Combinatorics from the roots of polynomials

Julian Sahasrabudhe University of Cambridge

November 3, 2020

Combinatorics from the roots of polynomials

Julian Sahasrabudhe University of Cambridge

November 3, 2020

Based on joint work with Marcus Michelen

Χ

$$X \in \{0, 1, \dots, n\}.$$

Probability generating function:

$$f_X(z)$$

$$X \in \{0, 1, \dots, n\}.$$

Probability generating function:

$$f_X(z) = \sum_{k=0}^n \mathbb{P}(X=k)z^k.$$

$$X \in \{0, 1, \ldots, n\}.$$

Probability generating function:

$$f_X(z) = \sum_{k=0}^n \mathbb{P}(X=k)z^k.$$

What is the relationship between the roots of f_X and the distribution of X?

Theorem (Harper, 1967)

Theorem (Harper, 1967)

Let $X_n \in \{0, ..., n\}$ be a sequence of random variables with $\sigma_n \to \infty$.

Theorem (Harper, 1967)

Let $X_n \in \{0, ..., n\}$ be a sequence of random variables with $\sigma_n \to \infty$. If f_{X_n} are all real rooted

Theorem (Harper, 1967)

Let $X_n \in \{0, ..., n\}$ be a sequence of random variables with $\sigma_n \to \infty$. If f_{X_n} are all real rooted then

$$(X_n - \mu_n)\sigma_n^{-1}$$

Theorem (Harper, 1967)

Let $X_n \in \{0, ..., n\}$ be a sequence of random variables with $\sigma_n \to \infty$. If f_{X_n} are all real rooted then

$$(X_n - \mu_n)\sigma_n^{-1} \rightarrow N(0,1),$$

Theorem (Harper, 1967)

Let $X_n \in \{0, ..., n\}$ be a sequence of random variables with $\sigma_n \to \infty$. If f_{X_n} are all real rooted then

$$(X_n-\mu_n)\sigma_n^{-1}\to N(0,1),$$

in distribution, as $n \to \infty$.

$$X_n \in \{0,\ldots,n\}$$

$$X_n \in \{0,\ldots,n\}$$
 $f_n := f_{X_n}$

$$X_n \in \{0,\ldots,n\}$$
 $f_n := f_{X_n}$ $\deg(f_n) = n.$

$$X_n \in \{0,\ldots,n\}$$
 $f_n := f_{X_n}$ $\deg(f_n) = n.$
$$f(z) = c \prod_{i=1}^n (z - \zeta_i).$$

$$X_n \in \{0,\ldots,n\}$$
 $f_n := f_{X_n}$ $\deg(f_n) = n.$
$$f(z) = c \prod_{i=1}^n (z - \zeta_i).$$

We have $\zeta \in \mathbb{R}$

$$X_n \in \{0, \dots, n\}$$
 $f_n := f_{X_n}$ $\deg(f_n) = n$.

$$f(z) = c \prod_{i=1}^{n} (z - \zeta_i).$$

We have $\zeta \in \mathbb{R}$ and $\zeta \leqslant 0$.

$$X_n \in \{0,\ldots,n\}$$
 $f_n := f_{X_n}$ $\deg(f_n) = n.$

$$f(z) = c \prod_{i=1}^{n} (z - \zeta_i).$$

We have $\zeta \in \mathbb{R}$ and $\zeta \leqslant 0$.

$$f(z) = \prod_{i=1}^{n} \left(\frac{z}{1 - \zeta_i} - \frac{\zeta_i}{1 - \zeta_i} \right).$$

$$f(z) = \prod_{i=1}^{n} \left(\frac{z}{1-\zeta_i} + \frac{-\zeta_i}{1-\zeta_i} \right).$$

$$f(z) = \prod_{i=1}^{n} \left(\frac{z}{1-\zeta_i} + \frac{-\zeta_i}{1-\zeta_i} \right).$$

$$Y_i := egin{cases} 1 & \mathsf{w/\ prob.} & rac{1}{1-\zeta_i} \ 0 & \mathsf{w/\ prob.} & rac{-\zeta_i}{1-\zeta_i} \end{cases}$$

$$f(z) = \prod_{i=1}^{n} \left(\frac{z}{1 - \zeta_i} + \frac{-\zeta_i}{1 - \zeta_i} \right).$$

$$Y_i := \begin{cases} 1 & \text{w/ prob. } \frac{1}{1 - \zeta_i} \\ 0 & \text{w/ prob. } \frac{-\zeta_i}{1 - \zeta_i} \end{cases}$$

$$f(z) = \prod_{i=1}^{n} \left(\frac{z}{1 - \zeta_i} + \frac{-\zeta_i}{1 - \zeta_i} \right).$$

$$Y_i := egin{cases} 1 & \mathsf{w/ prob.} & rac{1}{1-\zeta_i} \ 0 & \mathsf{w/ prob.} & rac{-\zeta_i}{1-\zeta_i} \end{cases}$$

$$f(z) = \prod_{i=1}^{n} \left(\frac{z}{1 - \zeta_i} + \frac{-\zeta_i}{1 - \zeta_i} \right).$$

$$Y_i := egin{cases} 1 & \mathsf{w/ prob.} & rac{1}{1-\zeta_i} \ 0 & \mathsf{w/ prob.} & rac{-\zeta_i}{1-\zeta_i} \end{cases}$$

$$X = Y_1 + \cdots + Y_n$$

$$f(z) = \prod_{i=1}^{n} \left(\frac{z}{1 - \zeta_i} + \frac{-\zeta_i}{1 - \zeta_i} \right).$$

$$Y_i := egin{cases} 1 & \mathsf{w/ prob.} & rac{1}{1-\zeta_i} \ 0 & \mathsf{w/ prob.} & rac{-\zeta_i}{1-\zeta_i} \end{cases}$$

