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Sunflowers

Definition

A collection of distinct sets is called a sunflower if the intersection of any
pair of sets equals the common intersection of all the sets
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Sunflowers

Definition

A collection of distinct sets is called a sunflower if the intersection of any
pair of sets equals the common intersection of all the sets

{1,2,3,4}
{1,2,5,6}
{1,2,7,8}
{1,2,9,10}
{1,2,11,12}
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Sunflowers

Definition

A collection of distinct sets is called a sunflower if the intersection of any
pair of sets equals the common intersection of all the sets

{1,2,3,4}
{1,2,5,6}

(1.2,7.8) >
{1,2,9,10}

{1,2,11,12}
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Sunflowers

Definition

A collection of distinct sets is called a sunflower if the intersection of any
pair of sets equals the common intersection of all the sets
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{1,2,5,6}
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Sunflowers

Definition

A collection of distinct sets is called a sunflower if the intersection of any
pair of sets equals the common intersection of all the sets

{1,2,3,4}
{1,2,5,6}

(12,78} B
{1,2,9,10}

{1,2,11,12}
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Sunflowers

Definition

A collection of distinct sets is called a sunflower if the intersection of any
pair of sets equals the common intersection of all the sets
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Sunflowers

Definition

A collection of distinct sets is called a sunflower if the intersection of any
pair of sets equals the common intersection of all the sets

{1,2,3,4}
{1,2,5,6}

(1.2,7.8) B
{1,2,9,10}

{1,2,11,12}

Matija Buci¢ (IAS and Princeton) Turan numbers of sunflowers Oxford Discrete Math and Probability Seminar 2021



Sunflowers

Definition

A collection of distinct sets is called a sunflower if the intersection of any
pair of sets equals the common intersection of all the sets

{1,2,3,4}
{1,2,5,6}

(1.2,7.8) >
{1,2,9,10}
{1,2,11,12}

@ The common intersection is the kernel of the sunflower.
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Sunflowers

Definition

A collection of distinct sets is called a sunflower if the intersection of any
pair of sets equals the common intersection of all the sets
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@ The common intersection is the kernel of the sunflower.
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Sunflowers

Definition

A collection of distinct sets is called a sunflower if the intersection of any
pair of sets equals the common intersection of all the sets

{1,2,3,4} 5,6
(1,2,5,6} 7,8

{1727778} 3,4
{1,2,9,10}

{1,2,11,12} 9,10

11,12

@ The common intersection is the kernel of the sunflower.
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Sunflowers

Definition

A collection of distinct sets is called a sunflower if the intersection of any
pair of sets equals the common intersection of all the sets

{1,2,3,4} 5,6
(1,2,5,6} 7,8

{1727778} 3,4
{1,2,9,10}

{1,2,11,12} 9,10

11,12

@ The common intersection is the kernel of the sunflower.

@ r-uniform if all sets have size r.
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Erdds-Rado sunflower conjecture

Question (Erdés-Rado, 1960)

What is the max size of a family of r-sets without a k petal sunflower?
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Erdds-Rado sunflower conjecture

Question (Erdés-Rado, 1960)

What is the max size of a family of r-sets without a k petal sunflower?

@ Denote the answer by f,(k).
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Erdds-Rado sunflower conjecture

Question (Erdés-Rado, 1960)

What is the max size of a family of r-sets without a k petal sunflower?

@ Denote the answer by f,(k).
o Erdés-Rado sunflower lemma: fr(k) <(k—1)"-rl
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Erdds-Rado sunflower conjecture

Question (Erdés-Rado, 1960)

What is the max size of a family of r-sets without a k petal sunflower?

@ Denote the answer by f,(k).
o Erdés-Rado sunflower lemma: (k —1)" < fi(k) < (k—1)"-rl.
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Erdds-Rado sunflower conjecture

Question (Erdés-Rado, 1960)
What is the max size of a family of r-sets without a k petal sunflower?

@ Denote the answer by f,(k).

o Erdés-Rado sunflower lemma: (k —1)" < fi(k) < (k—1)"-rl.
@ Best known upper bound is: fr(k) < O(klogr)".
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Erdds-Rado sunflower conjecture

Question (Erdés-Rado, 1960)
What is the max size of a family of r-sets without a k petal sunflower?

@ Denote the answer by f,(k).

e Erdds-Rado sunflower lemma: (k —1)" < f,(k) <
fr(k) <

(k—1)-rl,

@ Best known upper bound is: O(klogr)".

Conjecture (Sunflower conjecture, Erdés-Rado, 1960)

fr(k) < O(k)
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Erdds-Rado sunflower conjecture

Question (Erdés-Rado, 1960)
What is the max size of a family of r-sets without a k petal sunflower?

@ Denote the answer by f,(k).
e Erdds-Rado sunflower lemma: (k —1)" < f,(k) < (k—1)"-rl

@ Best known upper bound is: fr(k) < O(klogr)".

Conjecture (Sunflower conjecture, Erdés-Rado, 1960)

fr(k) < O(k)

@ Even k = 3 case is open and very interesting.
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Erdds-Rado sunflower conjecture

Question (Erdés-Rado, 1960)
What is the max size of a family of r-sets without a k petal sunflower?

