

The maximum deviation from the expected value.

The maximum deviation from the expected value.

Example: **discrepancy** of *n* points $P \subset [0,1]^2$ is

$$\operatorname{\mathsf{disc}}(P) = \max_{\substack{R \subset [0,1] \ R \text{ rectangle}}} ||R \cap P| - n \cdot \operatorname{\mathsf{area}}(R)|.$$

The maximum deviation from the expected value.

Example: **discrepancy** of *n* points $P \subset [0,1]^2$ is

$$\operatorname{disc}(P) = \max_{\substack{R \subset [0,1] \ R \text{ rectangle}}} ||R \cap P| - n \cdot \operatorname{area}(R)|.$$

Problem. What is $f(n) = \min_{|P|=n} \operatorname{disc}(P)$?

The maximum deviation from the expected value.

Example: **discrepancy** of *n* points $P \subset [0,1]^2$ is

$$\operatorname{disc}(P) = \max_{\substack{R \subset [0,1] \ R \text{ rectangle}}} ||R \cap P| - n \cdot \operatorname{area}(R)|.$$

Problem. What is $f(n) = \min_{|P|=n} \operatorname{disc}(P)$?

■ If P is **random**, then $\operatorname{disc}(P) \approx \sqrt{n}$.

The maximum deviation from the expected value.

Example: **discrepancy** of *n* points $P \subset [0,1]^2$ is

$$\operatorname{disc}(P) = \max_{\substack{R \subset [0,1] \\ R \text{ rectangle}}} ||R \cap P| - n \cdot \operatorname{area}(R)|.$$

Problem. What is $f(n) = \min_{|P|=n} \operatorname{disc}(P)$?

- If P is **random**, then $\operatorname{disc}(P) \approx \sqrt{n}$.
- $f(n) = \Theta(\log n).$

Discrepancy of *G*:

$$\operatorname{disc}(G) = \max_{U \subset V(G)} \left| e(G[U]) - p \binom{|U|}{2} \right|.$$

Discrepancy of *G*:

$$\operatorname{disc}(G) = \max_{U \subset V(G)} \left| e(G[U]) - p\binom{|U|}{2} \right|.$$

Problem. What is
$$f_p(n) = \min_G \operatorname{disc}(G)$$
?

Discrepancy of *G*:

$$\operatorname{disc}(G) = \max_{U \subset V(G)} \left| e(G[U]) - p\binom{|U|}{2} \right|.$$

Problem. What is $f_p(n) = \min_{C} \operatorname{disc}(G)$?

If $p \in [\frac{1}{n}, \frac{1}{2}]$, then $\mathbf{G}(n, p)$ has discrepancy $\approx p^{1/2} n^{3/2}$.

Discrepancy of *G*:

$$\operatorname{disc}(G) = \max_{U \subset V(G)} \left| e(G[U]) - p {|U| \choose 2} \right|.$$

Problem. What is $f_p(n) = \min_G \operatorname{disc}(G)$?

If $p \in [\frac{1}{n}, \frac{1}{2}]$, then $\mathbf{G}(n, p)$ has discrepancy $\approx p^{1/2} n^{3/2}$.

Theorem (Erdős, Goldbach, Pach, Spencer 1988)

If
$$p \in \left[\frac{1}{n}, \frac{1}{2}\right]$$
, then $\operatorname{disc}(G) = \Omega(p^{1/2}n^{3/2})$.

$$\operatorname{disc}^+(G) = \max_{U \subset V(G)} \operatorname{e}(G[U]) - p\binom{|U|}{2}.$$

$$\operatorname{disc}^+(G) = \max_{U \subset V(G)} e(G[U]) - p\binom{|U|}{2}.$$

Negative discrepancy:

$$\operatorname{disc}^{-}(G) = \max_{U \subset V(G)} p\binom{|U|}{2} - e(G[U]).$$

$$\operatorname{disc}^+(G) = \max_{U \subset V(G)} e(G[U]) - p\binom{|U|}{2}.$$

Negative discrepancy:

$$\operatorname{disc}^{-}(G) = \max_{U \subset V(G)} p\binom{|U|}{2} - e(G[U]).$$

Problem. What is $f_p^+(n) = \min_G \operatorname{disc}^+(G)$ and similarly $f_p^-(n)$?

$$\operatorname{disc}^+(G) = \max_{U \subset V(G)} e(G[U]) - p\binom{|U|}{2}.$$

Negative discrepancy:

$$\operatorname{disc}^{-}(G) = \max_{U \subset V(G)} p\binom{|U|}{2} - e(G[U]).$$

Problem. What is $f_p^+(n) = \min_G \operatorname{disc}^+(G)$ and similarly $f_p^-(n)$?