$$X=Y_1+\cdots+Y_n,$$

Recall

$$\sigma \to \infty$$

$$f(z) = \prod_{i=1}^{n} \left(\frac{z}{1 - \zeta_i} + \frac{-\zeta_i}{1 - \zeta_i} \right).$$

$$Y_i := \begin{cases} 1 & \text{w/ prob. } \frac{1}{1 - \zeta_i} \\ 0 & \text{w/ prob. } \frac{-\zeta_i}{1 - \zeta_i} \end{cases}$$

$$X = Y_1 + \cdots + Y_n$$

Recall

$$\sigma \to \infty$$

$$(X_n - \mu_n)\sigma_n^{-1}$$

$$f(z) = \prod_{i=1}^{n} \left(\frac{z}{1 - \zeta_i} + \frac{-\zeta_i}{1 - \zeta_i} \right).$$

$$Y_i := egin{cases} 1 & \mathsf{w/ prob.} & rac{1}{1-\zeta_i} \ 0 & \mathsf{w/ prob.} & rac{-\zeta_i}{1-\zeta_i} \end{cases}$$

$$X=Y_1+\cdots+Y_n,$$

Recall

$$\sigma \to \infty$$

$$(X_n - \mu_n)\sigma_n^{-1} \to N(0,1).$$

Theorem (Harper, 1967)

Let $X_n \in \{0, ..., n\}$ be a sequence of random variables with $\sigma_n \to \infty$. If f_{X_n} are all real rooted then

$$(X_n-\mu_n)\sigma_n^{-1}\to N(0,1),$$

in distribution, as $n \to \infty$

Theorem (Harper, 1967)

Let $X_n \in \{0, ..., n\}$ be a sequence of random variables with $\sigma_n \to \infty$. If f_{X_n} are all real rooted then

$$(X_n-\mu_n)\sigma_n^{-1}\to N(0,1),$$

in distribution, as $n \to \infty$

Proof.

"Really just the usual central limit theorem, in disguise".

Question

What is the "correct" condition on the roots of f to guarantee normal behavior of X?

Theorem (Godsil, 1981) For $d \in \mathbb{N}$, let G d-regular graph on n vertices.

Theorem (Godsil, 1981)

For $d \in \mathbb{N}$, let G d-regular graph on n vertices. Let M be a matching drawn uniformly at random from all matchings in G.

Theorem (Godsil, 1981)

For $d \in \mathbb{N}$, let G d-regular graph on n vertices. Let M be a matching drawn uniformly at random from all matchings in G. Then

$$(|M|-\mu)\sigma^{-1}\approx N(0,1),$$

for n large.

Theorem (Godsil, 1981)

For $d \in \mathbb{N}$, let G d-regular graph on n vertices. Let M be a matching drawn uniformly at random from all matchings in G. Then

$$(|M|-\mu)\sigma^{-1}\approx N(0,1),$$

for n large.

Proof.

Theorem (Godsil, 1981)

For $d \in \mathbb{N}$, let G d-regular graph on n vertices. Let M be a matching drawn uniformly at random from all matchings in G. Then

$$(|M|-\mu)\sigma^{-1}\approx N(0,1),$$

for n large.

Proof.

• Heilmann-Lieb theorem: Roots of f_M are all real.

Theorem (Godsil, 1981)

For $d \in \mathbb{N}$, let G d-regular graph on n vertices. Let M be a matching drawn uniformly at random from all matchings in G. Then

$$(|M|-\mu)\sigma^{-1}\approx N(0,1),$$

for n large.

Proof.

- Heilmann-Lieb theorem: Roots of f_M are all real.
- $\sigma(M) \to \infty$ with n.

Godsil's theorem

Theorem (Godsil, 1981)

For $d \in \mathbb{N}$, let G d-regular graph on n vertices. Let M be a matching drawn uniformly at random from all matchings in G. Then

$$(|M|-\mu)\sigma^{-1}\approx N(0,1),$$

for n large.

Proof.

- Heilmann-Lieb theorem: Roots of f_M are all real.
- $\sigma(M) \to \infty$ with n.

See Kahn (2000) "Normal Law for matchings" for a modern reference.

Question

What is the "correct" condition on the roots of f to guarantee normal behavior of X?

Question

What is the "correct" condition on the roots of f to guarantee normal behavior of X?

Theorem (Harper, 1967)

Let $X_n \in \{0, ..., n\}$ be a sequence of random variables with $\sigma_n \to \infty$. If f_{X_n} are all real rooted then

$$(X_n-\mu_n)\sigma_n^{-1}\to N(0,1),$$

$$f(z) = \prod_{i=1}^{n} \left(\frac{z}{1 - \zeta_i} - \frac{\zeta_i}{1 - \zeta_i} \right).$$

$$f(z) = \prod_{i=1}^{n} \left(\frac{z}{1 - \zeta_i} - \frac{\zeta_i}{1 - \zeta_i} \right).$$

Central limit theorem:

$$\frac{X_1+\cdots+X_n-\mu}{\sigma}\approx N(0,1),$$

lf

$$f(z) = \prod_{i=1}^{n} \left(\frac{z}{1 - \zeta_i} - \frac{\zeta_i}{1 - \zeta_i} \right).$$

Central limit theorem:

$$\frac{X_1+\cdots+X_n-\mu}{\sigma}\approx N(0,1),$$

If none of the X_i "dominate".

For $\delta > 0$, let $X_n \in \{0, ..., n\}$ be a sequence of random variables with $\sigma_n \to \infty$.

