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Sunflowers

Definition

A collection of distinct sets is called a sunflower if the intersection of any
pair of sets equals the common intersection of all the sets

1, 2 3, 4

5, 6

7, 8

9, 10
11, 12

The common intersection is the kernel of the sunflower.

r -uniform if all sets have size r .
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Matija Bucić (IAS and Princeton) Turán numbers of sunflowers Oxford Discrete Math and Probability Seminar 2021



Sunflowers

Definition

A collection of distinct sets is called a sunflower if the intersection of any
pair of sets equals the common intersection of all the sets

{1, 2, 3, 4}
{1, 2, 5, 6}
{1, 2, 7, 8}
{1, 2, 9, 10}
{1, 2, 11, 12}

1, 2 3, 4

5, 6

7, 8

9, 10
11, 12

The common intersection is the kernel of the sunflower.

r -uniform if all sets have size r .

Matija Bucić (IAS and Princeton) Turán numbers of sunflowers Oxford Discrete Math and Probability Seminar 2021



Sunflowers

Definition

A collection of distinct sets is called a sunflower if the intersection of any
pair of sets equals the common intersection of all the sets

{1, 2, 3, 4}
{1, 2, 5, 6}
{1, 2, 7, 8}
{1, 2, 9, 10}
{1, 2, 11, 12}

1, 2 3, 4

5, 6

7, 8

9, 10
11, 12

The common intersection is the kernel of the sunflower.

r -uniform if all sets have size r .
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Erdős-Rado sunflower conjecture

Question (Erdős-Rado, 1960)

What is the max size of a family of r -sets without a k petal sunflower?

Denote the answer by fr (k).

Erdős-Rado sunflower lemma:

(k − 1)r ≤

fr (k) ≤ (k − 1)r · r !.
Best known upper bound is: fr (k) ≤ O(k log r)r .

Conjecture (Sunflower conjecture, Erdős-Rado, 1960)

fr (k) ≤ O(k)r

Even k = 3 case is open and very interesting.

Relations to many topics in computer science and probability theory.
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Erdős-Rado sunflower lemma:

(k − 1)r ≤

fr (k) ≤ (k − 1)r · r !.

Best known upper bound is: fr (k) ≤ O(k log r)r .

Conjecture (Sunflower conjecture, Erdős-Rado, 1960)
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Question (Erdős-Rado, 1960)

What is the max size of a family of r -sets without a k petal sunflower?

Denote the answer by fr (k).
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Specific sunflowers

Let S(r)
t (k) be the r -uniform sunflower with k petals and kernel of size t.

S(2)
1 (5)

S(4)
2 (5)

Sunflower problem: What is the max number of edges in an r -graph

without any of S(r)
0 (k),S(r)

1 (k) . . . ,S(r)
r−1(k)?

Question (Duke and Erdős 1977)

What is the max number of edges in an n-vertex r -graph without S(r)
t (k)?
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Matija Bucić (IAS and Princeton) Turán numbers of sunflowers Oxford Discrete Math and Probability Seminar 2021



Specific sunflowers

Let S(r)
t (k) be the r -uniform sunflower with k petals and kernel of size t.

S(2)
1 (5) S(4)

2 (5)

Sunflower problem: What is the max number of edges in an r -graph

without any of S(r)
0 (k),S(r)

1 (k) . . . ,S(r)
r−1(k)?

Question (Duke and Erdős 1977)
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Turán problem for sunflowers

Question (Duke and Erdős 1977)

What is the max number of edges in an n-vertex r -graph without S(r)
t (k)?

The answer is called the Turán number of S(r)
t (k), denoted ex(n,S(r)

t (k))

Captures several classical problems:

▶ Case t = 0 corresponds to the Erdős matching conjecture

▶ Case k = 2 corresponds to the forbidden intersection problem

Many results and bounds in various regimes.

Frankl and Füredi 1985: For fixed r and k we have

ex(n,S(r)
t (k)) ≈r ,k nmax{r−t+1,t}.
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Large sunflowers

Frankl and Füredi 1985: For fixed r and k we have

ex(n,S(r)
t (k)) ≈r ,k nmax{r−t+1,t}.

Chung, Erdős, Graham 1980’s: What if we let k grow with n?

If r = 2 it is trivial to see ex(n,S(2)
1 (k)) ≈ nk

If r = 3 there are two types of sunflowers depending on kernel size
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Matija Bucić (IAS and Princeton) Turán numbers of sunflowers Oxford Discrete Math and Probability Seminar 2021



Large sunflowers
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Matija Bucić (IAS and Princeton) Turán numbers of sunflowers Oxford Discrete Math and Probability Seminar 2021



Large sunflowers
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Large sunflowers

Frankl and Füredi 1985: For fixed r and k we have

ex(n,S(r)
t (k)) ≈r ,k nmax{r−t+1,t}.