@ Denote the answer by f,(k).
e Erdds-Rado sunflower lemma: (k —1)" < f,(k) < (k—1)"-rl

@ Best known upper bound is: fr(k) < O(klogr)".

Conjecture (Sunflower conjecture, Erdés-Rado, 1960)

fr(k) < O(k)

@ Even k = 3 case is open and very interesting.
@ Relations to many topics in computer science and probability theory.

Oxford Discrete Math and Probability Seminar 2021
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Specific sunflowers

o Let Sgr)(k) be the r-uniform sunflower with k petals and kernel of size t.
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Specific sunflowers

o Let Sgr)(k) be the r-uniform sunflower with k petals and kernel of size t.

9
A
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Specific sunflowers

o Let Sgr)(k) be the r-uniform sunflower with k petals and kernel of size t.
o)
X

¢

s?(5)
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Specific sunflowers

o Let Sgr)(k) be the r-uniform sunflower with k petals and kernel of size t.

s?(5)
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Specific sunflowers

o Let 35’)(k) be the r-uniform sunflower with k petals and kernel of size t.

5,6
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Specific sunflowers

o Let 55’)(k) be the r-uniform sunflower with k petals and kernel of size t.
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Specific sunflowers

o Let Sﬁr)(k) be the r-uniform sunflower with k petals and kernel of size t.

2
SO 55°(5)
@ Sunflower problem: What is the max number of edges in an r-graph
without any of S (k), S\ (k)..., 8", (k)?
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Specific sunflowers

o Let Sﬁr)(k) be the r-uniform sunflower with k petals and kernel of size t.

2
SO 55°(5)
@ Sunflower problem: What is the max number of edges in an r-graph
without any of S (k), S\ (k)..., 8", (k)?

Question (Duke and Erdés 1977)

What is the max number of edges in an n-vertex r-graph without S,Er)(k) ?
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Turan problem for sunflowers

Question (Duke and Erdés 1977)

What is the max number of edges in an n-vertex r-graph without S,_Er)(k) ?
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Turan problem for sunflowers

Question (Duke and Erdés 1977)

What is the max number of edges in an n-vertex r-graph without S,_Er)(k) ?

@ The answer is called the Turdn number of Sgr)(k), denoted ex(n, S,_Er)(k))
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Turan problem for sunflowers

Question (Duke and Erdés 1977)

What is the max number of edges in an n-vertex r-graph without S,_Er)(k) ?

@ The answer is called the Turdn number of Sgr)(k), denoted ex(n, S,_Er)(k))

o Captures several classical problems:
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Turan problem for sunflowers

Question (Duke and Erdés 1977)

What is the max number of edges in an n-vertex r-graph without S,_Er)(k) ?

@ The answer is called the Turdn number of Sgr)(k), denoted ex(n, S,_Er)(k))

o Captures several classical problems:

» Case t =0 corresponds to the Erdés matching conjecture
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Turan problem for sunflowers

Question (Duke and Erdés 1977)

What is the max number of edges in an n-vertex r-graph without S,_Er)(k) ?

@ The answer is called the Turdn number of Sgr)(k), denoted ex(n, S,_Er)(k))

o Captures several classical problems:

» Case t =0 corresponds to the Erdés matching conjecture
» Case k =2 corresponds to the forbidden intersection problem
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Turan problem for sunflowers

Question (Duke and Erdés 1977)

What is the max number of edges in an n-vertex r-graph without S,_Er)(k) ?

@ The answer is called the Turdn number of Sgr)(k), denoted ex(n, Sgr)(k))

o Captures several classical problems:

» Case t =0 corresponds to the Erdés matching conjecture
» Case k =2 corresponds to the forbidden intersection problem

@ Many results and bounds in various regimes.
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Turan problem for sunflowers

Question (Duke and Erdés 1977)

What is the max number of edges in an n-vertex r-graph without S,_Er)(k) ?

@ The answer is called the Turdn number of Sgr)(k), denoted ex(n, Sgr)(k))

o Captures several classical problems:

» Case t =0 corresponds to the Erdés matching conjecture
» Case k =2 corresponds to the forbidden intersection problem

@ Many results and bounds in various regimes.
o Frankl and Fiiredi 1985: For fixed r and k we have

ex(n, Sgr)(k)) Rk pmax{r—t+i,t}
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Large sunflowers

@ Frankl and Furedi 1985: For fixed r and k we have

ex(n, Sgr)(k)) Ry k pmax{r—t+i,t}
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Large sunflowers

@ Frankl and Furedi 1985: For fixed r and k we have
ex(n,Sgr)(k)) Ry k pmax{r—t+i,t}

@ Chung, Erd6s, Graham 1980's: What if we let k grow with n?
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Large sunflowers

@ Frankl and Furedi 1985: For fixed r and k we have
ex(n,Sgr)(k)) Ry k pmax{r—t+i,t}
@ Chung, Erd6s, Graham 1980's: What if we let k grow with n?

e If r =2 it is trivial to see ex(n,8£2)(k)) ~ nk
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Large sunflowers

