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Setting

* The binomial random graph G (n,p): V(G) = [n]; each edge (i,j) isin E(G) with prob. p = p(n),
independently of all other edges.

4 )

Definition: Let G be an n-vertex graph. The set L( ) is the set of all integers £ € |3, n]
such that G contains a cycle of length ¥.

- )

? [What can we say about L(G) when G ~ G(n, p)?}




Simple observations, famous results...

‘If k = ©(1), X;, = rv. counting k-cycles in G(n,p), then E[X,] = (WI p* = O(n*p*), and

o 2k
Var[X,] = 0| n¥p* + Z p2k—i=1p2k=i
i=1

So if np — o, we have: Var[X;] = o(E[X,]?), and by the second moment method:

_ Var[Xg]
Pr[Xk = O] < _IE[Xk]_Z = 0(1),
And therefore with high probability (WHP) [3, k| S L(G(n, p)).

*Komlds, Szemerédi’83; Bollobas’84: If np — logn — loglogn — oo then WHP G (n, p) is Hamiltonian.
Equivalently: WHP n € L(G(n, p)).

(Much easier part: np —logn —loglogn — —oco then WHP G (n, p) has vertices of degree <2
= WHP non-Hamiltonian)

°|n fact...



Pancyclicity

Definition: an n-vertex graph G is called pancyclicif L(G) = [3,n].

Theorem (Cooper, Frieze’90):

0 ; np — logn — loglogn —» —oo

lim,_,, Pr[G(n,p) is pancyclic] =
1 np — logn — loglogn — oo

(& )




Preparing for a proof

*0-statement — trivial in light of Hamiltonicity threshold.

*We will present a proof sketch of the 1-statement.
*This is not the original proof.
*Helpful to demonstrate our tools for proving our results next.

*Double exposure:

If (1 -p)(A—py) =1—pthenG(n,p;) UG, py) ~G(n,p)

*Observe: p; +p, = p.



Pancyclicity: proof

*Proof of the 1-statement (Alon, K., Lubetzky):

*Enough to show that WHP [4,n] S L(G(n, p)).
*Sufficient:

ve € 4,2+ 2| Pr{{e,n — £+ 4} £ G(n,p)] = exp(—w(1) - £)

*Say np —logn —loglogn = f(n) » o,G ~ G(n,p) and V(G) = [n].
*Double expose G as G; U G, = G(n,p,) U G(n,p,), where p, = %, pPL=p— Py

*With high probability G (n, p,) contains a Hamilton cycle C,,, WLOG C,, = (1,2,3, ...,n,1).



Pancyclicity: proof
If forsomei #j € [n],k€[f—3]wehave{i,jL,{i+k,j+f—k—-2}€EG,)..
i+ k

j+e—k—2

J
... then ‘€|n A 4i C Li G i! ‘double switchinil



Pancyclicity: proof
*There are ©(n?¥) options for the pair i, j and the shift k.
*So Pr[{#,n— ¢+ 4} & L(G)] is at most about (*)

~ (1—p3)°™

< exp(—0(f (n)*¢))
= exp(—w(n) - ¥).

(*) There are dependencies, so we need to
be careful.




Being careful

*We want to overcome possible dependencies...

*Double exposure, yet again!

“Letting S; j == {{i +kj+f—k—-2}kel[f— 3]}, the “useful” edges WRT {i, j}.

*Expose G, as G3 U G, = G(n,p,/2) U G(n,p,/2).
*Show that WHP |U{i,]~}€E(GB)Si’j| = 0(n?p, - ).

*Now the probability G, contains no useful edge
is ~ (1= p)°P2) = exp(-w(1) - £)




k-pancyclic graphs

In fact, we have proven:

G ~G(n,p),np —log n—loglogn — oo, is WHP 2-pancyclic
— a result of Cooper’9l

[Definition: G,, is k-pancyclic if G has a Hamilton cycle C such that for every 3 < ¥ < n, G,

contains a cycle C, with [E(Cp) \ E(C)| < k.]

An even stronger result:
4 N
Theorem (Cooper’92):

The threshold for Hamiltonicity is the threshold for 1-pancyclicity.
N\ J




What about smaller p’s?

