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Simon’s linear reinforcement algorithm

Let X1,X2, . . . be a sequence of different items.
Given a sequence of bits ε1, ε2, . . . in {0, 1} with ε1 = 1,
construct a reinforced sequence X̂1, X̂2, . . . as follows:

If εn = 0, then X̂n repeats one of the preceding items
X̂1, . . . , X̂n−1 picked uniformly at random.

If εn = 1 then X̂n is the next new item.

Example: (εn) = (1, 0, 1, 0, 0, 0, 1, 0, . . .)

X̂ = (X1,X1,X2,X1,X1,X2,X3,X1, . . .) .
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X̂n =

{
X̂U(n) if εn = 0,
Xσ(n) if εn = 1,

where U(n) is uniform on {1, . . . , n − 1},

and σ(n) is the number of innovations up to the n-step:

σ(n) =
n∑

j=1

εj .
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Yule-Simon distribution

Slow innovation regime: σ(n) ≈ nρ for some ρ ∈ (0, 1).

Steady innovation regime: σ(n) ∼ qn for some q ∈ (0, 1).
We rather use the parameter

ρ = 1/(1− q) > 1.

Theorem (Simon, 1955)

For every k ≥ 1, the proportion of items that have appeared
exactly k times at the n-th step converges as n→∞ towards

ρB(k , ρ+ 1).
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Step reinforced random walks

Now X1,X2, . . . i.i.d. copies of some real r.v. X .

Our goal is to compare the asymptotic behavior of the random walk

S(n) = X1 + . . .+ Xn

with that of the reinforced version

Ŝ(n) = X̂1 + . . .+ X̂n.
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Heyde (2004) first observed that when the εn are i.i.d.
Bernoulli with P(ε = 1) = q and X ∼ Rademacher
(so ρ > 1 and α = 2), then a phase transition occurs at ρ = 2:

If ρ > 2, then

n−1/2Ŝ(n) =⇒ N (0, s2).

If 1 < ρ < 2, then

n−1/ρŜ(n) −→ V .

Rediscovered in the physic literature (elephant random walk),
and recently extended to any X centered with finite variance.

Jean BERTOIN Scaling Exponents for Step Reinforced Random Walks



Heyde (2004) first observed that when the εn are i.i.d.
Bernoulli with P(ε = 1) = q and X ∼ Rademacher
(so ρ > 1 and α = 2), then a phase transition occurs at ρ = 2:

If ρ > 2, then
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n−1/ρŜ(n) −→ V .

Rediscovered in the physic literature (elephant random walk),
and recently extended to any X centered with finite variance.

Jean BERTOIN Scaling Exponents for Step Reinforced Random Walks



Heyde (2004) first observed that when the εn are i.i.d.
Bernoulli with P(ε = 1) = q and X ∼ Rademacher
(so ρ > 1 and α = 2), then a phase transition occurs at ρ = 2:

If ρ > 2, then
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Case E(X 2) =∞, still for εn i.i.d. Bernoulli.
Businger (2018) observed a similar phase transition when X
has the symmetric α-stable law :

If ρ > α, then

n−1/αŜ(n) =⇒ α-stable law.

If 1 < ρ < α, then

n−1/ρŜ(n) −→ V .
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Here, we are mainly interested in the case when the εn are general
and S has a scaling exponent:

lim
n→∞

n−1/αS(n) = Y in law,

where α ∈ (0, 2] and Y denotes an α-stable variable.

What is the scaling exponent α̂ = α̂(ρ, α) of Ŝ ?
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α̂ = α̂(ρ, α)

ρ

α

2

Ballistic (Thm 2.6)

α-diffusive (Thm 3.5)

Slow innovation with exponent ρ Steady innovation with rate q = 1 − 1/ρ

1

1 2

α̂ = 1
α̂ = ρ

α̂ = α

α̂ = α/ρ
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Some comments

For α > 1 fixed
α̂

ρ

1

α

1 α

Ŝ grows faster when the innovation is smaller.

E(X ) = 0; repetitions perturb and finally disrupt the
compensation between positive and negative steps.
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Some comments

For α < 1 fixed
α̂

ρ

1

1

α

α

Ŝ grows faster when the innovation is larger.