Examples:

• $\operatorname{disc}^+(\mathbf{G}(n,p)) = \Theta(p^{1/2}n^{3/2}) = \operatorname{disc}^-(\mathbf{G}(n,p)).$

$$\operatorname{disc}^+(G) = \max_{U \subset V(G)} e(G[U]) - p\binom{|U|}{2}.$$

Negative discrepancy:

$$\operatorname{disc}^{-}(G) = \max_{U \subset V(G)} p\binom{|U|}{2} - e(G[U]).$$

Problem. What is $f_p^+(n) = \min_G \operatorname{disc}^+(G)$ and similarly $f_p^-(n)$?

Examples:

- $\operatorname{disc}^+(\mathbf{G}(n,p)) = \Theta(p^{1/2}n^{3/2}) = \operatorname{disc}^-(\mathbf{G}(n,p)).$
- $\operatorname{disc}^+(\mathbf{K}_{\mathbf{n},\mathbf{n}}) = \Theta(n)$ and $\operatorname{disc}^-(\mathbf{K}_{\mathbf{n},\mathbf{n}}) = \Theta(n^2)$.

If $p \in \left[\frac{1}{n}, \frac{1}{2}\right]$, then

•
$$\operatorname{disc}^+(G) \cdot \operatorname{disc}^-(G) = \Omega(pn^3).$$

If $p \in \left[\frac{1}{n}, \frac{1}{2}\right]$, then

•
$$\operatorname{disc}^+(G) \cdot \operatorname{disc}^-(G) = \Omega(pn^3).$$

•
$$\operatorname{disc}^+(G) = \Omega(n)$$
 and $\operatorname{disc}^-(G) = \Omega(n)$,

If $p \in \left[\frac{1}{n}, \frac{1}{2}\right]$, then

•
$$\operatorname{disc}^+(G) \cdot \operatorname{disc}^-(G) = \Omega(pn^3).$$

• $\operatorname{disc}^+(G) = \Omega(n)$ and $\operatorname{disc}^-(G) = \Omega(n)$, **Turán graphs** have $\operatorname{disc}^+ = \Theta(n)$.

If $p \in \left[\frac{1}{n}, \frac{1}{2}\right]$, then

•
$$\operatorname{disc}^+(G) \cdot \operatorname{disc}^-(G) = \Omega(pn^3).$$

• $\operatorname{disc}^+(G) = \Omega(n)$ and $\operatorname{disc}^-(G) = \Omega(n)$, **Turán graphs** have $\operatorname{disc}^+ = \Theta(n)$.

$$f_{1/2}^+(n) = \Theta(n)$$

If $p \in \left[\frac{1}{n}, \frac{1}{2}\right]$, then

- $\operatorname{disc}^+(G) \cdot \operatorname{disc}^-(G) = \Omega(pn^3)$.
- $\operatorname{disc}^+(G) = \Omega(n)$ and $\operatorname{disc}^-(G) = \Omega(n)$, **Turán graphs** have $\operatorname{disc}^+ = \Theta(n)$.

$$f_{1/2}^+(n) = \Theta(n)$$

Conjecture (Verstraete). If $\frac{1}{n} \le p \le \frac{1}{2} - \varepsilon$, then

$$\operatorname{disc}^{+}(G) = \Omega(p^{1/2}n^{3/2}).$$

Minimum bisection is the min. size of a cut into 2 equal parts.

Minimum bisection is the min. size of a cut into 2 equal parts.

Lemma

If G is regular, then

■ MaxCut = $\frac{e(G)}{2}$ + $\Theta(\operatorname{disc}^-(G))$,

Minimum bisection is the min. size of a cut into 2 equal parts.

Lemma

If G is regular, then

- $MaxCut = \frac{e(G)}{2} + \Theta(disc^{-}(G)),$
- Minimum bisection = $\frac{e(G)}{2} \Theta(\operatorname{disc}^+(G))$.