4 )
Theorem (tuczak’91):
Let np - o, G ~ G(n,p), and let n.; be the number of vertices with degree 0 or 1in G.
\Then forevery e > 0, WHP: [3,n — (1 + e)n.{] € L(G). y
*This can be proved in the same spirit as pancyclicity (and tuczak’s original proof has some
similarities to the proof we presented).
*Relies on:
O I

Theorem (Frieze’86):
Let np - o0, G ~ G(n,p), and let n.; be the number of vertices with degree 0 or 1in G.

Then for every £ > 0, WHP: max(L(G)) >n— 1+ &)n.,.
\ )

*Expose E(G) in two parts, find a long cycle in one part and helpful pairs of edges in the other.




What about even smaller p’s?

? Can we say something whennp = 0(1)?

*Let’s assume np = 1 + &, since otherwise the largest connected component is WHP sublinear.

*There are now many cycle lengths we can no longer expect to appear WHP!

N

Theorem (Bollobas 81; Karonski, Rucinski 81):

k
letc >0, k €N, Ay = g—k Then
D
#k-cyclesin G (n,= —>Poi(/1€,k).
i (n9) ’
*So for any constant k, with probability bounded away from 0, k & L(G).

*Also, no cycle lengths larger than the size of the giant component (and in fact the 2-core)! This is
a linear size interval not in L(G) WHP.



What about even smaller p’s? (cont.)

A side remark:

Definition: for some § > 0, an n-vertex graph G is called a f-graph if every disjoint vertex
sets A, B € V(G) of size at least fn are connected by an edge.

°G (n, %) is WHP a -graph for an appropriate § = f(c) = o.(1).

" Theorem (Friedman, K.”21): )

Let 0 < B < 0.05. Then there are b; = by (), b, = b,(B) = O(B) such that if G is
a 3-graph then
N [bylogn, (1 — by)n] € L(G). Y,

*This implies that, WHP, L (G (n, %)) contains an interval of size (1 — oc(l))n.

*Since WHP G (n, %) contains linearly many isolated vertices, we cannot hope for (1 — 0(1))n.



Our first result

o

Theorem 1:
There is Cy > 0 such that for almost every ¢ > Cy, if G ~ G (n, %), then for every e > 0
and sequence w,, = oo, WHP:

9 |wn, (1 — &) max(L(G))] € £(G).

°In the lower range this is best possible (we already know how short cycles are distributed).

)

°In the upper range we capture all but o(n) lengths.
*There are known bounds for max (L(G(n, c/n ))) (We will mention some (more) soon.)

*Sadly, we can only prove for almost every ¢ > (...

*But we can still say some things about every ¢ > 1.



Proof of Theorem 1

*The proof goes similarly to our proof of pancyclicity.

*First, we prove this main lemma:

o
Lemma:
letd >0,G6 ~C,UG (n, %) Then WHP, for every sequence w,, = ©,

9 [w, n — w,] € L(G). y

*You already know the proof...

*This time np +» oo, so (1 — pz)g("zf) — 0 only when £ — oo (hence we do not capture the full

interval).



Proof of Theorem 1 (cont.)

*Theorem 1 is a consequence of the lemma and the following result:

Gheorem (Anastos, Frieze’21): \
There is a monotone non-decreasing function f: R* — (0,1) and a constant C, > 0 such
that, if c > C,, then

P
\ n - f(c). j

*Expose Gas G, UG, = G(n,(c —06)/n)UG(n,d/n).
*Then WHP (7, contains a cycle C of length f(c — §)n — o(n).

*Apply the main lemmaon C U G, [V (C)] to get [w,, f(c — d)n —o(n)] € L(G).
*Choose § to be small enough so that f(c — §) = (1 — %e) f(c), say.

*We can only do the last part in points where f is continuous, hence “almost every” c.



Extensions to Theorem 1

*What we actually proved is the following:

C )
If B(c,n) is a WHP lower bound on max(L(G(n, c/n)), then WHP foreveryc > 1,8 > 0,

W, — 00:

[w,, B(c — 6,n) — w,] S L(G(n, c/n))

\ )

*So for any ¢ > 1, given lower bounds on the maximum length cycle in G(n, c/n) we get some
(possibly weaker) statements on L(G(n, c/n)).