Chung, Erdős, Graham 1980’s: What if we let k grow with n?

If r = 2 it is trivial to see ex(n,S(2)
1 (k)) ≈ nk

If r = 3 there are two types of sunflowers depending on kernel size

▶ Duke and Erdős; Frankl: ex(n,S(3)
1 (k)) ≈ nk2 and ex(n,S(3)

2 (k)) ≈ n2k

▶ Chung determined ex(n,S(3)
1 (k)) up to lower order terms.

▶ Chung and Frankl determined ex(n,S(3)
1 (k)) precisely.
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Main result

Theorem (Bradač, B. and Sudakov)

ex(n,S(r)
t (k)) ≈r

{
nr−t−1kt+1 if t ≤ r−1

2 ,

ntk r−t if t > r−1
2 .

∅

ex(n,S(5)
0 (k)) ≈ n4k ex(n,S(5)

1 (k)) ≈ n3k2 ex(n,S(5)
2 (k)) ≈ n2k3

ex(n,S(5)
3 (k)) ≈ n3k2 ex(n,S(5)

4 (k)) ≈ n4k
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Matija Bucić (IAS and Princeton) Turán numbers of sunflowers Oxford Discrete Math and Probability Seminar 2021



Main result
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Upper bounds: overview

Theorem (Bradač, B. and Sudakov)

ex(n,S(r)
t (k)) ≈r

{
nr−t−1kt+1 if t ≤ r−1

2 ,

ntk r−t if t > r−1
2 .

Step 1: Use induction to reduce to the balanced case:

ex(n,S(2t+1)
t (k)) ≤ O(ntk t+1).

Step 2: Reduce the balanced case to an existence problem for (t+1, t)-systems
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ntk r−t if t > r−1
2 .

Step 1: Use induction to reduce to the balanced case:

ex(n,S(2t+1)
t (k)) ≤ O(ntk t+1).

Step 2: Reduce the balanced case to an existence problem for (t+1, t)-systems

t t + 1

t + 1
t + 1

t + 1
t + 1

A balanced sunflower:
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Upper bounds: overview

Step 1: Use induction to reduce to the balanced case:

ex(n,S(2t+1)
t (k)) ≤ O(ntk t+1).

Step 2: Reduce the balanced case to an existence problem for (t+1, t)-systems

Definition

A ⊆ P([N]) is a (t + 1, t)-system if:

A is intersection closed, i.e. ∀A,B ∈ A we also have A ∩ B ∈ A,

any subset of [N] of size at most t is contained in some set in A and

∀A ∈ A we have |A| ̸≡ N (mod t + 1).

- Nägele, Sudakov, Zenklusen: no (t +1, t)-system exists if t +1 is a prime power

- Brakensiek, Gopi, Guruswami: (t + 1, t)-systems exist otherwise

Step 3: Show there are no (t + 1, t)-systems on ground set of size N = 2t + 1

Matija Bucić (IAS and Princeton) Turán numbers of sunflowers Oxford Discrete Math and Probability Seminar 2021



Upper bounds: overview

Step 1: Use induction to reduce to the balanced case:

ex(n,S(2t+1)
t (k)) ≤ O(ntk t+1).

Step 2: Reduce the balanced case to an existence problem for (t+1, t)-systems

Definition

A ⊆ P([N]) is a (t + 1, t)-system if:

A is intersection closed, i.e. ∀A,B ∈ A we also have A ∩ B ∈ A,

any subset of [N] of size at most t is contained in some set in A and

∀A ∈ A we have |A| ̸≡ N (mod t + 1).
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Matija Bucić (IAS and Princeton) Turán numbers of sunflowers Oxford Discrete Math and Probability Seminar 2021



Upper bounds: overview

Step 1: Use induction to reduce to the balanced case:

ex(n,S(2t+1)
t (k)) ≤ O(ntk t+1).

Step 2: Reduce the balanced case to an existence problem for (t+1, t)-systems

Definition

A ⊆ P([N]) is a (t + 1, t)-system if:

A is intersection closed, i.e. ∀A,B ∈ A we also have A ∩ B ∈ A,

any subset of [N] of size at most t is contained in some set in A and

∀A ∈ A we have |A| ̸≡ N (mod t + 1).
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Matija Bucić (IAS and Princeton) Turán numbers of sunflowers Oxford Discrete Math and Probability Seminar 2021



Upper bounds: overview

Step 1: Use induction to reduce to the balanced case:

ex(n,S(2t+1)
t (k)) ≤ O(ntk t+1).

