= G =GyUPC

Goal: Recover L€ from observing G ~ &(n,1/2,k)

Q: How large does k need to be?
to (efficiently) find the clique?

G = G PE




Recovering Planted Clique

Goal: Recover L€ from observing G ~ &(n,1/2,k)

e k> (2 + e)log n: n®1°¢M time by exhaustive search
o k= Q(\/Wgn): poly(n) time by degree counting
e k= Q(/n): poly(n) time

- Spectral method, approximate message passing, and more... [AKS’98,
FR’10, DM’13, DGGP’14]

- Ifk = O(W), many algorithms fail: MP [Jer’92], Sum-of-Squares hierarchy
[BHK+’16], statistical-query algorithms [FGR+’17], ...
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The Planted Cligue Conjecture

Conjectured to be . Efficient recovery

impossible to recover computationally hard ¢ (Spectral, AMP, ...)

2logn C\/E

 Computational hardness implies same for other important problems:
compressed sensing, sparse PCA, property testing, cryptography...



MP for Planted Clique Model

e Supposek = | PE| =n“where0 < a <1
» X, converges to x, where 7(C) eP1¢1 ¥ clique C
o C ~ miscontained in € w.h.p.
- # Cliques inside € = 2K = 2" > n®%2" — # Cliques outside €

Hope: X, converges to r in poly time, and we see a significant portion of 6!

' [Jerrum’92]: Forany @ < 1/2 and 8 > 0, MP requires n®U°¢™ time to find
a (1 + e)log n clique under worst-case initialization X, &
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Revisiting Jerrum’s Result

i [Jerrum’92]: Forany a < 1/2 and 8 > 0, MP requires n®U°¢™ time to find
a (1 + £)log n clique under worst-case initialization X, '

(a) Why ¢ < 1/2? Does MP work when 1/2 < a < 17

- First evidence of “hardness” for planted clique problem when k = 0(\/;) S
commonly attributed to the failure of MP in [Jerrum’92]

(b) Why (1 + &)log n clique?

- Can we first find y log n vertices from &€, and then recover € easily?

(c) Why worst-case initialization”? Same is true for many lower bounds of MCMC

- Can we use simple and nature “empty clique” initialization X, = @7
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Our Results

k= |9P€|=n"

, [Chen-Mossel-Zadik’23]: For any o < 1, MP requires n®") time to reach:
| » Either a clique of size (1 + ¢)logn

» Or a clique of intersection y log n with €
When (i) under worst-case initialization and f > 0 ,
(i) under empty clique initialization and f/ = o(logn) or w(logn) |

» Big failure of MP for the planted clique problem

 Contrary to common sense predictions: no strong evidence of hardness
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Proof Approach: Worst-case Initialization

[Chen-Mossel-Zadik’23]: Forany o < 1 and # > 0, MP requires n**1°¢"™ |
' time to reach: |
» Either a clique of size (1 + ¢)logn

'« Or aclique of intersection y log 1 with *€ \
| under worst-case initialization |

i “Bottleneck argument”: If m(0A)/m(A) = p~Slogn)
then MP requires n**1°¢" time to escape A (reach | A
' A°) when started from X, ~ 7( - | A) 0A

A: a subset of cliques
0A: boundary cliques of A
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Bottleneck for Large Intersection

i “Bottleneck argument”: If 7(0A)/m(A) = n—*loen),
then MP requires n**1°2" time to escape A (reach |
| A°) when started from Xy ~ 7( - | A) |

s A={C:|CNPE| Lylogn}

e DA={C:|CNXPE| =ylogn}
| 0A | - | 0A |

Can show ~

' A = [A]
), m0A) _ [0

) A |A]

7(0A) ~ Mmax, e’ | 6 | 6
A~/ <

q,ylognl q*,ylogn‘ _
For general f3: — T = pt¥logn)

- n(A) - max, e’ €, | C

6¢,={C:[C|l=¢q} €,={C:[C|=¢q,|CNFE|=r}
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Bottleneck for Large Size

» Jerrum’s bottleneck dB: cliques of size (1 + 2¢/3)log n expandable to size
(1 + e)logn

« Work only when o < 1/2
n(0B)

When 1/2 < a < 1, is large since B and dB are mostly cliques

' n(B)
contained in L€

» Need to take “combined bottleneck” =~ A N B (A is previous bottleneck for
large intersection)
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Proof Approach: Empty Clique Initialization

. 3 = w(log n): Probability of removing a vertex = e” = n~*)

- MP =~ Randomized Greedy algorithm (pick a random vertex and add if
possible)

. ﬁ = o(log n): Consider the “projected process” over N for sizes of eliques:

» Use an auxiliary birth and death process {Y,},to bound { | X;| },

 Can show large hitting time when ff = o(log n)
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Conclusion and Future Problems

f [Chen-Mossel-Zadik’23]: For any o < 1, MP requires n‘! time to reach:
|« Either a clique of size (1 + ¢)logn

» Or a clique of intersection y log n with €

' When (i) under worst-case initialization and > 0 '
(i) under empty clique initialization and / = o(logn) or w(logn) |

» Failure of MP under empty clique initialization and for / = ®(log n)?
* (General tools for analyzing MCMC algorithms under natural initialization?

» Efficient MCMC algorithms for recovering the planted clique?

Thank you!



