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Motivation (Milman & Naor, publicized by Ollivier)

Ollivier’07-’10: a metric space has non-negative curvature if small
balls are closer to each other than their centers are:

I applies, in particular, to the discrete setting of graphs

I remarkable impact on geometry, concentration & mixing

. . . just like the classical notion of expansion!

Question: can expanders have non-negative curvature?
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Ollivier’s curvature on a locally finite graph G = (V ,E )

The curvature between two vertices x and y is defined as

κ(x , y) := 1− W1 (P(x , ·),P(y , ·))

dist(x , y)

I dist(·, ·) is the graph distance on V

I W1 (·, ·) is the L1−Wassertein metric:

W1 (µ, ν) := min {E [dist(X ,Y )] : X ∼ µ,Y ∼ ν}

I P is the transition matrix of lazy simple random walk:

P(x , y) :=


1

2 deg(x) if {x , y} ∈ E ;

1
2 if x = y ;

0 else.
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Non-negatively curved graphs

G is non-negatively curved if κ ≥ 0 everywhere, i.e.

∀x , y ∈ V , W1 (P(x , ·),P(y , ·)) ≤ dist(x , y).

I Enough to check this on neighbours, i.e. when {x , y} ∈ E .

I Starting point of the path coupling method (Bubley-Dyer’97)

I Equivalent to ‖Pf ‖lip ≤ ‖f ‖lip for all f : V → R.

I Remarkable consequences on geometry and concentration
(Ollivier’09, Joulin-Ollivier’10, Lin-Lu-Yau’11,
Eldan-Lee-Lehec’17, Jost-Münch-Rose ’19, Münch’19,
Cushing-Kamtue-Koolen-Liu-Münch-Peyerimhoff’20).

I Intimately related to the cutoff phenomenon (S.’21)
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Some examples of non-negatively curved graphs

• Complete graphs, paths, stars;

• Cayley graphs of abelian groups;

• Transposition graphs on symmetric groups;

• Prism graphs and Möbius ladders;

• Hamming graphs, Johnson graphs, cocktail-party graphs;

• Cartesian products of non-negatively curved graphs.

• ...
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Expanders

The spectral gap of a finite graph G is γ(G ) = 1− λ2, where

1 = λ1 > λ2 ≥ . . . ≥ λN ≥ 0

are the N = |V | ordered eigenvalues of the transition matrix P.

I controls the isoperimetric constant via Cheeger’s inequality

I coincides with the optimal constant in Poincaré’s inequality

I controls the mixing time of lazy simple random walk on G

An expander family is a sequence of finite graphs (Gn) with

• diverging size: |Vn| → ∞
• bounded degrees: supn ∆(Gn) <∞
• uniform expansion: infn γ(Gn) > 0

Far-reaching applications... (Hoory-Linial-Wigderson’06)
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Back to the Milman-Naor-Ollivier question

Theorem (S.’21). No expander family has non-negative curvature.
In fact, no graph sequence (Gn) can simultaneously satisfy

(A) weak sparsity: ∑
x∈Vn

deg(x) log deg(x) . |Vn|

(B) weak non-negative curvature: for every ε > 0,

|{e ∈ En : κ(e) ≤ −ε}| � |En|

(C) weak expansion: there exists γ > 0 such that

|{i : λi (Gn) ≥ 1− γ}| � |Vn|

B Sparse graphs either have a macroscopic fraction of edges with
negative curvature or a macroscopic fraction of eigenvalues near 1
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The “objective method” philosophy (Aldous-Steele’04)

B replace the (hard, model-dependent) asymptotic analysis of large
sparse graphs by the (elegant, unified) study of local weak limits

• random assignment problem (Aldous-Steele’04)

• spanning trees (Lyons’05)

• antiferromagnetic Ising models (Dembo-Montanari’10)

• empirical eigenvalue distribution (Bordenave-Lelarge’10)

• rank of the adjacency matrix (Bordenave-Lelarge-S.’11)

• matchings (Elek-Lippner’10, Bordenave-Lelarge-S.’13)

• densest subgraph problem (Anantharam-S.’16)

• eigenvector distribution (Backhausz-Szegedy’19)

• interacting diffusions (Oliveira-Reis-Stolerman’20)

• ...

• curvature and expansion (this talk !)
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Local convergence of rooted graphs

A rooted graph (G , o) is a graph G = (V ,E ) with a root o ∈ V ,
considered up to rooted isomorphism (i.e. relabelling)

Write BR(G , o) for the ball of radius R around the root o in G :

Define the distance between (G , o) and (G ′, o ′) to be 1/R?, where

R? := inf{R ≥ 0: BR(G , o) 6≡ BR(G ′, o ′)}.