For $\delta > 0$, let $X_n \in \{0, ..., n\}$ be a sequence of random variables with $\sigma_n \to \infty$. If all the roots ζ of f_{X_n} satisfy $|\zeta - 1| > \delta$,

For $\delta > 0$, let $X_n \in \{0, ..., n\}$ be a sequence of random variables with $\sigma_n \to \infty$. If all the roots ζ of f_{X_n} satisfy $|\zeta - 1| > \delta$, then

$$(X_n-\mu_n)\sigma_n^{-1}\to N(0,1),$$

For $\delta > 0$, let $X_n \in \{0, ..., n\}$ be a sequence of random variables with $\sigma_n \to \infty$. If all the roots ζ of f_{X_n} satisfy $|\zeta - 1| > \delta$, then

$$(X_n-\mu_n)\sigma_n^{-1}\to N(0,1),$$

in distribution, as $n \to \infty$.

• (1979) lagolnitzer and Souillard:

For $\delta > 0$, let $X_n \in \{0, ..., n\}$ be a sequence of random variables with $\sigma_n \to \infty$. If all the roots ζ of f_{X_n} satisfy $|\zeta - 1| > \delta$, then

$$(X_n-\mu_n)\sigma_n^{-1}\to N(0,1),$$

in distribution, as $n \to \infty$.

• (1979) Iagolnitzer and Souillard: Pemantle's theorem is true if $\sigma_n \gg n^{1/3}$

For $\delta > 0$, let $X_n \in \{0, ..., n\}$ be a sequence of random variables with $\sigma_n \to \infty$. If all the roots ζ of f_{X_n} satisfy $|\zeta - 1| > \delta$, then

$$(X_n-\mu_n)\sigma_n^{-1}\to N(0,1),$$

in distribution, as $n \to \infty$.

• (1979) lagolnitzer and Souillard: Pemantle's theorem is true if $\sigma_n \gg n^{1/3}$ "in the context of the Ising model".

For $\delta > 0$, let $X_n \in \{0, ..., n\}$ be a sequence of random variables with $\sigma_n \to \infty$. If all the roots ζ of f_{X_n} satisfy $|\zeta - 1| > \delta$, then

$$(X_n-\mu_n)\sigma_n^{-1}\to N(0,1),$$

- (1979) lagolnitzer and Souillard: Pemantle's theorem is true if $\sigma_n \gg n^{1/3}$ "in the context of the Ising model".
- (2013) Hwang and Zacharovas:

For $\delta > 0$, let $X_n \in \{0, ..., n\}$ be a sequence of random variables with $\sigma_n \to \infty$. If all the roots ζ of f_{X_n} satisfy $|\zeta - 1| > \delta$, then

$$(X_n-\mu_n)\sigma_n^{-1}\to N(0,1),$$

- (1979) Iagolnitzer and Souillard: Pemantle's theorem is true if $\sigma_n \gg n^{1/3}$ "in the context of the Ising model".
- (2013) Hwang and Zacharovas: Pemantle's theorem is true if all the roots are on the unit circle.

For $\delta > 0$, let $X_n \in \{0, ..., n\}$ be a sequence of random variables with $\sigma_n \to \infty$. If all the roots ζ of f_{X_n} satisfy $|\zeta - 1| > \delta$, then

$$(X_n-\mu_n)\sigma_n^{-1}\to N(0,1),$$

- (1979) lagolnitzer and Souillard: Pemantle's theorem is true if $\sigma_n \gg n^{1/3}$ "in the context of the Ising model".
- (2013) Hwang and Zacharovas: Pemantle's theorem is true if all the roots are on the unit circle.
- (2016) Lebowitz, Pittel, Ruelle and Speer:

For $\delta > 0$, let $X_n \in \{0, ..., n\}$ be a sequence of random variables with $\sigma_n \to \infty$. If all the roots ζ of f_{X_n} satisfy $|\zeta - 1| > \delta$, then

$$(X_n-\mu_n)\sigma_n^{-1}\to N(0,1),$$

- (1979) Iagolnitzer and Souillard: Pemantle's theorem is true if $\sigma_n \gg n^{1/3}$ "in the context of the Ising model".
- (2013) Hwang and Zacharovas: Pemantle's theorem is true if all the roots are on the unit circle.
- (2016) Lebowitz, Pittel, Ruelle and Speer: Pemantle's theorem is true if $\sigma_n \gg n^{1/3}$.

For $\delta > 0$, let $X_n \in \{0, ..., n\}$ be a sequence of random variables with $\sigma_n \to \infty$. If all the roots ζ of f_{X_n} satisfy $|\zeta - 1| > \delta$, then

$$(X_n-\mu_n)\sigma_n^{-1}\to N(0,1),$$

- (1979) Iagolnitzer and Souillard: Pemantle's theorem is true if $\sigma_n \gg n^{1/3}$ "in the context of the Ising model".
- (2013) Hwang and Zacharovas: Pemantle's theorem is true if all the roots are on the unit circle.
- (2016) Lebowitz, Pittel, Ruelle and Speer: Pemantle's theorem is true if $\sigma_n \gg n^{1/3}$.
- (2018) Michelen, S.:

For $\delta > 0$, let $X_n \in \{0, ..., n\}$ be a sequence of random variables with $\sigma_n \to \infty$. If all the roots ζ of f_{X_n} satisfy $|\zeta - 1| > \delta$, then

$$(X_n-\mu_n)\sigma_n^{-1}\to N(0,1),$$

- (1979) Iagolnitzer and Souillard: Pemantle's theorem is true if $\sigma_n \gg n^{1/3}$ "in the context of the Ising model".
- (2013) Hwang and Zacharovas: Pemantle's theorem is true if all the roots are on the unit circle.
- (2016) Lebowitz, Pittel, Ruelle and Speer: Pemantle's theorem is true if $\sigma_n \gg n^{1/3}$.
- (2018) Michelen, S. : Pemantle's conjecture is true $\sigma_n > n^{\varepsilon}$, for all $\varepsilon > 0$.