*For example:ifc =1+ &€ < 1 + gy, then it is known that the maximum length is WHP at least
%ezn, and so forally < EWHP [wp, ye?n] € L(G(n,c/n)).

*Everything we said so far is also true for directed cycles in D(n, p)!



Extensions to Theorem 1

*Adjustments to D(n, p):

i+ k

J j—t+k+2




Further applications of the main lemma

Our machinery can be applied in different setups.

Ex.: cycles in randomly perturbed graphs

/Theorem (K, Reichman, Samotij’15): A
Let T,, be a tree on n vertices with A(T,,)) < A=0(1),6 >0,andletG ~T,, UG (n, %)
\Then WHP, G contains a cycle of length = cn, forc = c(A,6) > 0. y
Invoking the main lemma gives now:
Theorem: h
Let T,, be a tree on n vertices with A(T,,)) < A=0(1),§ >0,andletG ~ T, UG (n, g)
\Then WHP, L(G)contains an interval of length = cn, for c = c(A,6) > 0. P




Onward to G(n,d)

*What can we say about L(G) when G is a random d-regular graph G(n,d)?

‘When d = 1 no cycles, when d = 2 likely only logarithmically many. Assume d = 3.
°In G(n, c/n) we were restricted by the maximum cycle possibly being short (missing isolates)...

*No longer!

Theorem (Robinson, Wormald’92,94):
For every fixed d = 3, WHP G(n, d) is Hamiltonian.

*On the other side of the interval things have not improved...

Theorem (Bollobas’80, Wormald’81): A
_1\k
letd =3, k E N, Ay = (dZ;) . Then
D
S #k-cycles in G(n, d) - Poi(24 x) )




Our second result

a )
Theorem 2:

For every integerd = 3, if G ~ G(n, d), then for every sequence w,, & oo, WHP:

lw,, n] € L(G).
N\ J

*This is best possible.
*We will prove for d = 3, which implies the theorem for all d = 3 (assuming that n is even).

*The odd case can be proved by showing this for d = 4 (basically the same, we will not do this
here).



Proof of Theorem 2

*The proof for the interval [w,, n — w,] is very similar to G(n, p).

*As a parallel to double exposure, we have the following useful result (contiguity):
C )
Theorem:

If P is a monotone graph property, then

S Pr[G(n,3) e P] > 1< Pr|C,UG(n,1) € P] > 1. y

*So we just need to show that, for £ € [a)n,g + 2], a random perfect matching on [n] contains
two edges of the form {i,j},{i + k,j + £ — k — 2} with probability 1 — exp(—Q(f)).

*Proofs in G(n, d) may look a bit messier than in G(n, p), but trust us this is still true ©.



Proof of Theorem 2

*We still need to take care of [n — w,,, n]!

*We need the following theorem:

4 N

Theorem (Robinson, Wormald’01):

letd > 3,G ~ G(n,d), m;,m, = o(yn). Set E{, E, € E(G) to be randomly chosen
subsets of sizes m4, m, respectively. Then WHP G contains a Hamilton cycle which
includes all edges of E; and avoids all edges of E,.

o J

*We want to use this to show that WHP n — £ € L(G), for £ € [1, w,].

*Since we can assume w,, grows arbitrarily slowly, this is good enough.

*Prove separately for £ even / £ odd.



Proof of Theorem 2: ¢ = 2k

‘Let G ~ G(n, 3), and pick k edges {uy, v1}, ..., {ug, vy} of G at random.

*For i € [k] denote by {x;, y; }, {x;, y;} the other two neighbours of u;, v; respectively.

G = G([n] \ (U{u;, vi})) U {blue edges} ~ G(n — ¥, 3), and the blue edges are £ random
edgesin G'.

*A Hamilton cycle in G" which avoids these edges is an n — € cycle in G!

X1 X9 Xk
uq U, Uy
000
vl vz vk
! / !
X1 Xy Xk
24

°Invoke Robinson, Wormald.



Proof of Theorem 2: € = 2k — 1

‘Let G' ~ G(n — £ — 1,3) and the blue edges be the same as in the case £ = 2k.

*This time, invoke theorem to find Hamilton cycle C in G’ which avoids the blue edges, except
{x1,v1}, whichisincluded in C.

°C—{xy, v} +{x, u} +{uy,y;}isann — P-cycle in G!