@ Frankl and Furedi 1985: For fixed r and k we have
ex(n,Sgr)(k)) Ry k pmax{r—t+i,t}
@ Chung, Erd6s, Graham 1980's: What if we let k grow with n?

e If r =2 it is trivial to see ex(n,8£2)(k)) ~ nk

o If r = 3 there are two types of sunflowers depending on kernel size
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Large sunflowers

@ Frankl and Furedi 1985: For fixed r and k we have
ex(n, S{(K)) mpp nmrmtrLe,

@ Chung, Erdés, Graham 1980's: What if we let k grow with n?

o If r =2 it is trivial to see ex(n,sz)(k)) ~ nk

@ If r = 3 there are two types of sunflowers depending on kernel size
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Large sunflowers

@ Frankl and Furedi 1985: For fixed r and k we have
ex(n, S{(K)) mpp nmrmtrLe,

@ Chung, Erdés, Graham 1980's: What if we let k grow with n?

o If r =2 it is trivial to see ex(n,sz)(k)) ~ nk

@ If r = 3 there are two types of sunflowers depending on kernel size
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Large sunflowers

@ Frankl and Furedi 1985: For fixed r and k we have
ex(n, S{(K)) mpp nmrmtrLe,

@ Chung, Erdés, Graham 1980's: What if we let k grow with n?

o If r =2 it is trivial to see ex(n,sz)(k)) ~ nk

@ If r = 3 there are two types of sunflowers depending on kernel size
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Large sunflowers

@ Frankl and Fiiredi 1985: For fixed r and k we have

ex(n, SV(K)) mep e nmIELE,
@ Chung, Erdés, Graham 1980's: What if we let k grow with n?
e If r =2t is trivial to see ex(n,sz)(k)) ~ nk

o If r = 3 there are two types of sunflowers depending on kernel size

> Duke and Erdés; Frankl: ex(n, S (k)) ~ nk? and ex(n, 8{¥(k)) ~ n%k
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Large sunflowers

@ Frankl and Fiiredi 1985: For fixed r and k we have

ex(n, SV(K)) mep e nmIELE,
@ Chung, Erdés, Graham 1980's: What if we let k grow with n?
e If r =2t is trivial to see ex(n,sz)(k)) ~ nk

o If r = 3 there are two types of sunflowers depending on kernel size
> Duke and Erdés; Frankl: ex(n, S (k)) ~ nk? and ex(n, 8{¥(k)) ~ n%k

» Chung determined ex(n, S}”(k)) up to lower order terms.
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Large sunflowers

@ Frankl and Fiiredi 1985: For fixed r and k we have
ex(n,Sgr)(k)) Rk pmax{r—t+l,t}
@ Chung, Erdés, Graham 1980's: What if we let k grow with n?
o If r =2 it is trivial to see ex(n, S{?(k)) ~ nk
o If r = 3 there are two types of sunflowers depending on kernel size
> Duke and Erdés; Frankl: ex(n, S (k)) ~ nk? and ex(n, 8{¥(k)) ~ n%k

» Chung determined ex(n, S}”(k)) up to lower order terms.

» Chung and Frankl determined ex(n, 8{3)(k)) precisely.
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Large sunflowers

@ Frankl and Fiiredi 1985: For fixed r and k we have

ex(n,Sgr)(k)) oy nmrotELey
@ Chung, Erd6s, Graham 1980’s: What if we let k grow with n?
o If r =2 it is trivial to see ex(n, S\?(k)) ~ nk

o If r = 3 there are two types of sunflowers depending on kernel size
» Duke and Erdés; Frankl: ex(n,SfS)(k)) ~ nk? and ex(n,S§3)(k)) ~ n’k
» Chung determined ex(n, 8{3)(/()) up to lower order terms.

» Chung and Frankl determined ex(n, 8{3)(k)) precisely.

@ The r = 4 case solved approximately by B., Dragani¢, Sudakov and Tran.
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Main result

Theorem (Bradag, B. and Sudakov)
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Main result
Theorem (Bradag, B. and Sudakov)

ex(n,Sés)(k)) ~ n*k
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Main result
Theorem (Bradag, B. and Sudakov)

ex(n, SV (k) ~ ntk  ex(n, 8P (k)) ~ n2k?
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Main result
Theorem (Bradag, B. and Sudakov)

ex(n, SOV (K)) ~ ntk ex(n, SP (k) ~ n®k?  ex(n, S (k)) ~ n2k3
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Main result
Theorem (Bradag, B. and Sudakov)

ex(n, SOV (K)) ~ ntk ex(n, SP (k) ~ n®k?  ex(n, S (k)) ~ n2k3

ex(n, S§5)(k) ~ n3k?
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Main result
Theorem (Bradag, B. and Sudakov)

ex(n, SOV (K)) ~ ntk ex(n, SP (k) ~ n®k?  ex(n, S (k)) ~ n2k3

ex(n, SP)(k)) ~ n3k? ex(n, S (k)) ~ n*k
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Upper bounds: overview

Theorem (Bradag, B. and Sudakov)

Pttty < L

,S(r) k) ~
ex(n. 8(k)) ~r ntkr—t ift > 5L,
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Upper bounds: overview

Theorem (Bradag, B. and Sudakov)

Pttty < L

ntk™—t if t > %1

ex(n,Sgr)(k)) ~~, {

@ Step 1: Use induction to reduce to the balanced case:

ex(n, SPV(k)) < O(nt k).
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Upper bounds: overview

Theorem (Bradag, B. and Sudakov)

nt L if e < L
ntkt ift> 5L,

ex(n, S (K)) =, {

@ Step 1: Use induction to reduce to the balanced case:

ex(n, S (k)) < O(ntktHY).

