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General attachment graphs

I Let G(Vn, En) denote a directed multigraph on the vertices
Vn = {1, 2, . . . , n} with edges in the set En.

I We will construct a sequence of multigraphs {G(Vn, En) : n ≥ 1} by
adding one vertex at a time.

I Each vertex n will be assigned from the start a number d+n ≥ 1 of
outbound edges.

I Upon arrival, vertex n connects its d+n outbound edges to the existing
graph according to some random rule.

I Let Di(n− 1, k − 1) denote the total degree of vertex i after k − 1
edges of vertex n have been attached to the graph.

I Note: Dn(n− 1, 0) = d+n .
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Preferential and uniform attachment

I Let f(x) = ax+ b, with infx≥1 f(x) > 0.

I Attachment probability:

P
(
kth edge of vertex n attaches to vertex i

)
=

f(Di(n− 1, k − 1))∑n
j=1 f(Dj(n− 1, k − 1))

, i = 1, 2, . . . , n

I Preferential attachment: f(x) = x+ b

I Uniform attachment: f(x) = b

I The usual case studied in the literature has d+n ≡ m for all n ≥ 1.

I The resulting graph G(Vn, En) has no directed cycles.
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Graph exploration on marked directed graphs

I Let G(k)i denote the subgraph of G(Vn, En) obtained from exploring the
in-component of depth k of vertex i.

I When encountering a vertex j we include as a mark its out degree d+j .

I In general, vertices can have marks of the form Xi ∈ S, with S a
separable metric space with metric ρ.

I Let G(k)i (X) denote the graph G(k)i including its vertex marks.
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Graph isomorphism and probability space

I Definition: We say that two multigraphs G(V,E) and G′(V ′, E′) are
isomorphic if there exists a bijection σ : V → V ′ such that

l(i) = l(σ(i)) and e(i, j) = e(σ(i), σ(j)), i ∈ V, (i, j) ∈ E

where l(i) is the number of self-loops of vertex i and e(i, j) is the number
of edges from vertex i to vertex j; we write G ' G′.

I Let Pn (·) = P (· |Xi, 1 ≤ i ≤ n ) denote the conditional probability space
given the vertex marks.
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Local weak limits

I Definition: We say that the sequence of graphs {G(Vn, En) : n ≥ 1}
admits a strong coupling with a marked rooted graph G∗(X∗) if for In
uniformly chosen from Vn, and any fixed k ≥ 1,

Pn
(
G(k)In

6' G(k)∗
)

P−→ 0, n→∞,

and if σ is the bijection between G(k)∗ and G(k)In
, and V

(k)
∗ is the vertex set

of G(k)∗ , then for any ε > 0

Pn

 ⋂
i∈V (k)
∗

{ρ(Xσ(i),X
∗
i ) ≤ ε}, G

(k)
In
' G(k)∗

 P−→ 1, n→∞.

I Note: G(k)∗ denotes the neighborhood of depth k of G∗.
I If the marks are discrete, we can take ε = 0.
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Local weak limits... cont.

I Definition: We say that the sequence of graphs {G(Vn, En) : n ≥ 1}
converges in the local weak sense in probability to a marked rooted
graph G∗(X∗) if:

I for any fixed graph G = G(V,E) and

I any {Bi : i ∈ V } ⊆ S satisfying P (X∗ ∈ ∂Bi) = 0,

we have for any fixed k ≥ 1

1

n

n∑
i=1

1

(
G(k)i ' G,

⋂
j∈V

{Xσ(j) ∈ Bj}

)
P−→ P

(
G(k)∗ ' G,

⋂
j∈V

{X∗σ′(j) ∈ Bj}

)

as n→∞, where σ, σ′ denote the bijections defining the isomorphisms in
each side.
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Strong couplings: Conditions

I Let {G(Vn, En) : n ≥ 1} be the sequence of directed general attachment
graphs with attachment function f(x) = ax+ b.

I Suppose infx≥1 f(x) > 0.

I Define

νn(·) =
1

n

n∑
i=1

1(Xi ∈ ·)

I Suppose

d1(νn, ν)
P−→ 0, n→∞,

where d1 is the Wasserstein metric of order one.