For $\delta > 0$, let $X_n \in \{0, ..., n\}$ be a sequence of random variables with $\sigma_n \to \infty$. If all the roots ζ of f_{X_n} satisfy $|\zeta - 1| > \delta$, then

$$(X_n-\mu_n)\sigma_n^{-1}\to N(0,1),$$

- (1979) Iagolnitzer and Souillard: Pemantle's theorem is true if $\sigma_n \gg n^{1/3}$ "in the context of the Ising model".
- (2013) Hwang and Zacharovas: Pemantle's theorem is true if all the roots are on the unit circle.
- (2016) Lebowitz, Pittel, Ruelle and Speer: Pemantle's theorem is true if $\sigma_n \gg n^{1/3}$.
- (2018) Michelen, S. : Pemantle's conjecture is true $\sigma_n > n^{\varepsilon}$, for all $\varepsilon > 0$.
- (2018) Michelen, S.:

For $\delta > 0$, let $X_n \in \{0, ..., n\}$ be a sequence of random variables with $\sigma_n \to \infty$. If all the roots ζ of f_{X_n} satisfy $|\zeta - 1| > \delta$, then

$$(X_n-\mu_n)\sigma_n^{-1}\to N(0,1),$$

- (1979) Iagolnitzer and Souillard: Pemantle's theorem is true if $\sigma_n \gg n^{1/3}$ "in the context of the Ising model".
- (2013) Hwang and Zacharovas: Pemantle's theorem is true if all the roots are on the unit circle.
- (2016) Lebowitz, Pittel, Ruelle and Speer: Pemantle's theorem is true if $\sigma_n \gg n^{1/3}$.
- (2018) Michelen, S. : Pemantle's conjecture is true $\sigma_n > n^{\varepsilon}$, for all $\varepsilon > 0$.
- (2018) Michelen, S.: Pemantle's conjecture is false

For $\delta > 0$, let $X_n \in \{0, ..., n\}$ be a sequence of random variables with $\sigma_n \to \infty$. If all the roots ζ of f_{X_n} satisfy $|\zeta - 1| > \delta$, then

$$(X_n-\mu_n)\sigma_n^{-1}\to N(0,1),$$

- (1979) Iagolnitzer and Souillard: Pemantle's theorem is true if $\sigma_n \gg n^{1/3}$ "in the context of the Ising model".
- (2013) Hwang and Zacharovas: Pemantle's theorem is true if all the roots are on the unit circle.
- (2016) Lebowitz, Pittel, Ruelle and Speer: Pemantle's theorem is true if $\sigma_n \gg n^{1/3}$.
- (2018) Michelen, S. : Pemantle's conjecture is true $\sigma_n > n^{\varepsilon}$, for all $\varepsilon > 0$.
- (2018) Michelen, S.: Pemantle's conjecture is false!

Theorem (Michelen, Sahasrabudhe) Let $X \in \{0, ..., n\}$.

Let $X \in \{0, \dots, n\}$. Define

$$X^* := (X - \mu)\sigma^{-1}.$$

Let $X \in \{0, \dots, n\}$. Define

$$X^* := (X - \mu)\sigma^{-1}.$$

Let ζ_1, \ldots, ζ_n be the roots of f_X

Let $X \in \{0, \dots, n\}$. Define

$$X^* := (X - \mu)\sigma^{-1}.$$

Let ζ_1, \ldots, ζ_n be the roots of f_X and set $\delta = \min_i |\zeta_i - 1|$.

Let $X \in \{0, \ldots, n\}$. Define

$$X^* := (X - \mu)\sigma^{-1}.$$

Let ζ_1, \ldots, ζ_n be the roots of f_X and set $\delta = \min_i |\zeta_i - 1|$. Then

$$\sup_{t\in\mathbb{R}} |\mathbb{P}(X^*\leqslant t) - \mathbb{P}(Z\leqslant t)| = O\left(\frac{\log n}{\delta\sigma}\right),$$

where $Z \sim N(0,1)$.

Pemantle revisited

Conjecture (Pemantle)

For $\delta > 0$, let $X_n \in \{0, ..., n\}$ be a sequence of random variables with $\sigma_n \to \infty$.

Pemantle revisited

Conjecture (Pemantle)

For $\delta > 0$, let $X_n \in \{0, ..., n\}$ be a sequence of random variables with $\sigma_n \to \infty$. If all the roots ζ of f_{X_n} satisfy $|\zeta - 1| > \delta$, then

$$(X_n-\mu_n)\sigma_n^{-1}\to N(0,1),$$

Pemantle revisited

Conjecture (Pemantle)

For $\delta > 0$, let $X_n \in \{0, ..., n\}$ be a sequence of random variables with $\sigma_n \to \infty$. If all the roots ζ of f_{X_n} satisfy $|\zeta - 1| > \delta$, then

$$(X_n-\mu_n)\sigma_n^{-1}\to N(0,1),$$

in distribution, as $n \to \infty$.

Corollary (Michelen, Sahasrabudhe)

Pemantle's conjecture is true when

$$\sigma_n \gg \log n$$

and this is best possible.

$$X \in \{0,\ldots,n\}^d$$

$$X \in \{0, \ldots, n\}^d$$

Probability generating function of X:

$$f_X(z_1,...,z_d) = \sum_{i_1,...,i_d} \mathbb{P}(X = (i_1,...,i_d)) z_1^{i_1} \cdots z_d^{i_d}.$$

$$X \in \{0,\ldots,n\}^d$$

Probability generating function of X:

$$f_X(z_1,...,z_d) = \sum_{i_1,...,i_d} \mathbb{P}(X = (i_1,...,i_d)) z_1^{i_1} \cdots z_d^{i_d}.$$

 f_X is real-stable if it has no roots in

$$\mathbb{H}:=\{(z_1,\ldots,z_d)\in\mathbb{C}^d:\operatorname{Im}(z_i)>0, \text{ for all } i\}.$$

G = (V, E) connected.

$$G = (V, E)$$
 connected.

$$f_G((z_e)_{e\in E})$$

$$G = (V, E)$$
 connected.

$$f_G((z_e)_{e\in E}) := \sum_T \prod_{e\in E(T)} z_e.$$

$$G = (V, E)$$
 connected.

$$f_G((z_e)_{e\in E}) := \sum_T \prod_{e\in E(T)} z_e.$$

 f_G is real stable.