A balanced sunflower:
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Upper bounds: overview

@ Step 1: Use induction to reduce to the balanced case:
ex(n, STV (K)) < O(ntkHY).

@ Step 2: Reduce the balanced case to an existence problem for (t + 1, t)-systems
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Upper bounds: overview

@ Step 1: Use induction to reduce to the balanced case:
ex(n, STV (K)) < O(ntktH1).

@ Step 2: Reduce the balanced case to an existence problem for (t+ 1, t)-systems

Definition
ACP([N]) is a (t+ 1, t)-system if:
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Upper bounds: overview

@ Step 1: Use induction to reduce to the balanced case:
ex(n, STV (K)) < O(ntktH1).

@ Step 2: Reduce the balanced case to an existence problem for (t+ 1, t)-systems

Definition
ACP([N]) is a (t+ 1, t)-system if:
@ A is intersection closed, i.e. VA, B € A we also have AN B € A,
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Upper bounds: overview

@ Step 1: Use induction to reduce to the balanced case:
ex(n, STV (K)) < O(ntktH1).

@ Step 2: Reduce the balanced case to an existence problem for (t+ 1, t)-systems

Definition
ACP([N]) is a (t+ 1, t)-system if:
@ A is intersection closed, i.e. VA, B € A we also have AN B € A,

@ any subset of [N] of size at most t is contained in some set in A and
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Upper bounds: overview

@ Step 1: Use induction to reduce to the balanced case:
ex(n, STV (K)) < O(ntktH1).

@ Step 2: Reduce the balanced case to an existence problem for (t+ 1, t)-systems

Definition
ACP([N]) is a (t+ 1, t)-system if:
@ A is intersection closed, i.e. VA, B € A we also have AN B € A,

@ any subset of [N] of size at most t is contained in some set in A and

@ VA € A we have |A| # N (mod t + 1).
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Upper bounds: overview

@ Step 1: Use induction to reduce to the balanced case:
ex(n, STV (K)) < O(ntktH1).

@ Step 2: Reduce the balanced case to an existence problem for (t+ 1, t)-systems

Definition
ACP([N]) is a (t+ 1, t)-system if:
@ A is intersection closed, i.e. VA, B € A we also have AN B € A,

@ any subset of [N] of size at most t is contained in some set in A and

@ VA € A we have |A| # N (mod t + 1).

- Nigele, Sudakov, Zenklusen: no (t + 1, t)-system exists if t + 1 is a prime power
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Upper bounds: overview

@ Step 1: Use induction to reduce to the balanced case:
ex(n, STV (K)) < O(ntktH1).

@ Step 2: Reduce the balanced case to an existence problem for (t+ 1, t)-systems

Definition

ACP([N]) is a (t+ 1, t)-system if:
@ A is intersection closed, i.e. VA, B € A we also have AN B € A,

@ any subset of [N] of size at most t is contained in some set in A and

@ VA € A we have |A| # N (mod t + 1).

- Nigele, Sudakov, Zenklusen: no (t + 1, t)-system exists if t + 1 is a prime power

- Brakensiek, Gopi, Guruswami: (t + 1, t)-systems exist otherwise
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Upper bounds: overview

@ Step 1: Use induction to reduce to the balanced case:
ex(n, STV (K)) < O(ntktH1).

@ Step 2: Reduce the balanced case to an existence problem for (t+ 1, t)-systems

Definition
ACP([N]) is a (t+ 1, t)-system if:

@ A is intersection closed, i.e. VA, B € A we also have AN B € A,
@ any subset of [N] of size at most t is contained in some set in A and

@ VA € A we have |A| # N (mod t + 1).

- Nigele, Sudakov, Zenklusen: no (t + 1, t)-system exists if t + 1 is a prime power

- Brakensiek, Gopi, Guruswami: (t + 1, t)-systems exist otherwise

@ Step 3: Show there are no (t + 1, t)-systems on ground set of size N =2t +1
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Reduction to the existence problem for a (t + 1, t)-system

No (t + 1, t)-system on 2t + 1 points = ex(n, S§2t+l)(k)) < O(ntktth)
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Reduction to the existence problem for a (t + 1, t)-system

No (t + 1, t)-system on 2t + 1 points = ex(n, S§2t+l)(k)) < O(ntktth)

@ Let H= (V,E) be an n-vertex, 2t 4+ 1-uniform, ngtﬂ)(k)—free hypergraph
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Reduction to the existence problem for a (t + 1, t)-system