E(|X |) =∞, and reinforcement delays the appearance of
exceptionally large steps that govern the growth.
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Precise statements

Theorem (Ballistic behavior)

Let ρ ∈ (0, 1) and β > ρ, and suppose that

σ(n) = O(nρ) as n→∞,

and
P(|X | > x) = O(x−β) as x →∞,

Then
lim
n→∞

n−1Ŝ(n) = V ′ a.s.

where V ′ is some non-degenerate random variable.
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Theorem (Sub-ballistic & Super-diffusive behavior)

Let ρ = 1/(1− q) ∈ (1, 2) and suppose that

∞∑
n=1

n−2 |σ(n)− qn| <∞

and that for some β > ρ

E(|X |β) <∞ and E(X ) = 0.

Then
lim
n→∞

n−1/ρŜ(n) = V ′ in Lβ(P)

where V ′ is some non-degenerate random variable.
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Theorem (Diffusive behavior)

Suppose that for some q ∈ (0, 1)

∞∑
n=1

n−2 |σ(n)− qn| <∞.

Assume also that X belongs to the domain of normal attraction of
a stable law with index α ∈ (0, 2]

lim
n→∞

n−1/α(X1 + . . .+ Xn) = Y in law.

Suppose further that α < ρ when α > 1. Then

lim
n→∞

n−1/αŜ(n) = Y ′ in law

where Y ′ is an α-stable random variable.

Jean BERTOIN Scaling Exponents for Step Reinforced Random Walks



Theorem (Super-ballistic & Sub-diffusive behavior)

Let α ∈ (0, 1) and ρ ∈ (α, 1). Suppose that X belongs to the
domain of normal attraction of an α-stable law:

lim
n→∞

n−1/α(X1 + . . .+ Xn) = Y in law.

and that σ(n) is regularly varying with exponent ρ:

lim
n→∞

σ(bcnc)
σ(n)

= cρ for all c > 0.

Then
lim
n→∞

σ(n)−1/αŜ(n) = Y ′ in law

where Y ′ is an α-stable random variable.
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The proofs rely on the analysis of the numbers of repetitions

Nj(n) = #{k ≤ n : X̂k = Xj};

one has to determine their asymptotic behaviors as n→∞
simultaneously for all j ≥ 1.

Recall that σ(n) denotes the number of innovations and write

τ(j) = inf{n ∈ N : σ(n) = j}
= inf{n ∈ N : Nj(n) = 1}

for the first step of the algorithm at which Xj appears.
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Introduce also

π(n) =
n∏

j=2

(
1 +

1− εj
j − 1

)
, n ∈ N.

One has

π(n) ≈
{
n1−q = n1/ρ in steady innovation regimes,

n in slow innovation regimes.

a(n) ≈ b(n) means limn→∞ a(n)/b(n) ∈ (0,∞).
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A family of remarkable martingales

Lemma

Under mild assumptions on (εn), for every j ≥ 1

Nj(n)

π(n)
, n ≥ τ(j),

is a square integrable martingale whose terminal value Γj satisfies

E(Γj) =
1

π(τ(j))
and E(Γ2

j ) � 1

π(τ(j))2
.
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Sketch of proofs

For the strong limit theorems (α > ρ), one writes first

Ŝ(n) = X̂1 + . . .+ X̂n =
∞∑
j=1

Nj(n)Xj .

Thus
Ŝ(n)

π(n)
=
∞∑
j=1

Nj(n)

π(n)
Xj ;

one has to check some uniform integrability property in order
to exchange limn→∞ and

∑∞
j=1 so that

lim
n→∞

Ŝ(n)

π(n)
=
∞∑
j=1

ΓjXj .
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For the weak limit theorems (α < ρ), one considers the
characteristic exponent ϕ of X

E(eiθX ) = e−ϕ(θ), for |θ| small enough.

Then

E(eiθŜ(n) | (ε`)) = exp

(
−
∞∑
k=1

Rk(n)ϕ(kθ)

)
,

where Rk(n) denotes the total number of items that have occurred
exactly k time at the n-th step of the reinforcement algorithm.
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On the one hand, we knows from Simon’s result that for each
k ≥ 1

Rk(n)

σ(n)
→ ρB(k , ρ+ 1).

On the other hand, recall that X belongs to the normal domain of
attraction of an α-stable distribution. If we write ϕα for the
characteristic exponent of the latter, results of Ibragimov and
Linnik show

lim
t→∞

tϕ(θt−1/α) = ϕα(θ), for all θ ∈ R.
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Another uniform integrability property is needed to exchange
limn→∞ and

∑∞
k=1 and conclude that

lim
n→∞

E(exp(iθσ(n)−1/αŜ(n))) = exp (−cϕα(θ)) ,

with

c =
∞∑
k=1

kαρB(k, ρ+ 1).
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