I For this talk, we only need Xi = d+i .
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Strong couplings: Describing the limit

I Let {ξ(t) : t ≥ 0} be a Markovian pure birth process with ξ(0) = 0 and
birth rates

P (ξ(t+ dt) = k + 1|ξ(t) = k) = f(k)dt+ o(dt)

I Let λ > 0 be the Malthusian rate of the process, i.e.,
E
[∫∞

0
e−λsξ(ds)

]
= 1.

I Let {ξ(n,i) : i ≥ 1, n ≥ 0} be i.i.d. copies of ξ, and let {D+
n : n ≥ 0} be

an i.i.d. sequence distributed according to ν, and independent of
everything else.

I Define

ξ̄(n) =

D+
n∑

i=1

ξ(n,i)

I Let {B(t) : t ≥ 0} be a CTBP driven by {ξ̄(n) : n ≥ 0}, where ξ̄(n) is the
birth process associated to the nth node to be born.

Oxford, UK, Oxford Discrete Mathematics and Probability Seminar PageRank on directed preferential attachment graphs 9/26



Strong couplings: Main theorem

I Let Tt denote the discrete skeleton of B(t).

I Let Tt(D+) denote the tree Tt where the kth birth is assigned as its mark

D+
k =

∑
i

d+i 1(Si−1 < k ≤ Si),

where Sn = d+1 + · · ·+ d+n , S0 = 0.

I Let τ ∼Exponential(λ), independent of {B(t) : t ≥ 0}.
I Theorem: [Banerjee-Deka-OC ’21] {G(Vn, En) : n ≥ 1} converges in the

local weak sense in probability to Tτ (D+), and it admits a strong coupling
with Tτ (D+).
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Related results

I The local limit for the preferential attachment case with d+n ≡ m was
established by [Berger-Borgs-Chayes-Saberi ’14] in terms of the Pólya
point graph.

I Main result is given in terms of local weak convergence in probability.

I The local limit for the general f case and d+n ≡ 1 was established by
[Rudas-Tóth-Valkó ’06].

I The uniform attachment graph with d+n ≡ m was described in
[Garavaglia-van der Hofstad ’17], without the local weak limit.
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Collapsed branching processes

I The proof of the theorem is obtained by collapsing the branching process
{B(t) : t ≥ 0}.

I The procedure works with general functions f satisfying infx≥1 f(x) > 0.
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Local limit of collapsed branching processes

I Suppose f also satisfies f(x) ≤ Cx for some constant C <∞.

I The local limit is obtained by showing the collapsing procedure results in
a tree w.h.p.
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Degree distributions: preferential attachment

I Let D− denote the degree of the root of Tτ .

I Let F (x) = P (D+ > x) and let µ = E[D+].

I Suppose F is either light-tailed or regularly varying.

I For the preferential attachment case f(x) = x+ b/µ, with b > −µ, then

P (D− > x) ∼ µP (ξ(τ) > x) + F (x/E[ξ(τ)])

∼ Cµ,b x−2−b/µ + F (x), x→∞

I In other words, the graph G(Vn, En) is asymptotically scale-free.
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Degree distributions: uniform attachment

I Let D− denote the degree of the root of Tτ .

I Let F (x) = P (D+ > x) and let µ = E[D+].

I For the uniform attachment case f(x) = b, with b > 0, then

D− D= Poisson(bD+τ)

I In particular, if D+ ≡ m, then

D− D= Geometric(1/(m+ 1))

and if F is regularly varying with index α ≥ 1, then

P (D− > x) ∼ E[(bτ)α]F (x), x→∞

I G(Vn, En) can be asymptotically scale-free or have light-tailed degrees,
depending on F .
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Google’s PageRank

I Arguably, one of the most important notions of node centrality in directed
complex networks.

I PageRank assigns a universal rank to each vertex in a directed graph by
solving the system of linear equations:

ri = c
∑
j→i

rj

d+j
+ (1− c)qi, i ∈ Vn

where ri is the rank of vertex i, d+i is its out-degree, qi its personalization
value, and 0 < c < 1 is the damping factor.

I Provided q = (q1, . . . , qn) is a probability vector, PageRank can be
interpreted as the stationary distribution of the “lazy surfer” random walk
on the graph.
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A linear algebra representation

I Scale-free PageRank: Ri = nri, Qi = (1− c)qi

Ri = (1− c)Qi +
∑
j→i

c

D+
j

Rj

where Ri = nri, Qi = qi.