Minimum bisection is the min. size of a cut into 2 equal parts.

Lemma

If G is regular, then

- MaxCut = $\frac{e(G)}{2}$ + $\Theta(\operatorname{disc}^-(G))$,
- Minimum bisection = $\frac{e(G)}{2} \Theta(\operatorname{disc}^+(G))$.

Theorem (Alon 1993)

If G is d-regular and $d = O(n^{1/9})$, then

Minimum bisection $< \frac{dn}{4} - cd^{1/2}n$.

Minimum bisection is the min. size of a cut into 2 equal parts.

Lemma

If G is regular, then

- MaxCut = $\frac{e(G)}{2}$ + $\Theta(\operatorname{disc}^{-}(G))$,
- Minimum bisection = $\frac{e(G)}{2} \Theta(\operatorname{disc}^+(G))$.

Theorem (Alon 1993)

If G is d-regular and $d = O(n^{1/9})$, then

Minimum bisection
$$< \frac{dn}{4} - cd^{1/2}n$$
.

Equivalently, disc⁺(
$$G$$
) = $\Omega(d^{1/2}n) = \Omega(p^{1/2}n^{3/2})$.

The minimum **positive discrepancy** among n vertex graphs of average degree d is

■ $\Theta(d^{1/2}n)$ if $d \in [1, n^{2/3}]$

- $\Theta(d^{1/2}n)$ if $d \in [1, n^{2/3}]$
- $\Theta(n^2/d)$ if $d \in [n^{2/3}, n^{3/4}]$

- $\Theta(d^{1/2}n)$ if $d \in [1, n^{2/3}]$
- $\Theta(n^2/d)$ if $d \in [n^{2/3}, n^{3/4}]$
- lacksquare at least $\Omega(n^2/d)$ if $d\in[n^{3/4},n^{4/5}]$

- $\Theta(d^{1/2}n)$ if $d \in [1, n^{2/3}]$
- $\Theta(n^2/d)$ if $d \in [n^{2/3}, n^{3/4}]$
- lacksquare at least $\Omega(n^2/d)$ if $d \in [n^{3/4}, n^{4/5}]$
- lacksquare between $\tilde{\Omega}(d^{1/4}n)$ and $O(n^{4/3})$ if $d\in [n^{4/5},(\frac{1}{2}-\varepsilon)n]$

- $\Theta(d^{1/2}n)$ if $d \in [1, n^{2/3}]$
- $\Theta(n^2/d)$ if $d \in [n^{2/3}, n^{3/4}]$
- lacksquare at least $\Omega(n^2/d)$ if $d \in [n^{3/4}, n^{4/5}]$
- lacksquare between $ilde{\Omega}(d^{1/4}n)$ and $O(n^{4/3})$ if $d\in [n^{4/5},(rac{1}{2}-arepsilon)n]$

Lemma

If G is d-regular with eigenvalues $d=\lambda_1\geq\cdots\geq\lambda_n$, then

$$\operatorname{disc}^+(G) \leq \frac{\lambda_2}{2}n + d.$$

Proof. Let A be the adjacency matrix, v_1, \ldots, v_n an orthonormal basis.

Lemma

If G is d-regular with eigenvalues $d=\lambda_1\geq\cdots\geq\lambda_n$, then

$$\operatorname{disc}^+(G) \leq \frac{\lambda_2}{2}n + d.$$

Proof. Let A be the adjacency matrix, v_1, \ldots, v_n an orthonormal basis.

If $U \subset V(G)$ and x is the characteristic vector, then

$$e(G[U]) - p\binom{|U|}{2} = \frac{1}{2}\left(x^TAx - px^T(J-I)x\right).$$

Lemma

If G is d-regular with eigenvalues $d = \lambda_1 \ge \cdots \ge \lambda_n$, then

$$\operatorname{disc}^+(G) \leq \frac{\lambda_2}{2}n + d.$$

Proof. Let A be the adjacency matrix, v_1, \ldots, v_n an orthonormal basis.