B G• := {loc. finite, connected rooted graphs} is a Polish space.
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Local weak convergence (Benjamini-Schramm’02)

Goal: capture the local geometry around all vertices.

Define the local profile of a finite graph G = (V ,E ) as

L :=
1

|V |
∑
x∈V

δ(G ,x) ∈ P(G•).

Say that finite graphs (Gn) converge if their local profiles (Ln)
converge weakly, i.e., ∃ random rooted graph (G, o) such that

1

|Vn|
∑
x∈Vn

f (Gn, x) −−−→
n→∞

E [f (G, o)] ,

for all continuous (= local), bounded observables f : G• → R.

Intuition: (G, o) describes how Gn looks from a random vertex.
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Every reasonable sequence of sparse graphs has a limit

Gn (G, o)

n × n square grid Infinite square lattice
3−regular graph with girth n Infinite 3−regular tree

Binary tree of height n Canopy tree with random root
Erdős-Rényi model with p ∼ c

n Poisson(c) GW-tree
Config. model with d1, . . . , dn iid π UGW-tree with degree ∼ π
Preferential attachment on n nodes Polya-point tree
Uniform random tree on {1, . . . , n} Infinite Skeleton tree
Voronöı on n rand. points in [0, 1]2 Poisson-Voronöı on R2

Uniform triangulation on n vertices Uniform Infinite Planar Triang.

Theorem (Benjamini-Lyons-Schramm’15) For a sequence (Gn) to
admit subsequential limits, it is enough that it satisfies

sup
n≥1

 1

|Vn|
∑
x∈Vn

deg(x)1deg(x)>∆

 −−−−→
∆→∞

0.
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Voronöı on n rand. points in [0, 1]2 Poisson-Voronöı on R2
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Erdős-Rényi model with p ∼ c

n Poisson(c) GW-tree
Config. model with d1, . . . , dn iid π UGW-tree with degree ∼ π
Preferential attachment on n nodes Polya-point tree
Uniform random tree on {1, . . . , n} Infinite Skeleton tree
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The “objective method” in action

Consider a sequence (Gn)n≥1 satisfying the requirements A,B,C.

B upon extraction, there is a limiting random rooted graph (G, o):

f (Gn,Xn)
d−−−→

n→∞
f (G, o),

for all local observables f : G• → R, where Xn ∼ unif(Vn).

(A) f (G , x) = degG (x)

yields E [degG(o) log degG(o)] <∞

(B) f (G , x) = min
y∼x

κG (x , y)

yields κG ≥ 0 a.-s.

(C) f (G , x) = Pt
G (x , x)

yields ρG < 1 a.-s., where

ρG := lim
t→∞

(
Pt
G(o, o)

)1/t
(spectral radius)

Theorem (S.’21). No limit (G, o) can satisfy these 3 properties.
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Unimodularity

Local weak limits enjoy a powerful invariance called unimodularity,
formalizing the idea that the root is equally likely to be any vertex.

Think of it as stationarity under the Markov chain on G• that keeps
the underlying graph G and moves the root o according to PG

B Ergodic theory of random graphs (Aldous-Lyons’07,
Benjamini-Curien’12, Benjamini-Duminil-Copin-Kozma-Yadin’15)

B In particular, Kingman’s sub-additive ergodic theorem and
E [degG(o) log degG(o)] <∞ ensure existence of entropy:

hG := lim
t→∞

1

t

∑
x∈V

Pt
G(o, x) log

1

Pt
G(o, x)

.
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An entropic dichotomy

Theorem (S’21). Let (G, o) be a unimodular random graph with
min. curvature κG, spectral radius ρG and entropy hG. Then, a.-s.,

1. Expansion implies positive entropy: ρG < 1 =⇒ hG > 0

2. Non-neg. curvature implies zero entropy: κG ≥ 0 =⇒ hG = 0

B Expansion and non-neg. curvature are incompatible at infinity!

Idea 1: curvature allows to couple random walks on G so that
they meet eventually a.-s. (Dyer-Bordewich’07, Münch’19)

Idea 2: hG = 0 means G has the Liouville property (Avez’74,
Kăımanovich-Vershik, Benjamini-Curien, Carrasco-Lessa’16)

Warning: false without unimodularity... (Benjamini-Kozma’10)
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Further questions

1. Quantitative version: how dense must a regular graph be in
order to exhibit uniform expansion and non-negative curvature?

• d = Ω(log n) suffices (Alon-Roichman’94)

• Is this optimal?

2. General theory: what else can local weak limits say about the
asymptotic mixing properties of large sparse graphs?

• Extends to Bakry-Émery curvature (credit to Cushing, Liu &
Münch), solving a conjecture of Cushing-Liu-Peyerimhoff’19.

• What about mixing times, or functional-analytic constants?
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Thanks!