No (t + 1, t)-system on 2t + 1 points = ex(n, S§2t+l)(k)) < O(ntktth)

@ Let H= (V,E) be an n-vertex, 2t 4+ 1-uniform, ngtﬂ)(k)—free hypergraph

@ For every set S of t vertices there is a set of vertices 75 disjoint from S which
intersects all edges containing S and has size |7s| < (t + 1)k.
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Reduction to the existence problem for a (t + 1, t)-system

No (t + 1, t)-system on 2t + 1 points = ex(n, S£2t+1)(k)) < O(ntktth)

@ Let H= (V,E) be an n-vertex, 2t + 1-uniform, S§2t+1)(k)—free hypergraph

@ For every set S of t vertices there is a set of vertices 75 disjoint from S which
intersects all edges containing S and has size |7s| < (t + 1)k.

» Among t + l-sets extending S into an edge there are no k vertex disjoint ones
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Reduction to the existence problem for a (t + 1, t)-system

No (t + 1, t)-system on 2t + 1 points —> ex(n, Sf2t+1)(k)) < O(ntktth)

@ Let H= (V,E) be an n-vertex, 2t 4+ 1-uniform, S§2t+1)(k)—free hypergraph

@ For every set S of t vertices there is a set of vertices 75 disjoint from S which
intersects all edges containing S and has size |7s| < (t + 1)k.

» Among t + 1-sets extending S into an edge there are no k vertex disjoint ones
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Reduction to the existence problem for a (t + 1, t)-system

No (t + 1, t)-system on 2t + 1 points —> ex(n, Sf2t+1)(k)) < O(ntktth)

@ Let H= (V,E) be an n-vertex, 2t 4+ 1-uniform, S§2t+1)(k)—free hypergraph

@ For every set S of t vertices there is a set of vertices 75 disjoint from S which
intersects all edges containing S and has size |7s| < (t + 1)k.

» Among t 4 1-sets extending S into an edge there are no k vertex disjoint ones
» Taking the union of a maximal vertex disjoint collection gives 7s.
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Reduction to the existence problem for a (t + 1, t)-system

No (t + 1, t)-system on 2t + 1 points = ex(n, S§2t+l)(k)) < O(ntktth)

o Let H=(V,E) be an n-vertex, 2t 4+ 1-uniform hypergraph

@ For every set S of t vertices fix a set of vertices 75 disjoint from S which
intersects all edges containing S and has size |7s| < (t + 1)k.
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Reduction to the existence problem for a (t + 1, t)-system

No (t + 1, t)-system on 2t + 1 points —> ex(n, Sf2t+1)(k)) < O(ntktth)

o Let H=(V,E) be an n-vertex, 2t 4+ 1-uniform hypergraph

@ For every set S of t vertices fix a set of vertices 75 disjoint from S which
intersects all edges containing S and has size |7s| < (t + 1)k.

@ Let ex be the number of edges containing X. So [E| <} sy 5= €s-
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Reduction to the existence problem for a (t + 1, t)-system

No (t + 1, t)-system on 2t + 1 points —> ex(n, Sf2t+1)(k)) < O(ntktth)

o Let H=(V,E) be an n-vertex, 2t 4+ 1-uniform hypergraph

@ For every set S of t vertices fix a set of vertices 75 disjoint from S which
intersects all edges containing S and has size |7s| < (t + 1)k.

@ Let ex be the number of edges containing X. So [E| <} sy 5= €s-

© Let S be a t-set then es <> . esuqy)
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Reduction to the existence problem for a (t + 1, t)-system

No (t + 1, t)-system on 2t + 1 points = ex(n, S§2t+l)(k)) < O(ntktth)

o Let H= (V,E) be an n-vertex, 2t 4+ 1-uniform hypergraph

@ For every set S of t vertices fix a set of vertices 75 disjoint from S which
intersects all edges containing S and has size |7s| < (t + 1)k.

@ Let ex be the number of edges containing X. So [E[ <} scy/ S|=t €S-

@ Let S be a t-set then es < ZveTS esufv}

®)
® )
o)
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Reduction to the existence problem for a (t + 1, t)-system

No (t + 1, t)-system on 2t + 1 points = ex(n, S§2t+l)(k)) < O(ntktth)

o Let H= (V,E) be an n-vertex, 2t 4+ 1-uniform hypergraph

@ For every set S of t vertices fix a set of vertices 75 disjoint from S which
intersects all edges containing S and has size |7s| < (t + 1)k.

@ Let ex be the number of edges containing X. So [E[ <} scy/ S|=t €S-

@ Let S be a t-set then es < ZveTS esufv}

t
~ A Y
o o o o
(t+1)k
choices
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Reduction to the existence problem for a (t + 1, t)-system

No (t + 1, t)-system on 2t + 1 points = ex(n, S§2t+l)(k)) < O(ntktth)

o Let H= (V,E) be an n-vertex, 2t 4+ 1-uniform hypergraph

@ For every set S of t vertices fix a set of vertices 75 disjoint from S which
intersects all edges containing S and has size |7s| < (t + 1)k.