If $U \subset V(G)$ and x is the characteristic vector, then

$$e(G[U]) - p\binom{|U|}{2} = \frac{1}{2} \left(x^T A x - p x^T (J - I) x \right).$$

Writing $x = \sum a_i v_i$, we have

$$=rac{1}{2}\left(\sum_{i=1}^{n}\lambda_{i}a_{i}^{2}-pna_{1}^{2}+p||x||_{2}^{2}
ight)$$

Lemma

If G is d-regular with eigenvalues $d=\lambda_1\geq\cdots\geq\lambda_n$, then

$$\operatorname{disc}^+(G) \leq \frac{\lambda_2}{2}n + d.$$

Proof. Let A be the adjacency matrix, v_1, \ldots, v_n an orthonormal basis.

If $U \subset V(G)$ and x is the characteristic vector, then

$$e(G[U]) - p\binom{|U|}{2} = \frac{1}{2}\left(x^TAx - px^T(J-I)x\right).$$

Writing $x = \sum a_i v_i$, we have

$$= \frac{1}{2} \left(\sum_{i=1}^{n} \lambda_{i} a_{i}^{2} - p n a_{1}^{2} + p ||x||_{2}^{2} \right)$$

$$\leq \frac{1}{2} \lambda_{2} \sum_{i=1}^{n} a_{i}^{2} + \frac{1}{2} p ||x||_{2}^{2}$$

Lemma

If G is d-regular with eigenvalues $d = \lambda_1 \ge \cdots \ge \lambda_n$, then

$$\operatorname{disc}^+(G) \leq \frac{\lambda_2}{2}n + d.$$

Proof. Let A be the adjacency matrix, v_1, \ldots, v_n an orthonormal basis.

If $U \subset V(G)$ and x is the characteristic vector, then

$$e(G[U]) - p\binom{|U|}{2} = \frac{1}{2}\left(x^TAx - px^T(J-I)x\right).$$

Writing $x = \sum a_i v_i$, we have

$$= \frac{1}{2} \left(\sum_{i=1}^{n} \lambda_i a_i^2 - p n a_1^2 + p ||x|||_2^2 \right)$$

$$\leq \frac{1}{2}\lambda_2 \sum_{i=2}^n a_i^2 + \frac{1}{2}p||x||_2^2 \leq \frac{\lambda_2}{2}n + d.$$

(i) \exists strongly-regular graph with $d \approx n^{3/4}$ and $\lambda_2 \approx n^{1/4}$.

(i) \exists strongly-regular graph with $d \approx n^{3/4}$ and $\lambda_2 \approx n^{1/4}$.

This gives a graph with disc⁺(G) $\approx n^{5/4} \approx n^2/d$.

(i) \exists strongly-regular graph with $d \approx n^{3/4}$ and $\lambda_2 \approx n^{1/4}$.

This gives a graph with $\operatorname{disc}^+(G) \approx n^{5/4} \approx n^2/d$.

(ii) \exists strongly-regular graph with $d \approx \frac{1}{3}n$ and $\lambda_2 \approx n^{1/3}$.

(i) \exists strongly-regular graph with $d \approx n^{3/4}$ and $\lambda_2 \approx n^{1/4}$.

This gives a graph with $\mathrm{disc}^+(G) \approx n^{5/4} \approx n^2/d$.

(ii) \exists strongly-regular graph with $d \approx \frac{1}{3}n$ and $\lambda_2 \approx n^{1/3}$.

This gives a graph with disc⁺(G) $\approx n^{4/3} \approx nd^{1/3}$.

(i) \exists strongly-regular graph with $d \approx n^{3/4}$ and $\lambda_2 \approx n^{1/4}$.

This gives a graph with $\operatorname{disc}^+(G) \approx n^{5/4} \approx n^2/d$.

(ii) \exists strongly-regular graph with $d \approx \frac{1}{3}n$ and $\lambda_2 \approx n^{1/3}$.

This gives a graph with disc⁺(G) $\approx n^{4/3} \approx nd^{1/3}$.

Alon-Boppana bound. If G has diameter \geq 4, then $\lambda_2 \geq d^{1/2}$.

(i) \exists strongly-regular graph with $d \approx n^{3/4}$ and $\lambda_2 \approx n^{1/4}$.

This gives a graph with $\mathrm{disc}^+(G) \approx n^{5/4} \approx n^2/d$.

(ii) \exists strongly-regular graph with $d \approx \frac{1}{3}n$ and $\lambda_2 \approx n^{1/3}$.

This gives a graph with $\operatorname{disc}^+(G) \approx n^{4/3} \approx nd^{1/3}$.