I In matrix form:

R = Q + RM, equiv. R = Q

∞∑
r=0

Mr,

where R = (R1, . . . , Rn), Q = (Q1, . . . , Qn), and M = CA, with A the
adjacency matrix of the graph and C the diagonal matrix whose ith
element is Cii = c/(D+

i ∨ 1).

I Note: If A has a zero row, we replace the corresponding row of M with
c(q1, . . . , qn).
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Locality of PageRank

I Note that the matrix M satisfies ‖M‖∞ = c < 1.

I Mk → 0 as k →∞ geometrically fast.

I We can approximate R with finitely many iterations:

R ≈ Q

k∑
r=0

Mr =: R(k)

I Observation: R(k) contains only local information about the
in-neighborhoods of depth k of each vertex.

PageRank is a local computation!
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The power-law hypothesis

I Let RIn denote the PageRank of a typical vertex in a graph G(Vn, En):

RIn =

n∑
i=1

Ri1(In = i), In uniform in Vn

I Suppose there exists R∗ such that

RIn ⇒ R∗, n→∞

I Folklore says that on scale-free graphs where the in-degree distribution
follows a power-law with index α > 0, i.e.,

P (D− > x) ∼ Cx−α, x→∞,

the PageRank distribution will also follow a power-law with the same
index, i.e.,

P (R∗ > x) ∼ Hx−α, x→∞
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Static graphs

I Static directed graphs: Erdős-Rényi, Chung-Lu, Norros-Reittu,
generalized random graph, configuration model.

I All these random graphs have as their local weak limit a marked
(delayed) Galton-Watson process.

I The offspring distribution for the root is given by the limiting in-degree of
the graph; all other nodes have a size-biased distribution.

I It is known that the power-law hypothesis holds for these models, i.e., if

(D−In , QIn)
d1−→ (D−,Q), D− ∈ RV (α),

for some α > 1, then

RIn
d1−→ R∗ ∈ RV (α)

[Chen-Litvak-OC ’17, OC ’21].
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Limiting PageRank on static graphs

I Moreover, R∗ can be represented as:

R∗ =

D−∑
j=1

Xj +Q,

where the {Xi} ∈ RV (α) are i.i.d., independent of (D−,Q), and are
distributed as the special endogenous solution to a stochastic
fixed-point equation.

I X
D
= cR/D+, where R and D+ are the limiting PageRank and out-degree

of an inbound neighbor of vertex In (size-biased).

I Heavy-tailed analysis gives the most likely way to achieve a high rank:

P (R∗ > x) ∼ P
(

max
1≤i≤D−

cRi/D+
i > x

)
+ P (D− > x/E[cR/D+])

Peer review Popularity
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PageRank on general attachment graphs

I Consider a general attachment graph G(Vn, En) with attachment
function f(x) = ax+ b, infx≥1 f(x) > 0.

I Let d+n ≡ m ≥ 1 and qn ≡ 1 for all n ≥ 1.

I Let Tτ (D+) be the local weak limit of G(Vn, En).

I Let R∗ denote the PageRank of the root of Tτ (D+).

I Theorem: [Banerjee-OC ’21] Let RIn be the PageRank of a uniformly
chosen vertex In. Then,

RIn ⇒ R∗ and
1

n

n∑
i=1

1(Ri ∈ ·)
P−→ P (R∗ ∈ ·)

as n→∞.
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Tail behavior of R∗

I Moreover, there exist constants 0 < C1, C2 <∞ such that

I Preferential attachment: f(x) = x+ b/m, b ≥ 0

C1x
−(2+b/m)/(1+(m+b)c/m) ≤ P (R∗ > x) ≤ C2x

−(2+b/m)/(1+(m+b)c/m)

I Uniform attachment: f(x) = b, b > 0

C1x
−1/c ≤ P (R∗ > x) ≤ C2x

−1/c

I Observations:

a. R∗ has heavy tails in both cases.

b. In uniform attachment graphs D− is light-tailed, but R∗ is heavy-tailed.

c. In preferential attachment graphs the tail index of D− and R∗ do not
coincide (PageRank is heavier), i.e.,

The power-law hypothesis fails!
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Remarks

I For static graphs, the ranks of sibling nodes are independent of each other.

I Large in-degree vertices are uniformly spread out throughout the graph.

I For general attachment graphs this is no longer true.

I Large in-degree vertices will tend to have highly ranked offspring.

I Dependence among sibling nodes persists even when the in-degree is
light-tailed, as in uniform attachment graphs.
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Thank you for your attention.
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