@ Let ex be the number of edges containing X. So [E[ <} scy/ S|=t €S-

@ Let S be a t-set then es < ZveTS esufv}

® )~

0)
o)

°
(t+1)k

choices
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Reduction to the existence problem for a (t + 1, t)-system

No (t + 1, t)-system on 2t + 1 points = ex(n, S§2t+l)(k)) < O(ntktth)

o Let H= (V,E) be an n-vertex, 2t 4+ 1-uniform hypergraph

@ For every set S of t vertices fix a set of vertices 75 disjoint from S which
intersects all edges containing S and has size |7s| < (t + 1)k.

@ Let ex be the number of edges containing X. So |E[ <3 sy 5= es-
@ Let S be a t-set then es < ZveTS esufv}

@ For any X if 3 t-set S C X such that 7s N X = () then ex < > vers EXU{v)

® )~

0)
o)

°
(t+1)k

choices
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Reduction to the existence problem for a (t + 1, t)-system

No (t + 1, t)-system on 2t + 1 points = ex(n, S§2t+l)(k)) < O(ntktth)

o Let H= (V,E) be an n-vertex, 2t 4+ 1-uniform hypergraph

@ For every set S of t vertices fix a set of vertices 75 disjoint from S which
intersects all edges containing S and has size |7s| < (t + 1)k.

@ Let ex be the number of edges containing X. So |E[ <3 sy 5= es-
@ Let S be a t-set then es < ZveTS esufv}

@ For any X if 3 t-set S C X such that 7s N X = () then ex < > vers EXU{v)

® )~

0)
o)

[ ] [ ]
(t+1)k (t+1)k

choices  choices
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Non-existence of (t + 1, t)-systems

@ Let t+ 1= p=, for p prime and assume that A C P([N]) satisfies:
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Non-existence of (t + 1, t)-systems

@ Let t+ 1= p=, for p prime and assume that A C P([N]) satisfies:

» A is intersection closed
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Non-existence of (t + 1, t)-systems

@ Let t+ 1= p=, for p prime and assume that A C P([N]) satisfies:

» A is intersection closed
» all t-subsets of [N] are covered
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Non-existence of (t + 1, t)-systems

@ Let t+ 1= p=, for p prime and assume that A C P([N]) satisfies:

» A is intersection closed
» all t-subsets of [N] are covered
» VA€ Awe have |A| # N (mod t + 1)
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Non-existence of (t + 1, t)-systems

@ Let t+ 1= p=, for p prime and assume that A C P([N]) satisfies:

» A is intersection closed
» all t-subsets of [N] are covered
» VA€ Awe have |A| # N (mod t + 1)

@ By adding dummy vertices to every A € A we may assume N = —1 (mod t+1)
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Non-existence of (t + 1, t)-systems

@ Let t+ 1= p=, for p prime and assume that A C P([N]) satisfies:

» A is intersection closed
» all t-subsets of [N] are covered
» VA€ Awe have |A| # N (mod t + 1)

@ By adding dummy vertices to every A € A we may assume N = —1 (mod t+1)
o Let A= {A1,...,An}.
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Non-existence of (t + 1, t)-systems

@ Let t+ 1= p=, for p prime and assume that A C P([N]) satisfies:

» A is intersection closed
» all t-subsets of [N] are covered
» VA€ Awe have |A| # N (mod t + 1)

@ By adding dummy vertices to every A € A we may assume N = —1 (mod t+1)

o Let A= {Ay,...,An}. Double counting the # of t-sets covered by some A;:
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Non-existence of (t + 1, t)-systems

@ Let t+ 1= p=, for p prime and assume that A C P([N]) satisfies:

» A is intersection closed
» all t-subsets of [N] are covered
» VA€ Awe have |A| # N (mod t + 1)

@ By adding dummy vertices to every A € A we may assume N = —1 (mod t+1)

o Let A= {Ay,...,An}. Double counting the # of t-sets covered by some A;:

N
<t> = # of covered t-subsets
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Non-existence of (t + 1, t)-systems

@ Let t+ 1= p®, for p prime and assume that A C P([N]) satisfies:
» A is intersection closed

» all t-subsets of [N] are covered
» VA€ A we have |A| # N (mod t + 1)

@ By adding dummy vertices to every A € A we may assume N = —1 (mod t+1)
o Let A= {Ay,...,An}. Double counting the # of t-sets covered by some A;:

N
( t) = # of covered t-subsets

() (B () -
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Non-existence of (t + 1, t)-systems

@ Let t+ 1= p®, for p prime and assume that A C P([N]) satisfies:
» A is intersection closed

» all t-subsets of [N] are covered
» VA€ A we have |A| # N (mod t + 1)

@ By adding dummy vertices to every A € A we may assume N = —1 (mod t+1)
o Let A= {Ay,...,An}. Double counting the # of t-sets covered by some A;:

N
( t) = # of covered t-subsets
A A An
() () o ()
t t t
|A10A2| B |A1ﬂA3| B B |Am,1ﬂAm| n
t t t
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Non-existence of (t + 1, t)-systems

@ Let t+ 1= p®, for p prime and assume that A C P([N]) satisfies:
» A is intersection closed