G = (V, E) connected.

$$f_G((z_e)_{e \in E}) := \sum_T \prod_{e \in E(T)} z_e.$$

 f_G is real stable. I.e. it has no roots in the set

$$\mathbb{H} = \{(z_1, \ldots, z_d) \in \mathbb{C}^d : \operatorname{Im}(z_i) > 0, \text{ for all } i\}.$$

Question (Pemantle, '00)

What is the "correct" notion of negatively dependent random variables?

Question (Pemantle, '00)

What is the "correct" notion of negatively dependent random variables?

Theorem (Borcea, Brändén, Liggett, '07)

The correct definition is

Question (Pemantle, '00)

What is the "correct" notion of negatively dependent random variables?

Theorem (Borcea, Brändén, Liggett, '07)

The correct definition is

" X_1, \ldots, X_d are negatively dependent random variables

Question (Pemantle, '00)

What is the "correct" notion of negatively dependent random variables?

Theorem (Borcea, Brändén, Liggett, '07)

The correct definition is

" X_1, \ldots, X_d are negatively dependent random variables if the (multi-variate) probability generating function of $X = (X_1, \ldots, X_d)$ is

Question (Pemantle, '00)

What is the "correct" notion of negatively dependent random variables?

Theorem (Borcea, Brändén, Liggett, '07)

The correct definition is

" X_1, \ldots, X_d are negatively dependent random variables if the (multi-variate) probability generating function of $X = (X_1, \ldots, X_d)$ is real stable.

What is the limit shape of random variables with real-stable probability generating functions?

$$X = (X_1, \ldots, X_d) \in \mathbb{R}^d$$
,

$$X=(X_1,\ldots,X_d)\in\mathbb{R}^d$$
, define $\mathrm{Cov}(X)$ to be the $d imes d$ matrix
$$(\mathrm{Cov}(X))_{i,j}=\mathbb{E}\,X_iX_j-\mathbb{E}\,X_i\,\mathbb{E}\,X_j.$$

$$X=(X_1,\ldots,X_d)\in\mathbb{R}^d$$
, define $\mathrm{Cov}(X)$ to be the $d imes d$ matrix
$$(\mathrm{Cov}(X))_{i,j}=\mathbb{E}\,X_iX_j-\mathbb{E}\,X_i\,\mathbb{E}\,X_j.$$

This matrix is positive semi-definite and its maximum variance σ^2 to be the ℓ_2 norm of this matrix.

 $X=(X_1,\ldots,X_d)\in\mathbb{R}^d$, define $\mathrm{Cov}(X)$ to be the d imes d matrix $(\mathrm{Cov}(X))_{i,j}=\mathbb{E}\,X_iX_i-\mathbb{E}\,X_i\,\mathbb{E}\,X_i.$

This matrix is positive semi-definite and its maximum variance σ^2 to be the ℓ_2 norm of this matrix.

A a $d \times d$ positive semi-definite matrix, let N(0,A) be the centered Gaussian with covarinace matrix A.

What is the limit shape of these distributions?

Conjecture (Ghosh, Liggett, Pemantle, 2017)

For $d \in \mathbb{N}$, let $X_n \in \{0, ..., n\}^d$ be a sequence of random variables.

What is the limit shape of these distributions?

Conjecture (Ghosh, Liggett, Pemantle, 2017)

For $d \in \mathbb{N}$, let $X_n \in \{0, ..., n\}^d$ be a sequence of random variables. If f_{X_n} is real stable

What is the limit shape of these distributions?

Conjecture (Ghosh, Liggett, Pemantle, 2017)

For $d \in \mathbb{N}$, let $X_n \in \{0, ..., n\}^d$ be a sequence of random variables. If f_{X_n} is real stable and $\sigma_n \to \infty$ then

What is the limit shape of these distributions?

Conjecture (Ghosh, Liggett, Pemantle, 2017)

For $d \in \mathbb{N}$, let $X_n \in \{0, ..., n\}^d$ be a sequence of random variables. If f_{X_n} is real stable and $\sigma_n \to \infty$ then

$$(X_n-\mu_n)\sigma_n^{-1}\to N(0,A),$$

where $Cov(X_n) \rightarrow A$.

What is the limit shape of these distributions?

Conjecture (Ghosh, Liggett, Pemantle, 2017)

For $d \in \mathbb{N}$, let $X_n \in \{0, ..., n\}^d$ be a sequence of random variables. If f_{X_n} is real stable and $\sigma_n \to \infty$ then

$$(X_n-\mu_n)\sigma_n^{-1}\to N(0,A),$$

where $Cov(X_n) \rightarrow A$.

Theorem (Michelen, Sahasrabudhe)

The Ghosh-Liggett-Pemantle conjecture is true.

Theorem (Michelen, Sahasrabudhe) Let $X \in \{0,...,n\}$ be a random variable

Let $X \in \{0, ..., n\}$ be a random variable and let $\zeta_1, ..., \zeta_n$ be the roots of f_X .

