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The maximum deviation from the expected value.

Example: discrepancy of n points P C [0,1]? is

disc(P) = max ||[RNP|—n-area(R)|.
clo,
R rec[canéle

Problem. What is f(n) = min|p|—, disc(P)?
m If P is random, then disc(P) ~ \/n.

m f(n) = O(logn).
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G is a graph on n vertices of density p = e(G)/(5).

Discrepancy of G:

disc(G) = Um\?(xc)
C

e(lup - »('3)) ] |

Problem. What is f,(n) = mci_n disc(G)?

If p € [%, 2], then G(n, p) has discrepancy ~ p'/2n%/2.

Theorem (Erdds, Goldbach, Pach, Spencer 1988)
If p€[%,1] then disc(G) = Q(p'/?n3/?).
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disct(G) = 2 e(G[U]) — p( 5 )

Negative discrepancy:

disc (G) = max p<“2j|)—e(c[U]).

UcV(G)

Problem. What is f,7(n) = mGin disc™(G) and similarly £;(n)?

Examples:
m disct(G(n, p)) = ©(pY/2n3?) = disc™(G(n, p)).

m disc™ (Knn) = ©(n) and disc™ (Kn.n) = ©(n?).
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Theorem (Bollobds, Scott 2006)

If p € [L, 3], then

m disc™(G) - disc™ (G) = Q(pn®).

m disc™(G) = Q(n) and disc™(G) = Q(n),
Turén graphs have disct = ©(n).

. 1 1
Conjecture (Verstraete). If - < p < 5 —¢, then

disct(G) = Q(p*/2n/?).
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MaxCut in a graph is the maximum number of edges in a cut.

Minimum bisection is the min. size of a cut into 2 equal parts.

Lemma
If G is regular, then
m MaxCut = @ + ©(disc™(G)),

- N G .
= Minimum bisection = % — O(disc™(G)).

Theorem (Alon 1993)
If G is d-regular and d = O(n'/9), then

d
Minimum bisection < Tn — cd/?n.

Equivalently, disct(G) = Q(d'/2n) = Q(p'/2n3/?).
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If G is d-regular with eigenvalues d = A1 > --- > A, then

disct(G) < %n +d.

Proof. Let A be the adjacency matrix, vi,..., v, an orthonormal
basis.
If U C V(G) and x is the characteristic vector, then

e(G[U])—ng') (A T ).

Writing x = >_ ajv;, we have

1 n
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Theorem (Balla, Raty, Sudakov, T. 2023+)

The minimum of A\» among n-vertex d-regular graphs is
m O(d'/?)if d € [1, n?/3]
m O(n/d) if d € [n?/3, n3/4]
m between Q(d'/3) and O(n'/3) if d € [n3/4,(% —€)n.



Theorem (baby version)

If G is d-regular and d < n?/3, then

disct(G) = Q(d*/?n).



Theorem (baby version)

If G is d-regular and d < n?/3, then

disct(G) = Q(d*/?n).

Proof. For each v € V/(G), assign the vector x, € RY(®) defined

1 if v=w,
XV(W): va ifve~w,.
0 if vobw.



Theorem (baby version)

If G is d-regular and d < n?/3, then

disct(G) = Q(d*/?n).

Proof. For each v € V/(G), assign the vector x, € RY(®) defined

1 if v=w,

xv(w) = % if v~w,.

0 if vobw.

Let H be a random half-space in RY(®) through the origin, and
let U be the set of vertices v such that x, € H.



Theorem (baby version)

If G is d-regular and d < n?/3, then

disct(G) = Q(d*/?n).

Proof. For each v € V/(G), assign the vector x, € RY(®) defined

1 if v=w,

xv(w) = % if v~w,.

0 if vobw.

Let H be a random half-space in RY(®) through the origin, and
let U be the set of vertices v such that x, € H.

Observation: For u,v € V(G),

P(u,v € U) = % + O((xy, xv))-



xv(w)

oé"“ =

if v=w,
ifve~w,.
if vobw.












Proof.
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1 if v=w,
xv(w) = % if v~w,.
0 if vobw.
Claim. J U
E [e(G[U]) S (';)] = Q(d"/?n).
Proof.

e 24 (2)

1 d 1
>Zﬁ_ﬁz > ' dn — d?.

ur~v

RHS Z V/dn if d < n?/3.



