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2Université Paris XIII

3Chinese Academy of Sciences

Oxford Discrete Mathematics and Probability Seminar
November 26th 2024
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planted m-ary tree / c ∈ (0, 1)
discount rate

/ (ηe)edgesi.i.d.
marks

at generation k , length(e) = ckηe

Question: Is the height of the tree finite?
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planted m-ary tree / c ∈ (0, 1)
discount rate

/ (ηe)edgesi.i.d.
marks

length(e) = c2ηe .

Question: Is the height of the tree finite?
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planted m-ary tree / c ∈ (0, 1)
discount rate

/ (ηe)edgesi.i.d.
marks

length(e) = c3ηe .

Question: Is the height of the tree finite?
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planted m-ary tree / c ∈ (0, 1)
discount rate

/ (ηe)edgesi.i.d.
marks

length(e) = c4ηe .

Question: Is the height of the tree finite?
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Suppose P(η > x) ∼ x−θ.

If m < cθ, then X <∞ a.s. maxgeneration k ℓ(e) decreases exponentially

If m > cθ, then X =∞ a.s. maxgeneration k ℓ(e) increases exponentially

Proof. mkP(ℓ(e) > x) = mkP(ckη > x) ∼ x−θ(mc−θ)k .

Athreya (1985)
Endogenous solution of

X
(d)
= η + max

1≤i≤m
c X (i)

cX (1) cX (i)
cX (m)
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Goal: find the k-th smallest number (result) among n numbers.

FIND algorithm

Pick a random number (pivot).
Compare it with the other numbers.
If result=pivot, end.
If not, iterate.

n

n1

<

n2

>

Cost of the algorithm:
Xn = n +max(Xn1 ,Xn2)

1
n
Xn

(d)→ X .

X
(d)
= 1 + max(UX (1), (1− U)X (2))

Endogenous solution X <∞ (Grüber and Rösler, 1996).
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Branching random walk (V (u))u

V (∅) = 0.

(V (u), |u| = 1)
(d)
= µ: point process on

the real line.

At each generation, vertices have
independently children with positions at
distance a copy of µ from their parent.

eV (u): discount rates
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E. Äıdékon Boundedness of discounted tree sums



Branching random walk (V (u))u

V (∅) = 0.

(V (u), |u| = 1)
(d)
= µ: point process on

the real line.

At each generation, vertices have
independently children with positions at
distance a copy of µ from their parent.

eV (u): discount rates
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(ηu)u: i.i.d. positive marks on the
vertices.

D(ξ) :=
∑
u∈ξ

eV (u)ηu discounted sum

X := sup
ξ∈∂T

D(ξ)

Question: Is X <∞?

(Aldous & Bandyopadhyay, 2005)
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D(ξ) :=
∑
u∈ξ

eV (u)ηu X := sup
ξ∈∂T

D(ξ)

X is the endogenous solution of

X
(d)
= η + sup

|u|=1

eV (u)X (u)

Example I: step displacement is a
constant

Example II: η = 1, step displacement is
−Exp(1).
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φ(t) = lnE
[∑

|u|=1 e
tV (u)

]
Mn := max

|u|=n
V (u)

1

n
Mn → γ := inf

t>0

φ(t)

t

t

φ(t)

γ > 0

t

φ(t)

γ = 0

t

φ(t)

γ < 0

Mn − γn − c ln(n) converges in distribution, c < 0.
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D(ξ) =
∑
u∈ξ

eV (u) =
∞∑
n=0

eV (ξn) ≤
∞∑
n=0

eMn

γ < 0⇒ Mn ∼ γn⇒ X <∞

X ≥ eMn

γ > 0⇒ Mn →∞⇒ X =∞
What about γ = 0?

The upper bound D(ξ) ≤
∑∞

n=0 e
Mn is too rough. One cannot find a path which

stays close to the maximum at all times.
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trajectory

√
n

n

Mn ∼ c ln n

Need to control the frequency at which a path returns to levels of order ln n
Not straightforward...
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E. Äıdékon Boundedness of discounted tree sums



t

φ(t)

t∗
t

φ(t)

t∗

φ(t) = lnE
[∑

|u|=1 e
tV (u)

]
E
[∑

|u|=1 e
t∗V (u)

]
= 1

Suppose that θ := limx→∞
−1
ln(x)

lnP(η > x) ∈ [0,∞] exists.

Theorem (A.,Hu,Shi, 24+)

If t∗ < θ, then X <∞ a.s. If t∗ > θ, then X =∞ a.s. on non-extinction.
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If t∗ > θ, then X =∞ a.s. on non-extinction.

It suffices to prove sup|u|=n e
V (u)ηu goes to ∞ exponentially fast.

Better idea: consider eV (u)ηu over BRW stopped at level −k then show
supstopping line e

−kηu goes to infinity.

stopping line ∼ et
∗k

−k

E
[∑

|u|=1 e
t∗V (u)

]
= 1⇒ 1 = E

[∑
stopping line e

t∗V (u)
]
≈ e−t∗k E[stopping line]
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If t∗ < θ, then X <∞ a.s.

stopping line ∼ et
∗k

−k
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If t∗ < θ, then X <∞ a.s.

It suffices to show that

{u : V (u) ≈ −k} is of size et
∗k .∑

u∈ξ 1{V (u)≈−k} grows at most polynomially uniformly in ξ.

D(ξ) =
∑
u∈ξ

eV (u)ηu ≈
∞∑
k=0

e−k
∑
u∈ξ

ηu1{V (u)≈−k}

≤
∞∑
k=0

e−k sup
u:V (u)≈−k

ηu︸ ︷︷ ︸
exponentially small

∑
u∈ξ

1{V (u)≈−k}︸ ︷︷ ︸
polynomial

.

Stop each path ξ when it is ≈ −k for the ℓ-th time.

E[stopping line] ≈ et
∗kP(S ≈ −k for the ℓ-th time) = o(1) if ℓ ≥ k3.
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Suppose V (u) ∈ Z and P(V (u) ≤ −2) = 0 for |u| = 1.

N(ξ, k) :=
∑
u∈ξ

1{V (u)=−k}.

t

φ(t)

t∗

(I )

t

φ(t)

t∗

(II )

Theorem (A., Hu, Shi, 24+)

(I) supξ lim supk→∞
1
k2N(ξ, k) = t∗

2θ
.

(II) supξ lim supk→∞
1
k
N(ξ, k) = − t∗

ln q
.

What about lim inf?
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Idea of the proof

(I) supξ lim supk→∞
1
k2N(ξ, k) = t∗

2θ
.

−k

ck2
local time ℓ

1−
√
1− ℓ/ck2

E[below green line]→∞ if c < t∗

2θ

E[green stopping line]→ 0 if c > t∗

2θ
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Hausdorff dimension of rays such that N(ξ, k) ∼ ak2?

Weaker assumptions?

Study of all solutions of the fixed point equation.

THANK YOU
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