Let $X \in \{0, ..., n\}$ be a random variable and let $\zeta_1, ..., \zeta_n$ be the roots of f_X . Let

$$\delta = \min_{i} |\arg(\zeta_i)|,$$

Let $X \in \{0, ..., n\}$ be a random variable and let $\zeta_1, ..., \zeta_n$ be the roots of f_X . Let

$$\delta = \min_{i} |\arg(\zeta_i)|,$$

and let

$$X^* := (X - \mu)\sigma^{-1}.$$

Let $X \in \{0, ..., n\}$ be a random variable and let $\zeta_1, ..., \zeta_n$ be the roots of f_X . Let

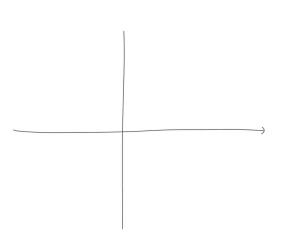
$$\delta = \min_{i} |\arg(\zeta_{i})|,$$

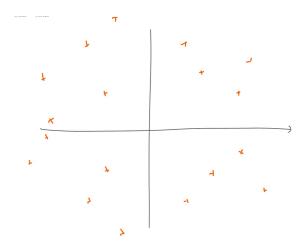
and let

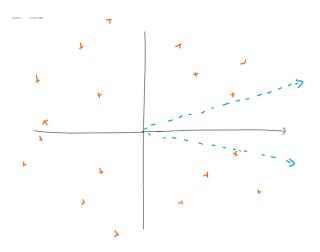
$$X^* := (X - \mu)\sigma^{-1}.$$

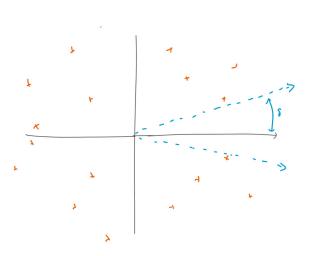
Then

$$\sup_{t\in\mathbb{R}}|\mathbb{P}(X^*\leqslant t)-\mathbb{P}(Z\leqslant t)|=O\left(rac{1}{\delta\sigma}
ight).$$









For each n, let $X_n \in \{0, ..., n\}$ be a random variable with probability generating function f_n .

For each n, let $X_n \in \{0, ..., n\}$ be a random variable with probability generating function f_n . Define

$$\delta_n := \min_{\zeta: f_n(\zeta)=0} |\arg(\zeta)|.$$

For each n, let $X_n \in \{0, ..., n\}$ be a random variable with probability generating function f_n . Define

$$\delta_n := \min_{\zeta: f_n(\zeta)=0} |\arg(\zeta)|.$$

If

$$\delta_n \sigma_n \to \infty$$
.

then

For each n, let $X_n \in \{0, ..., n\}$ be a random variable with probability generating function f_n . Define

$$\delta_n := \min_{\zeta : f_n(\zeta) = 0} |\arg(\zeta)|.$$

If

$$\delta_n \sigma_n \to \infty$$
.

then

$$(X_n - \mu_n)\sigma^{-1} \rightarrow N(0,1),$$

as $n \to \infty$.

$$X \in \{0,\ldots,n\}$$
,

$$X \in \{0,\ldots,n\}, f_X$$

 $X \in \{0, \dots, n\}$, f_X which is a polynomial with positive coefficients

 $X \in \{0, ..., n\}$, f_X which is a polynomial with positive coefficients and with no zeros in some region Ω .

Proof overview

 $X \in \{0, ..., n\}$, f_X which is a polynomial with positive coefficients and with no zeros in some region Ω .

We want to show that $X^* = (X - \mu)\sigma^{-1} \approx Z$, where $Z \sim N(0, 1)$.

Proof overview

 $X \in \{0, ..., n\}$, f_X which is a polynomial with positive coefficients and with no zeros in some region Ω .

We want to show that $X^* = (X - \mu)\sigma^{-1} \approx Z$, where $Z \sim N(0, 1)$.

$$u_X(z) = \log |f_X(z)|.$$

$$u_X(e^w) = \sum_{k\geqslant 1} a_k \operatorname{Re}(w^k).$$

$$u_X(z) = \log |f_X(z)|.$$

$$u_X(z) = \log |f_X(z)|.$$

$$u_X(e^w) = \sum_{k\geqslant 1} a_k \operatorname{Re}(w^k).$$

Fact: a_k are (re-normalized) cumulants of X.

$$u_X(z) = \log |f_X(z)|.$$

$$u_X(z) = \log |f_X(z)|.$$

$$u_X(e^w) = \sum_{k\geqslant 1} a_k \operatorname{Re}(w^k).$$

Fact: a_k are (re-normalized) cumulants of X. $a_1 = \mu$, $a_2 = -\sigma^2/2$

$$u_X(z) = \log |f_X(z)|.$$

$$u_X(z) = \log |f_X(z)|.$$

$$u_X(e^w) = \sum_{k\geqslant 1} a_k \operatorname{Re}(w^k).$$

Fact: a_k are (re-normalized) cumulants of X. $a_1=\mu$, $a_2=-\sigma^2/2$

Goal

Show $|a_k|/\sigma^k \ll 1$, uniformly for all $k \in \mathbb{N}$.

