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What is the relationship between the roots of fx and the
distribution of X7
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A first example

Theorem (Harper,1967)

Let X, € {0,...,n} be a sequence of random variables with
on — 00. If fx, are all real rooted then

(Xo = pn)o,t = N(0,1),

in distribution, as n — 0.
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0 w/ prob. —¢

If fx(z) = fy(2)fz(z) then Y, Z are independent and X =Y + Z.

X=Yi+-+ Yo,

Recall

(Xn = pn)o, b = N(0,1).
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Theorem (Harper,1967)

Let X, € {0,...,n} be a sequence of random variables with
on — 00. If fx, are all real rooted then

(Xn — pin)on b — N(O, 1),
in distribution, as n — oo
Proof.

“Really just the usual central limit theorem, in disguise”.
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Godsil's theorem

Theorem (Godsil, 1981)

Ford € N, let G d-regular graph on n vertices. Let M be a

matching drawn uniformly at random from all matchings in G.
Then

(IM| =)o~ = N(0, 1),
for n large.
Proof.

® Heilmann-Lieb theorem: Roots of fy; are all real.
® o(M) — oo with n.

See Kahn (2000) “Normal Law for matchings" for a modern
reference.
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Theorem (Harper,1967)

Let X, € {0,...,n} be a sequence of random variables with
on — 00. If fx, are all real rooted then

(Xn — ,un)o,Tl — N(0,1),

in distribution, as n — 0o
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@=T1(" i)

i=1

Central limit theorem:

Xi4- 4 Xo—p

g
If none of the X; “dominate”.

N(0,1),
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(2018) Michelen, S. : Pemantle's conjecture is true o, > n°,
for all € > 0.

(2018) Michelen, S. : Pemantle's conjecture is false !
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Theorem (Michelen, Sahasrabudhe)
Let X € {0,...,n}. Define

X* = (X —p)o L.

Let (3,...,(, be the roots of fx and set 6 = min;|(; — 1|. Then

|
sup[P(X* < t) —B(Z < t)] = O ( Og”) ,
teR o

where Z ~ N(0,1).
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Pemantle revisited

Conjecture (Pemantle)

For 6 >0, let X, € {0,...,n} be a sequence of random variables
with o, — oo. If all the roots ( of fx, satisfy | — 1| > 0, then

(Xn — pn)o, = N(O,1),
in distribution, as n — co.
Corollary (Michelen, Sahasrabudhe)
Pemantle’s conjecture is true when
on > logn

and this is best possible.
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Another perspective

X e{o,...,n}d

Probability generating function of X:

(zza) = D P(X = (it,....0g))z -z

i1yl

fx is real-stable if it has no roots in

H:= {(z1,...,2z4) € C? : Im(z) > 0, for all i}.
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f Ze eEE Z H Ze-

T ecE(T)

fc is real stable. l.e. it has no roots in the set

H = {(z1,...,24) € C? : Im(z) > 0, for all i}.



Another perspective

Question (Pemantle, '00)

What is the “correct” notion of negatively dependent random
variables?



Another perspective

Question (Pemantle, '00)
What is the “correct” notion of negatively dependent random
variables?

Theorem (Borcea, Brandén, Liggett, '07)
The correct definition is



Another perspective

Question (Pemantle, '00)

What is the “correct” notion of negatively dependent random
variables?

Theorem (Borcea, Brandén, Liggett, '07)
The correct definition is

“X1,...,Xq are negatively dependent random variables



Another perspective

Question (Pemantle, '00)
What is the “correct” notion of negatively dependent random
variables?

Theorem (Borcea, Brandén, Liggett, '07)

The correct definition is

“X1,...,Xq are negatively dependent random variables if the
(multi-variate) probability generating function of X = (X1, ..., Xy)
is



Another perspective

Question (Pemantle, '00)
What is the “correct” notion of negatively dependent random
variables?

Theorem (Borcea, Brandén, Liggett, '07)

The correct definition is

“X1,...,Xq are negatively dependent random variables if the
(multi-variate) probability generating function of X = (X1, ..., Xy)
is real stable.



What is the limit shape of random variables with real-stable
probability generating functions?
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X = (X1,...,Xq4) € RY, define Cov(X) to be the d x d matrix

(COV(X)),'J = EX,')(j - EX,EXJ
This matrix is positive semi-definite and its maximum variance o
to be the ¢> norm of this matrix.

A a d x d positive semi-definite matrix, let N(0, A) be the
centered Gaussian with covarinace matrix A.
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Question
What is the limit shape of these distributions?

Conjecture (Ghosh, Liggett, Pemantle, 2017)

Ford € N, let X, € {0,...,n}9 be a sequence of random
variables. If fx_ is real stable and o, — oo then

(Xo = pn)o,t = N(0, A),
where Cov(X,) — A.

Theorem (Michelen, Sahasrabudhe)
The Ghosh-Liggett-Pemantle conjecture is true.
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Theorem (Michelen, Sahasrabudhe)

Let X € {0,...,n} be a random variable and let (1, ...,(, be the
roots of fx. Let

d = min | arg(¢i)l,
and let
X* = (X —p)o L.
Then

1
sup [P(X* < t) = P(Z < t)] = O () .
teR do
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Corollary (Michelen, Sahasrabudhe)

For each n, let X, € {0,...,n} be a random variable with
probability generating function f,. Define

Op = i .
i larg(Q)l

If

Opn0n — 00.

then
(Xn — pn)o~t — N(0,1),

as n — oQ.
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ux(z) = log|fx(2)|

Key fact: If fx has no zeros in Q if and only if ux is harmonic on .

ux(z) = log|fx(z)|.

uX(eW) = Z akRe(Wk).

k>1
Fact: aj are (re-normalized) cumulants of X. a; = y, ap = —02/2

Goal
Show |ay|/o* < 1, uniformly for all k € N.
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u is radially decreasing if for all 0 < 01 < 6, < e and all r > 0 we
have ' .
u(re’™) > u(re®).

Lemma
Our function u is radially decreasing in a neighbourhood of 1 € C.
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uX(eW) = Z akRe(Wk).

k>1
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Claim

> ajled < 27t (2).

jzL

Proof.

1/2
Z |aj\5j <2 (Z |aj|2(25)2j> 2L,

jzL Jjz2

Uo(p,0) = Up(pe”®) = ajp/ cos(jf),

j>2

2w
(2¢) Uo(2¢,0)[d < Uo(2¢,0) 2.
3 lafee) = o | 1oz, 0)d0 < max [Us(2e.0)



To finish the proof of this claim we need to prove

Uo(2¢, 6 -(1))%.
egoagwl 0(2¢,0)> < C(pe(1))



Lemma
For all L > 2

2L ‘3j|5j
Sisolajled

where € = §.
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Lemma
For all j € N, there exists a real number €9 > a(e,j) for which

02/2 = |ap| > &} %]yl
for all j > 2.

Goal
Show |ak|/o* < 1, uniformly for all k € N.
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Two main theorems

Theorem
Let X € {0,...,n}, let (1,...,(, be the roots of fx and set
d =min; [(; — 1|. Then

|
sup |[P(X* < ) —P(Z < t)] = O < Og”) ,
teR o

where Z ~ N(0,1).

Theorem
Let X €{0,...,n} be a random variable, let (1,...,(, be the
roots of fx and put § = min; | arg(¢;)|. Then

1
sup [P(X* < t) = P(Z < t)] = O () .
teR do