Step 2: Reduce the balanced case to an existence problem for (t+1, t)-systems

Definition

A ⊆ P([N]) is a (t + 1, t)-system if:

A is intersection closed, i.e. ∀A,B ∈ A we also have A ∩ B ∈ A,

any subset of [N] of size at most t is contained in some set in A and

∀A ∈ A we have |A| ̸≡ N (mod t + 1).
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Reduction to the existence problem for a (t + 1, t)-system

Lemma

No (t + 1, t)-system on 2t + 1 points =⇒ ex(n,S(2t+1)
t (k)) ≤ O(ntk t+1)

Let H = (V ,E ) be an n-vertex, 2t + 1-uniform hypergraph

For every set S of t vertices a set of vertices τS disjoint from S which
intersects all edges containing S and has size |τS | ≤ (t + 1)k.
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t (k)-free hypergraph

For every set S of t vertices there is a set of vertices τS disjoint from S which
intersects all edges containing S and has size |τS | ≤ (t + 1)k.

▶ Among t + 1-sets extending S into an edge there are no k vertex disjoint ones

▶ Taking the union of a maximal vertex disjoint collection gives τS .
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For every set S of t vertices fix a set of vertices τS disjoint from S which
intersects all edges containing S and has size |τS | ≤ (t + 1)k.

Let eX be the number of edges containing X . So |E | ≤
∑

S⊆V , |S|=t eS .

Let S be a t-set then eS ≤
∑

v∈τS
eS∪{v}

For any X if ∃ t-set S ⊆ X such that τS ∩ X = ∅ then eX ≤
∑

v∈τS
eX∪{v}

t
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Let eX be the number of edges containing X . So |E | ≤
∑

S⊆V , |S|=t eS .

Let S be a t-set then eS ≤
∑

v∈τS
eS∪{v}

For any X if ∃ t-set S ⊆ X such that τS ∩ X = ∅ then eX ≤
∑

v∈τS
eX∪{v}

t

(t + 1)k

choices
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Non-existence of (t + 1, t)-systems

Let t + 1 = pα, for p prime and assume that A ⊆ P([N]) satisfies:

▶ A is intersection closed
▶ all t-subsets of [N] are covered
▶ ∀A ∈ A we have |A| ̸≡ N (mod t + 1)

By adding dummy vertices to every A ∈ A we may assume N ≡ −1 (mod t+1)

Let A = {A1, . . . ,Am}.

Double counting the # of t-sets covered by some Ai :

(
N

t

)
= # of covered t-subsets

Lucas’ theorem implies:
(
a
t

)
≡ 0 (mod p) ⇔ a ̸≡ −1 (mod pα)
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Matija Bucić (IAS and Princeton) Turán numbers of sunflowers Oxford Discrete Math and Probability Seminar 2021



Non-existence of (t + 1, t)-systems

Let t + 1 = pα, for p prime and assume that A ⊆ P([N]) satisfies:

▶ A is intersection closed
▶ all t-subsets of [N] are covered
▶ ∀A ∈ A we have |A| ̸≡ N (mod t + 1)

By adding dummy vertices to every A ∈ A we may assume N ≡ −1 (mod t+1)

Let A = {A1, . . . ,Am}.

Double counting the # of t-sets covered by some Ai :

(
N

t

)
= # of covered t-subsets

Lucas’ theorem implies:
(
a
t

)
≡ 0 (mod p) ⇔ a ̸≡ −1 (mod pα)
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Further directions

We determined the dependency of ex(n,S(r)
t (k)) on n and k .

Problem 1

What is the dependency on r?

Problem 2

What if we forbid a collection of r -uniform sunflowers?

Problem 3 (Chung-Erdős unavoidability problem, 1983)

Among r -uniform hypergraphs with e edges which is hardest to avoid?

Known for r ≤ 4, up to constant factor.
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First lower bound

Theorem (Bradač, B. and Sudakov)

ex(n,S(r)
t (k)) ≈r

{
nr−t−1kt+1 if t ≤ r−1

2 ,

ntk r−t if t > r−1
2 .

Partition the vertex set into A and B s.t. |A| = k − 1 and |B| = n− k +1

Choose as an edge any set with t + 1 vertices in A and r − t − 1 in B.

No S(r)
t (k) since every petal needs to have a vertex in A.

The number of edges is at least
(k−1
t+1

)(n−k+1
r−t−1

)
= Ωr (n

r−t−1kt+1)
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Matija Bucić (IAS and Princeton) Turán numbers of sunflowers Oxford Discrete Math and Probability Seminar 2021



First lower bound
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Theorem (Bradač, B. and Sudakov)
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2 ,
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2 .
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t
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(m
r

)
≥ Ωr (n
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