Say that a function $u:\mathbb{C} o \mathbb{R} \cup \{-\infty\}$ is weakly positive if $u(z) \leqslant u(|z|)$

Say that a function $u:\mathbb{C}\to\mathbb{R}\cup\{-\infty\}$ is weakly positive if

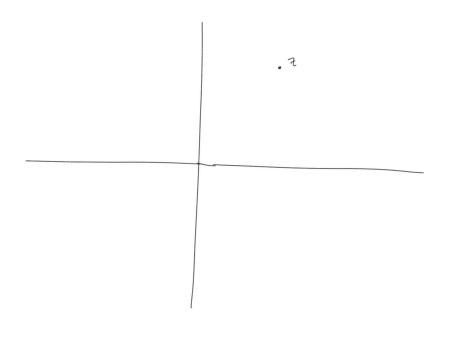
$$u(z)\leqslant u(|z|)$$

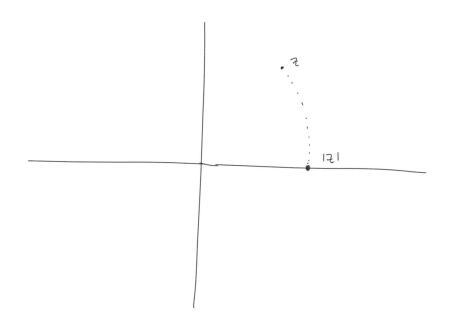
Key fact: u_X is weakly positive.

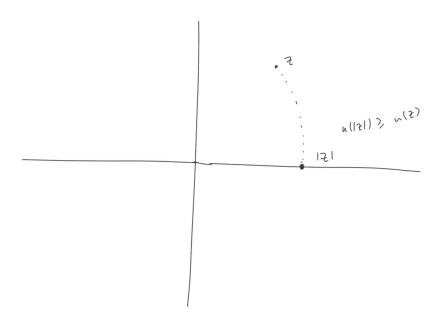
Say that a function $u:\mathbb{C}\to\mathbb{R}\cup\{-\infty\}$ is weakly positive if

$$u(z)\leqslant u(|z|)$$

Key fact: u_X is weakly positive.







u is radially decreasing if for all $0<\theta_1<\theta_2\leqslant \varepsilon$ and all r>0 we have

$$u(re^{i\theta_1}) \geqslant u(re^{i\theta_2}).$$

u is radially decreasing if for all $0<\theta_1<\theta_2\leqslant \varepsilon$ and all r>0 we have

$$u(re^{i\theta_1}) \geqslant u(re^{i\theta_2}).$$

Lemma

Our function u is radially decreasing in a neighbourhood of $1 \in \mathbb{C}$.

For all $L \geqslant 2$

$$\frac{\sum_{j\geqslant L}|a_j|\varepsilon^j}{\sum_{j\geqslant 2}|a_j|\varepsilon^j}\leqslant C\cdot 2^{-L},\tag{1}$$

where $\varepsilon \approx \delta$.

$$\frac{\sum_{j\geqslant L}|a_j|\varepsilon^j}{\sum_{j\geqslant 2}|a_j|\varepsilon^j}\leqslant C\cdot 2^{-L}$$

$$\frac{\sum_{j\geqslant L}|a_j|\varepsilon^j}{\sum_{i\geqslant 2}|a_j|\varepsilon^j}\leqslant C\cdot 2^{-L}$$

$$u_X(e^w) = \sum a_k \mathrm{Re}(w^k).$$

$$\frac{\sum_{j\geqslant L}|a_j|\varepsilon^j}{\sum_{j\geqslant 2}|a_j|\varepsilon^j}\leqslant$$

$$\frac{\sum_{j\geqslant L}|a_j|\varepsilon^j}{\sum_{j\geqslant 2}|a_j|\varepsilon^j}\leqslant \frac{C\varphi_\varepsilon(1)}{\varphi_\varepsilon(1)}2^{-L}$$

$$\frac{\sum_{j\geqslant L}|a_j|\varepsilon^j}{\sum_{i\geqslant 2}|a_j|\varepsilon^j}\leqslant \frac{C\varphi_\varepsilon(1)}{\varphi_\varepsilon(1)}2^{-L}\leqslant C\cdot 2^{-L}.$$

$$u_X(e^w) = \sum_{k \geqslant 1} a_k \mathrm{Re}(w^k).$$

$$u_X(e^w) = \sum_{k\geqslant 1} a_k \mathrm{Re}(w^k).$$

$$U_0(w) = \sum_{j\geqslant 2} a_j \mathrm{Re}(w^j)$$

$$u_X(e^w) = \sum_{k\geqslant 1} a_k \operatorname{Re}(w^k).$$

$$U_0(w) = \sum_{j\geqslant 2} a_j \operatorname{Re}(w^j)$$

$$\varphi_{\varepsilon}(e^w) = u(e^w) - u(e^{w+i\varepsilon})$$

$$u_X(e^w) = \sum_{k\geqslant 1} a_k \operatorname{Re}(w^k).$$

$$U_0(w) = \sum_{j\geqslant 2} a_j \operatorname{Re}(w^j)$$

$$\varphi_{\varepsilon}(e^w) = u(e^w) - u(e^{w+i\varepsilon}) \geqslant 0,$$

$$\frac{\sum_{j\geqslant L}|a_j|\varepsilon^j}{\sum_{j\geqslant 2}|a_j|\varepsilon^j}\leqslant C\cdot 2^{-L}.$$

$$\sum_{j\geqslant 2}|a_j|\varepsilon^j\geqslant \varphi_\varepsilon(1).$$

Proof of Claim.

$$\varphi_{\varepsilon}(e^{w}) = \sum_{k \geqslant 1} a_{k} \operatorname{Re}(w^{k} - (w + i\varepsilon)^{k})$$

$$\sum_{j\geqslant 2}|a_j|\varepsilon^j\geqslant \varphi_\varepsilon(1).$$

Proof of Claim.

$$\varphi_{\varepsilon}(e^{w}) = \sum_{k \ge 1} a_{k} \operatorname{Re}(w^{k} - (w + i\varepsilon)^{k})$$
$$|\varphi_{\varepsilon}(1)| \le \sum_{i \ge 2} |a_{i}| \varepsilon^{i}.$$

$$\sum_{j\geqslant 2}|a_j|\varepsilon^j\geqslant \varphi_\varepsilon(1).$$

Proof of Claim.