» all t-subsets of [N] are covered
» VA€ A we have |A| # N (mod t + 1)

@ By adding dummy vertices to every A € A we may assume N = —1 (mod t+1)
o Let A= {Ay,...,An}. Double counting the # of t-sets covered by some A;:

N
( t) = # of covered t-subsets
A A An
() () o ()
t t t
|A10A2| _ |A1ﬂA3| B B |Am,10Am| n
; ; ;

(.;.1)m_1<|A1 m...mA,,,|)

t
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Non-existence of (t + 1, t)-systems

@ Let t+1 = p®, for p prime and assume that A C P([N]) satisfies:

» A is intersection closed
» all t-subsets of [N] are covered
» VA€ A we have |A| # N (mod t + 1)

@ By adding dummy vertices to every A € A we may assume N = —1 (mod t+1)
o Let A= {Ay,...,An}. Double counting the # of t-sets covered by some A;:

(/;l) = # of covered t-subsets = Z (=)=t <| Mies Ai|>

0A1C[m] f
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Non-existence of (t + 1, t)-systems

@ Let t+1 = p®, for p prime and assume that A C P([N]) satisfies:

» A is intersection closed
» all t-subsets of [N] are covered
» VA€ A we have |A| # N (mod t + 1)

@ By adding dummy vertices to every A € A we may assume N = —1 (mod t+1)
o Let A= {Ay,...,An}. Double counting the # of t-sets covered by some A;:

(/;l) = # of covered t-subsets = Z (=)=t <| Mies Ai|>

0A1C[m] f

@ Lucas' theorem implies: (7) =0 (mod p) < a # —1 (mod p*)
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Non-existence of (t + 1, t)-systems

@ Let t+1 = p®, for p prime and assume that A C P([N]) satisfies:

» A is intersection closed
» all t-subsets of [N] are covered
» VA€ A we have |A| # N (mod t + 1)

@ By adding dummy vertices to every A € A we may assume N = —1 (mod t+1)
o Let A= {Ay,...,An}. Double counting the # of t-sets covered by some A;:

N iel Aj
(t) = # of covered t-subsets = Z (—1)“'_:l (' Miel |) =0 (mod p)

0A1C[m] ‘

@ Lucas' theorem implies: (7) =0 (mod p) < a # —1 (mod p*)
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Non-existence of (t + 1, t)-systems

@ Let t+1 = p®, for p prime and assume that A C P([N]) satisfies:

» A is intersection closed
» all t-subsets of [N] are covered
» VA€ A we have |A| # N (mod t + 1)

@ By adding dummy vertices to every A € A we may assume N = —1 (mod t+1)
o Let A= {Ay,...,An}. Double counting the # of t-sets covered by some A;:

N ic1 A
0 <t> = # of covered t-subsets = Z (1)1 (' Miel |) 0 (mod p)

01 [m] f

@ Lucas' theorem implies: (7) =0 (mod p) < a # —1 (mod p*)
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Further directions

@ We determined the dependency of ex(n,S,Er)(k)) on n and k.
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Further directions

@ We determined the dependency of ex(n,S,Er)(k)) on n and k.

Problem 1
What is the dependency on r?
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Further directions

@ We determined the dependency of ex(n,S,Er)(k)) on n and k.

Problem 1

What is the dependency on r?

Problem 2

What if we forbid a collection of r-uniform sunflowers?
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Further directions

@ We determined the dependency of ex(n,Sgr)(k)) on n and k.

Problem 1

What is the dependency on r?

Problem 2

What if we forbid a collection of r-uniform sunflowers?

Problem 3 (Chung-Erdés unavoidability problem, 1983)
Among r-uniform hypergraphs with e edges which is hardest to avoid?
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Further directions

@ We determined the dependency of ex(n,Sgr)(k)) on n and k.

Problem 1

What is the dependency on r?

Problem 2

What if we forbid a collection of r-uniform sunflowers?

Problem 3 (Chung-Erdés unavoidability problem, 1983)
Among r-uniform hypergraphs with e edges which is hardest to avoid?

@ Known for r < 4, up to constant factor.
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First lower bound

Theorem (Bradag, B. and Sudakov)

nrftfl kt+1 if t < 1
ntk™t ift> 5=

N|

ex(n, S{(k)) =
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First lower bound

Theorem (Bradag, B. and Sudakov)

i

ex(n,ng)(k)) S - . é
L

@ Partition the vertex set into Aand Bs.t. |[Al=k—1and |[B|=n—k+1
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First lower bound

Theorem (Bradag, B. and Sudakov)

Pttt ey < el
ntkrt ift > 5L,

ex(n, 8\ (k)) ~/ {

@ Partition the vertex set into Aand Bs.t. |[Al=k—1and |[B|=n—k+1
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First lower bound

Theorem (Bradag, B. and Sudakov)

Pttt ey < el
ntkrt ift > 5L,

ex(n, 8\ (k)) ~/ {

@ Partition the vertex set into Aand Bs.t. |[Al=k—1and |[B|=n—k+1

@ Choose as an edge any set with t + 1 verticesin Aand r—t—1in B.
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First lower bound

Theorem (Bradag, B. and Sudakov)