Alon-Boppana bound. If G has diameter ≥ 4 , then $\lambda_2 \geq d^{1/2}$.

Theorem (Balla, Räty, Sudakov, T. 2023+)

The minimum of λ_2 among *n*-vertex *d*-regular graphs is

■ $\Theta(d^{1/2})$ if $d \in [1, n^{2/3}]$

(i) \exists strongly-regular graph with $d \approx n^{3/4}$ and $\lambda_2 \approx n^{1/4}$.

This gives a graph with $\mathrm{disc}^+(G) \approx n^{5/4} \approx n^2/d$.

(ii) \exists strongly-regular graph with $d \approx \frac{1}{3}n$ and $\lambda_2 \approx n^{1/3}$.

This gives a graph with $\operatorname{disc}^+(G) \approx n^{4/3} \approx nd^{1/3}$.

Alon-Boppana bound. If G has diameter ≥ 4 , then $\lambda_2 \geq d^{1/2}$.

Theorem (Balla, Räty, Sudakov, T. 2023+)

The minimum of λ_2 among *n*-vertex *d*-regular graphs is

- $\Theta(d^{1/2})$ if $d \in [1, n^{2/3}]$
- $\Theta(n/d) \text{ if } d \in [n^{2/3}, n^{3/4}]$

(i) \exists strongly-regular graph with $d \approx n^{3/4}$ and $\lambda_2 \approx n^{1/4}$.

This gives a graph with $\operatorname{disc}^+(G) \approx n^{5/4} \approx n^2/d$.

(ii) \exists strongly-regular graph with $d \approx \frac{1}{3}n$ and $\lambda_2 \approx n^{1/3}$.

This gives a graph with disc⁺(G) $\approx n^{4/3} \approx nd^{1/3}$.

Alon-Boppana bound. If G has diameter ≥ 4 , then $\lambda_2 \geq d^{1/2}$.

Theorem (Balla, Räty, Sudakov, T. 2023+)

The minimum of λ_2 among *n*-vertex *d*-regular graphs is

- $\Theta(d^{1/2})$ if $d \in [1, n^{2/3}]$
- $\Theta(n/d)$ if $d \in [n^{2/3}, n^{3/4}]$
- between $\Omega(d^{1/3})$ and $O(n^{1/3})$ if $d \in [n^{3/4}, (\frac{1}{2} \varepsilon)n]$.

If G is d-regular and $d \ll n^{2/3}$, then

$$\operatorname{disc}^+(G) = \Omega(d^{1/2}n).$$

If G is d-regular and $d \ll n^{2/3}$, then

$$\operatorname{disc}^+(G) = \Omega(d^{1/2}n).$$

Proof. For each $v \in V(G)$, assign the vector $x_v \in \mathbb{R}^{V(G)}$ defined

$$x_{v}(w) = \begin{cases} 1 & \text{if } v = w, \\ \frac{1}{\sqrt{d}} & \text{if } v \sim w, . \\ 0 & \text{if } v \nsim w. \end{cases}$$

If G is d-regular and $d \ll n^{2/3}$, then

$$\operatorname{disc}^+(G) = \Omega(d^{1/2}n).$$

Proof. For each $v \in V(G)$, assign the vector $x_v \in \mathbb{R}^{V(G)}$ defined

$$x_{v}(w) = \begin{cases} 1 & \text{if } v = w, \\ \frac{1}{\sqrt{d}} & \text{if } v \sim w, . \\ 0 & \text{if } v \nsim w. \end{cases}$$

Let H be a **random half-space** in $\mathbb{R}^{V(G)}$ through the origin, and let U be the set of vertices v such that $x_v \in H$.

If G is d-regular and $d \ll n^{2/3}$, then

$$\operatorname{disc}^+(G) = \Omega(d^{1/2}n).$$

Proof. For each $v \in V(G)$, assign the vector $x_v \in \mathbb{R}^{V(G)}$ defined

$$x_{\nu}(w) = \begin{cases} 1 & \text{if } \nu = w, \\ \frac{1}{\sqrt{d}} & \text{if } \nu \sim w, . \\ 0 & \text{if } \nu \not\sim w. \end{cases}$$

Let H be a **random half-space** in $\mathbb{R}^{V(G)}$ through the origin, and let U be the set of vertices v such that $x_v \in H$.