$$\varphi_{\varepsilon}(e^{w}) = \sum_{k \geqslant 1} a_{k} \operatorname{Re}(w^{k} - (w + i\varepsilon)^{k})$$
$$|\varphi_{\varepsilon}(1)| \leqslant \sum_{i \geqslant 2} |a_{i}| \varepsilon^{i}.$$

$$\sum_{j\geqslant L}|a_j|\varepsilon^j\leqslant C2^{-L}\varphi_\varepsilon(1).$$

$$\sum_{j\geqslant L}|a_j|\varepsilon^j$$

$$\sum_{i\geqslant L}|a_j|\varepsilon^j\leqslant C2^{-L}\varphi_\varepsilon(1).$$

$$\sum_{j\geqslant L}|a_j|\varepsilon^j\leqslant 2\left(\sum_{j\geqslant 2}|a_j|^2(2\varepsilon)^{2j}\right)^{1/2}2^{-L}.$$

$$\sum_{j\geqslant L}|a_j|\varepsilon^j\leqslant C2^{-L}\varphi_\varepsilon(1).$$

$$\sum_{j\geqslant L} |a_j| \varepsilon^j \leqslant 2 \left(\sum_{j\geqslant 2} |a_j|^2 (2\varepsilon)^{2j} \right)^{1/2} 2^{-L}.$$

$$U_0(\rho, \theta) = U_0(\rho e^{i\theta}) = \sum_{j\geqslant 2} a_j \rho^j \cos(j\theta),$$

$$\sum_{i\geqslant L}|a_j|\varepsilon^j\leqslant C2^{-L}\varphi_\varepsilon(1).$$

$$\sum_{j\geqslant L} |a_j| \varepsilon^j \leqslant 2 \left(\sum_{j\geqslant 2} |a_j|^2 (2\varepsilon)^{2j} \right)^{1/2} 2^{-L}.$$

$$U_0(\rho,\theta) = U_0(\rho e^{i\theta}) = \sum_{j\geqslant 2} a_j \rho^j \cos(j\theta),$$

$$\sum_{j\geqslant 2} |a_j|^2 (2\varepsilon)^{2j} = \frac{1}{2\pi} \int_0^{2\pi} |U_0(2\varepsilon,\theta)|^2 d\theta$$

$$\sum_{i\geqslant L}|a_j|\varepsilon^j\leqslant C2^{-L}\varphi_\varepsilon(1).$$

$$\sum_{j\geqslant L}|a_j|\varepsilon^j\leqslant 2\left(\sum_{j\geqslant 2}|a_j|^2(2\varepsilon)^{2j}\right)^{1/2}2^{-L}.$$

$$U_0(\rho,\theta) = U_0(\rho e^{i\theta}) = \sum_{j\geqslant 2} a_j \rho^j \cos(j\theta),$$

$$\sum_{i\geq 2}|a_j|^2(2\varepsilon)^{2j}=\frac{1}{2\pi}\int_0^{2\pi}|U_0(2\varepsilon,\theta)|^2d\theta\leqslant \max_{\theta\in[0,2\pi]}|U_0(2\varepsilon,\theta)|^2.$$

To finish the proof of this claim we need to prove

$$\max_{\theta \in [0,2\pi]} |U_0(2\varepsilon,\theta)|^2 \leqslant C(\varphi_{\varepsilon}(1))^2.$$

For all $L \geqslant 2$

$$\frac{\sum_{j\geqslant L}|a_j|\varepsilon^j}{\sum_{j\geqslant 2}|a_j|\varepsilon^j}\leqslant C\cdot 2^{-L},\tag{2}$$

where $\varepsilon \approx \delta$.

For all $j \in \mathbb{N}$, there exists a real number $\varepsilon_0 \geqslant \alpha(\varepsilon, j)$ for which

$$\sigma^2/2 = |a_2| \geqslant \varepsilon_0^{j-2} |a_j|,$$

for all $j \geqslant 2$.

For all $j \in \mathbb{N}$, there exists a real number $\varepsilon_0 \geqslant \alpha(\varepsilon, j)$ for which

$$\sigma^2/2=|a_2|\geqslant \varepsilon_0^{j-2}|a_j|,$$

for all $j \ge 2$.

Goal

Show $|a_k|/\sigma^k \ll 1$, uniformly for all $k \in \mathbb{N}$.

Two main theorems

Two main theorems

Theorem

Let $X \in \{0, ..., n\}$, let $\zeta_1, ..., \zeta_n$ be the roots of f_X and set $\delta = \min_i |\zeta_i - 1|$. Then

$$\sup_{t\in\mathbb{R}} |\mathbb{P}(X^*\leqslant t) - \mathbb{P}(Z\leqslant t)| = O\left(\frac{\log n}{\delta\sigma}\right),$$

where $Z \sim N(0,1)$.

Two main theorems

Theorem

Let $X \in \{0, ..., n\}$, let $\zeta_1, ..., \zeta_n$ be the roots of f_X and set $\delta = \min_i |\zeta_i - 1|$. Then

$$\sup_{t\in\mathbb{R}} |\mathbb{P}(X^*\leqslant t) - \mathbb{P}(Z\leqslant t)| = O\left(\frac{\log n}{\delta\sigma}\right),$$

where $Z \sim N(0,1)$.

Theorem

Let $X \in \{0, ..., n\}$ be a random variable, let $\zeta_1, ..., \zeta_n$ be the roots of f_X and put $\delta = \min_i |\arg(\zeta_i)|$. Then

$$\sup_{t\in\mathbb{R}}|\mathbb{P}(X^*\leqslant t)-\mathbb{P}(Z\leqslant t)|=O\left(rac{1}{\delta\sigma}
ight).$$