Pttt ey < el
ntkrt ift > 5L,

ex(n, 8\ (k)) ~/ {

@ Partition the vertex set into Aand Bs.t. |[Al=k—1and |[B|=n—k+1

@ Choose as an edge any set with t + 1 verticesin Aand r—t—1in B.
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First lower bound

Theorem (Bradag, B. and Sudakov)

Pttt ey < el
ntkrt ift > 5L,

ex(n, 8\ (k)) ~/ {

@ Partition the vertex set into Aand Bs.t. |[Al=k—1and |[B|=n—k+1
@ Choose as an edge any set with t + 1 verticesin Aand r—t—1in B.

e No Sgr)(k) since every petal needs to have a vertex in A.
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First lower bound

Theorem (Bradag, B. and Sudakov)

Pttt ey < el
ntkrt ift > 5L,

ex(n, 8\ (k)) ~/ {

@ Partition the vertex set into Aand Bs.t. |[Al=k—1and |[B|=n—k+1
@ Choose as an edge any set with t + 1 verticesin Aand r—t—1in B.

e No Sgr)(k) since every petal needs to have a vertex in A.

@ The number of edges is at least (’;;i) (MK = Q (n kY
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First lower bound

Theorem (Bradag, B. and Sudakov)

nr—t=1pt+1 ift < %1’
ntkr=t ift > 5L

ex(n, S (K)) =~ {

o Partition the vertex set into Aand Bs.t. |[Al=k—1and |B|=n—k+1
@ Choose as an edge any set with t + 1 verticesin Aand r —t — 1 in B.

e No Sgr)(k) since every petal needs to have a vertex in A.

@ The number of edges is at least (’;Jj) (';:’t(fll) =Q,(n k) =

ex(n, SV (K)) > Q,(n -1kt
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Second lower bound

Theorem (Bradag, B. and Sudakov)

nr—t—lkt+1 if t < %1’

eX(n,ng)(k)) ~, et P
e
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Second lower bound

Theorem (Bradag, B. and Sudakov)

pr—t=1pt+1 ift< %1’
ntkrt ift > 5L,

ex(n, 8" (k)) ~ {

o Let m:= ]S,Er)(k)| — 1 and S be an m-uniform n-vertex hypergraph s.t.
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Second lower bound

Theorem (Bradag, B. and Sudakov)

pr—t=1pt+1 ift< %1’
ntkrt ift > 5L,

ex(n, 8" (k)) ~ {

o Let m:= ]S,Er)(k)| — 1 and S be an m-uniform n-vertex hypergraph s.t.
> any subset of t vertices is contained in precisely one edge of S
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Second lower bound

Theorem (Bradag, B. and Sudakov)

pr—t=1pt+1 ift< %1’
ntkrt ift > 5L,

ex(n, 8" (k)) ~ {

o Let m:= ]S,Er)(k)| — 1 and S be an m-uniform n-vertex hypergraph s.t.
> any subset of t vertices is contained in precisely one edge of S
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Second lower bound

Theorem (Bradag, B. and Sudakov)

pr—t=1pt+1 ift< %1’
ntkrt ift > 5L,

ex(n, 8" (k)) ~ {

o Let m:= ]S,Er)(k)| — 1 and S be an m-uniform n-vertex hypergraph s.t.
> any subset of t vertices is contained in precisely one edge of S

@ Choose as edges of our H any r-vertex subset of an edge of S.
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Second lower bound

Theorem (Bradag, B. and Sudakov)

pr—t=1pt+1 ift< %1’
ntkrt ift > 5L,

ex(n, 8" (k)) ~ {

o Let m:= ]S,Er)(k)| — 1 and S be an m-uniform n-vertex hypergraph s.t.
> any subset of t vertices is contained in precisely one edge of S

@ Choose as edges of our H any r-vertex subset of an edge of S.

e No Sgr)(k) as all its edges must come from the same edge of S.
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Second lower bound

Theorem (Bradag, B. and Sudakov)

pr—t=1pt+1 ift< %1’
ntkrt ift > 5L,

ex(n, 8" (k)) ~ {

o Let m:= ]S,Er)(k)| — 1 and S be an m-uniform n-vertex hypergraph s.t.
> any subset of t vertices is contained in precisely one edge of S

@ Choose as edges of our H any r-vertex subset of an edge of S.
e No Sgr)(k) as all its edges must come from the same edge of S.
@ The number of edges is at least (7)/(T) - (7) > Q,(n*k""")

t
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Second lower bound

Theorem (Bradag, B. and Sudakov)

pr—t=1pt+1 ift< %1’
ntkrt ift > 5L,

ex(n, 8" (k)) ~ {

o Let m:= ]S,Er)(k)| — 1 and S be an m-uniform n-vertex hypergraph s.t.
> any subset of t vertices is contained in precisely one edge of S

@ Choose as edges of our H any r-vertex subset of an edge of S.
e No Sgr)(k) as all its edges must come from the same edge of S.

@ The number of edges is at least (7)/(7) - (7) > Q,(n*k""!) =

ex(n, S (k) > Q. (ntk™1).
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