Observation: For $u, v \in V(G)$,

$$\mathbb{P}(u,v\in U)=\frac{1}{4}+\Theta(\langle x_u,x_v\rangle).$$

$$x_{v}(w) = \begin{cases} 1 & \text{if } v = w, \\ \frac{1}{\sqrt{d}} & \text{if } v \sim w, \\ 0 & \text{if } v \not\sim w. \end{cases}$$

$$x_{\nu}(w) = \begin{cases} 1 & \text{if } \nu = w, \\ \frac{1}{\sqrt{d}} & \text{if } \nu \sim w, \\ 0 & \text{if } \nu \not\sim w. \end{cases}$$

 $\mathbb{E}\left[e(G[U]) - \frac{d}{n-1}\binom{|U|}{2}\right] = \Omega(d^{1/2}n).$

Claim.

$$x_{v}(w) = \begin{cases} 1 & \text{if } v = w, \\ \frac{1}{\sqrt{d}} & \text{if } v \sim w, . \\ 0 & \text{if } v \not\sim w. \end{cases}$$
Claim.

 $\mathbb{E}\left[e(G[U]) - \frac{d}{n-1}\binom{|U|}{2}\right] = \Omega(d^{1/2}n).$

 $\mathbb{E}\left[e(G[U])-\frac{d}{n-1}\binom{|U|}{2}\right]$

 $\approx \sum_{u \sim v} \langle x_u, x_v \rangle - \frac{d}{n} \sum_{u \sim v} \langle x_u, x_v \rangle$

Proof.

$$x_{v}(w) = \begin{cases} 1 & \text{if } v = w, \\ \frac{1}{\sqrt{d}} & \text{if } v \sim w, . \\ 0 & \text{if } v \not\sim w. \end{cases}$$
Claim.
$$\mathbb{E}\left[e(G[U]) - \frac{d}{n-1}\binom{|U|}{2}\right] = \Omega(d^{1/2}n).$$

Proof.

 $\mathbb{E}\left[e(G[U])-\frac{d}{n-1}\binom{|U|}{2}\right]$

$$\approx \sum_{u \sim v} \langle x_u, x_v \rangle - \frac{d}{n} \sum_{u, v} \langle x_u, x_v \rangle$$
$$> \sum \frac{1}{\sqrt{d}} - \frac{d}{n} \sum_{u, v} \sum_{v} \frac{1}{d}$$

$$x_{v}(w) = egin{cases} 1 & ext{if } v = w, \ rac{1}{\sqrt{d}} & ext{if } v \sim w, \ 0 & ext{if } v
eq w. \end{cases}$$

 $\mathbb{E}\left|e(G[U]) - \frac{d}{n-1}\binom{|U|}{2}\right| = \Omega(d^{1/2}n).$

Claim.

 $\mathbb{E}\left[e(G[U])-\frac{d}{n-1}\binom{|U|}{2}\right]$

 $\approx \sum_{u \sim v} \langle x_u, x_v \rangle - \frac{d}{n} \sum_{u = v} \langle x_u, x_v \rangle$

 $> \sum \frac{1}{\sqrt{d}} - \frac{d}{n} \sum_{n=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{d} \approx \sqrt{d}n - d^2.$

$$x_{v}(w) = \begin{cases} 1 & \text{if } v = w, \\ \frac{1}{\sqrt{d}} & \text{if } v \sim w, . \\ 0 & \text{if } v \not\sim w. \end{cases}$$

Claim.

$$\mathbb{E}\left[e(G[U]) - \frac{d}{n-1}\binom{|U|}{2}\right] = \Omega(d^{1/2}n).$$

Proof.

$$\mathbb{E}\left[e(G[U]) - \frac{d}{n-1}\binom{|U|}{2}\right]$$

$$\approx \sum_{u \sim v} \langle x_u, x_v \rangle - \frac{d}{n} \sum_{u,v} \langle x_u, x_v \rangle$$

$$> \sum_{u \sim v} \frac{1}{\sqrt{d}} - \frac{d}{n} \sum_{u,v} \sum_{u \sim u,v} \frac{1}{d} \approx \sqrt{d}n - d^2.$$

RHS $\gtrsim \sqrt{d}n$ if $d \ll n^{2/3}$.